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Gathering precise and detailed geomorphological and dynamic information of coastal processes is increasingly
required for environmental studies and coastalmanagement policies aswell. Traditionalmethods for in situmea-
surements, or remote sensing monitoring by satellites or airbone imagery, impose limitations and tradeoffs be-
tween image quality, operational costs, availability, and negative environmental effects. These limitations and
tradeoffs restrict the kind of environmental studies that can be undertaken, specifically when a high spatial
and temporal resolution is required over wide geographical areas. In the last decades, video monitoring systems
have demonstrated to be a cost-effective alternative for this and other similar purposes. Notwithstanding that,
video processing is not fully mature in the context of environmental monitoring in general, and, thus, most of
the past and current efforts have been developed in an ad hoc basis. This has the drawback that most available
solutions are hardly useful in contexts different from their original setup. In thisworkwedevelop an autonomous
application for geographic feature extraction and recognition in coastal videos. Specifically, we address the clas-
sification and featuremeasurement ofmultiple beach zones, a topic addressed to a lesser extent by other projects.
The system is designed to be deployed in inexpensive, off-the-shelf hardware, and open source software devel-
opment frameworks, in a way such that the results can be easily replicated by other research groups. The initial
setup and calibration requires very simple supervision, thus allowing the system to be used in a variety of coastal
environments.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Satellite and airborne imagery and, more recently, in situ camera
placement are among the preferred non-invasive monitoring tech-
niques for obtaining qualitative and quantitative data. The information
provided by these techniques ismainly used for decisionmaking andes-
tablishing policies in coastal environments. Specially, beaches are unsta-
ble environments, which have continuous changes due to different
phenomena including waves, winds and anthropic activities. The as-
sessment of changes in these environments should be studied perma-
nently, requiring continuous monitoring of the coast in a wide spatio-
temporal scale (range from meters to kilometers and hours to weeks)
keeping both the spatial and temporal resolution as high as possible
(Holman and Stanley, 2007).

Detailed measurements of waves, beach profiles, currents or sedi-
ment transport are traditionally performed through in situ field studies.
In most cases, traditional methods involve expensive and cumbersome
, Gorriti 237, Jujuy, Argentina.

entina.
transportation and installation of equipment, and the direct interven-
tion of specialists in many fields. In addition, to be meaningful, these
studiesmust be repeated periodically tomeasure the highly varying en-
vironments. For this reason, these campaigns have complex logistics as-
sociated and high operative costs that vary according to the monitoring
site.

On the other hand, satellite or airbone imagery allows a wide cover-
age size of the study area, with the advantage of being able to sense re-
gions with difficult access conditions. However, the use of these
techniques is limited by their high cost in relation to the required
image quality (Yatabe and Fabbri, 1986; Schowengerdt, 1997; Girard
and Girard, 1999; Lillesand and Kiefer, 2000; Jensen, 2000). Also, in sat-
ellite imagery, the revisit time may not be adequate for understanding
short-time phenomena (i.e., tidal variations, changes in wave condi-
tions, storms events, etc. require at least one sample per hour for a rea-
sonable monitoring, far beyond the possibilities of current high spatial
resolution satellite constellations).

In the last decade, in situ installation of autonomousmonitoring sys-
tems become an alternative in terms of cost and performance. Installa-
tion of cameras in fixed positions offers an ever increasing spatial and
temporal resolution, which results in constant improvements in cost-
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Fig. 1.Manual and Automatic stages for mapping of coastal zones in video sequences.
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effectiveness due to the technological breakthroughs associated to these
devices. For this reason, it is already clear that autonomous video-based
monitoring is a mainstream technology in environmental studies.

There are currently several research projects related with coastal
video monitoring distributed worldwide. The Argus project is the pio-
neer in optical remote sensing of coastal management. The project
was developed by the Coastal Imaging Lab (CIL) at theOregon State Uni-
versity. During the 1980s, CIL began using time-lapse video measure-
ments of wave run-up as a diagnostic method for sampling
infragravity edge waves (Holman, 1981). Traditional measurement
methods were replaced by optical sensors, allowing to locate many fea-
tures such as submerged sand bars and rip current channels, which are
not always visible by in situ techniques (Lippmann and Holman, 1989).
The coastal information supplied by the video monitoring techniques
enables the quantification of shoreline evolution and beach width, ero-
sional and accretional sediment volumes at the intertidal beach,
subtidal beach bathymetry, wave run-up and coastal state indicators
with a high resolution in time through assimilation of computation
models.

The project INDIA (Inlet Dynamics Initiative: Algarve) studies the
Barra Nova Inlet in Portugal (Williams et al., 1998). INDIA involves a
multi-Institute, multi-disciplinary study of the interacting hydrody-
namics and morphodynamics occurring at tidal inlet entrances and
along adjacent coastlines. Two main aims are followed by the project,
namely the improvement in understanding complex interactive coastal
processes, and the validation of numerical models. For this, the main
activities are the monitoring and measurement of the surf zone
hydrodynamics using a video system and in situ observations of
bedforms in the surf zone and offshore using a mobile instrument plat-
form, which includes a video camera.

The Hazaki Oceanographical Research Station (HORS) developed a
research facility for field measurements of various phenomena in the
nearshore zone. HORS is located on the Hasaki coast of Japan, facing
the Pacific Ocean. This study tries to show spatial and temporal variation
of the surf zone hydrodynamics using a moored video system
(Takewaka and Nakamura, 2001).

HORUS is a project for coastal monitoring using a video-based sys-
tem created to contribute to the research and management of the envi-
ronment. It is able to continuously measure changes in various natural
areas and offers large spatio-temporal resolution (Osorio et al., 2012).

Cam-era project,2 developed by National Institute of Water and At-
mospheric Research, consists of a number of remote sites that monitor
the coast of New Zealand. This has developed a set of tools for shoreline
detection and beach width measurement to understand the beach
changes for future shoreline management plans.

Another project for video monitoring is SIRENA,3 a low cost and
open source software. It was designed and developed by theMediterra-
nean Institute for Advanced Studies (IMEDEA, CSIC-UIB, Spain). SIRENA
is composed of an in-field node and a central server that are remotely
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connected. SIRENA provides the followings products: median image,
variance image, snapshot, time stacks and pixels statistics.

Many of the above projects share a set of typical processing tech-
niques, including timex or time exposure images, variance images,
daily time exposure images and time-stack images. Timex images are
a useful tool to detect shorelines (Kroon et al., 2007), submerged sand
bar topography (Lippmann and Holman, 1989; Van Enckevort and
Ruessink, 2001), and intertidal beach profile (Plant and Holman,
1997), among others. Variance images identify the location of the
most variable zones of the beach compared with those that had less
modifications.

Early projects began collecting and processing only gray scale im-
ages (Aarninkhof and Holman, 1999; Davidson et al., 2007). Simple in-
formation as shoreline location was first obtained using visual
inspection of these images as an initial proxy, such as the ‘Shore-Line
a) b)

c)

Fig. 2. Study area. a) Southern coast of theBuenos Aires Province, Argentina and location ofMont
Building.
Intensity Maximum’ (SLIM) model (Plant and Holman, 1997; Madsen
and Plant, 2001). The SLIM model was highly robust for reflective
beaches, but its features are often less clear for dissipative beaches.

Further improvement of shoreline detection used an analysis of the
features in the correlogram of the cross-shore intensity and variance
profile (Aarninkhof and Holman, 1999) or spatial gradients in intensity
levels in rectified images (Davidson et al., 2007). However, the poor
chromatic discrimination of gray-scale images was a limitation in
more complex applications.

In order to increase the video monitoring capabilities, with the ad-
vent of better camera sensors, the subsequent developments started
to include full color images. The technique described by Aarninkhof
(2003) aims to segment a shoreline feature from a timex image, on
the basis of distinctive image intensity features, sampled across sub-
aqueous and sub-aerial beach. It uses Hue-Saturation-Value (HSV)
eHermoso Beach. b) Robertino Building. c)Viewof the beach from the topof theRobertino



Fig. 3. Average image of a 5 min burst (4500 frames) taken at the Monte Hermoso Beach
February 26, 2010.
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color space, taking advantage of the split between chromaticity (HS)
and value (V). In this way, the pixels that correspond to the different
zones can be clustered together according to their chromaticity and
luminance.

Quartel et al. (2006) presented a semi-automatic methodology to
extract intertidal morphologic features in low tide from video images
using object oriented image analysis. The classification algorithm uses
the Maximum likelihood classification (MLC) and it considers the clas-
ses: dry sand, wet, sand and water of an ARGUS image.

Another approach consider an automatic algorithm for segmenta-
tion of coastal images (Hoonhout et al., 2015). The algorithm uses fea-
tures with information of color, texture and visual appearance instead
of color ones. With these features, a machine learning framework is
used to train a model with ability to identify regions containing major
classes such as water, sand, vegetation, sky and objects.

In this work, we present the development of an automatic, video-
based geographic feature extraction and recognition system designed
specifically for autonomous monitoring in beach environments. The
system requires low-cost off-the-shelf hardware, was derived using
open source software development frameworks, and it includes video
a)

Fig. 4. Image rectification. a) GPS-established control points, an
processing algorithms specifically developed for the determination of
coastal features and their dynamics. The results provide a very precise
and accurate monitoring of coastal zones (i.e., each of the possible
beach segments that can be observed in a marine littoral). Features
that makes our system different and more advanced than other previ-
ously presented.

Our initial aim is to perform accurate spatio-temporal determina-
tions of the dry and wet beach, and breaker zones, since those are the
most relevant for the geomorphological studies undertaken within our
research Institute. Therefore, the present paper is focused in achieving
simultaneous classification and measurement of multiple beach zones
bymeans of an autonomousmonitoring system. However, other similar
applications can be tackled with no significant programming effort.
2. Methodology

2.1. Data acquisition

Digital videos are takenwith a specially developed videomonitoring
station. The most simple station consists of a video camera and a con-
ventional laptop that computes a video acquisition and a processing
pipeline (Fig. 1). The testing of these algorithms was made in Monte
Hermoso Beach on the southern coast of the Buenos Aires Province,
Argentina (Fig. 2a). Monte Hermoso Beach is located along a stretch of
the coast with a W-E general trend facing south. Therefore, the sun
makes its path parallel and over the continent with respect to the cam-
era. In the summer, sunrise appears at the horizon to the left of the area
covered by the camera. The monitoring station was located in a fixed
position at an elevation of 30 m on top of a building (Fig. 2b). The field
of view covers all the different zones in a selected area, having a pano-
ramic view of the beach (Fig. 2c). The beach is mainly dissipative with
a relatively low slope (2° in average), (Huamantinco Cisneros, 2012).
Therefore, in our particular situation, image rectification without an
elevation model will incur in negligible errors. Further validation (see
Section 3.1) confirms this. In situations with higher slope, a DEM
would be required, and standard GIS procedures for orthorectification
should be applied. The system captures bursts of 5 min of duration
(15 Hz sampling rate), taken every 15min, during daylight time. Videos
are acquired in 640 × 480 pixels resolution, RGB color, in compressed
MPEG format. A mean image which corresponds to the average of a
5 min burst (4500 images in total) is computed and stored (Fig. 3).
For demostration of the method, we took several video captures during
differentmonths of the year representing variedmeteorological, illumi-
nation and oceanographic conditions.
b)

d b) their respective pixel coordinates in the camera view.



a)

b) c)

Fig. 5. Pre-segmentation. a) ROI. b) A two-dimensional projective transformation was used to reproject the oblique image into a zenital one. c) ROI pre-segmented with the Mean Shift
algorithm.

Fig. 6. Histograms corresponding to Fig. 5a and b (before and after applying mean shift, respectively). It can be appreciated that luminances (Y channel) and chromaticities (I and Q
channels) clusterize in a few local modes, meaning that the intra-class color variances are reduced.
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a) b)

Fig. 7. Training areas: red (dry beach), yellow (wet beach), green (swash zone and water), magenta (breaker zone), and cyan (shadow). a) Monte Hermoso, February 26, 2010. b) Monte
Hermoso, July 09, 2009.

Fig. 8.Distribution of the pixel color in each training area a) in YIQ color space, and b) in Y vs. I.
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2.2. Image rectification

To produce zenital views, a rectification procedure is applied on the
oblique video frames (Perez-Muñoz et al., 2013). This has also the ad-
vantage of producing images where the spatial resolution is constant,
therefore simplifying distance and area measurement (Szeliski, 2010).
For this, a two-dimensional projective transformation was used to
reproject the oblique mean images into zenital views. We briefly de-
scribe the method to estimate the projection matrix. For further details
see (Faugeras, 1993; Hartley and Zisserman, 2004). Given a set of points
with coordinates (x, y) in the reference system and their corresponding
Fig. 9. Classification of the beach zones. Dry zone (red), wet zone (yellow), breaker zone
(magenta), swash zone, water (green) and shadows(cyan).
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coordinates (x′, y′) in an arbitrary system (in this case, the camera
view), the projection among both systems can be computed using
eight parameters (a1, a2, a3, b1, b2, b3, c1, c2) as follows:

x ¼ a1x0 þ b1y0 þ c1
a3x0 þ b3y0 þ 1

y ¼ a2x0 þ b2y0 þ c2
a3x0 þ b3y0 þ 1

ð1Þ

Four noncollinear control points in both systems are required to esti-
mate the projection parameters (the minimal solution). The accuracy of
the reprojection depends on the precise location of the points. Initially,
four coordinates (xi, yi) (i=1.0.4)were obtained using a GPS RTK Sokkia
Radian with an accuracy of 3 cm horizontal and 5 cm vertical. With the
camera turned on, and pointing to the target area, the corresponging
a)

b)

c)

d)

Fig. 10. Correction of the segmented image. a) Decomposition by groups of segmented
pixels (xi′, yi′) are marked on the screen. For the specific purposes of our
study, the ground points form a rectangle of sides about 230 m parallel
to the shoreline, and 160 m orthogonal to the shoreline (see Fig. 4).
The procedure has to be undertaken during low tide. The rectification al-
gorithm, using the four ground point and the four image pixels, is able to
transform the oblique video frames into a zenital view in which there is
no perspective distortion of the spatial resolution. These frames are the
basis of the further processing steps (Fig. 5a, b).

2.3. Pre-segmentation

The classification algorithm will be applied only to the region of in-
terest (ROI) (i.e, the region enclosed by the four control points) to
image. b) Edge estimation. c) Filtering of the edges by size. d) Final segmentation.



Fig. 11. Beach Profiles of the Balneario Monte Hermoso corresponding to February 26,
2010. a) Location of the transects W1, W2, W3. b) Percentage variation of the transects
according to the different areas.

94 N.V. Revollo et al. / Marine Geology 381 (2016) 87–101
avoid unnecessary processing time (Fig. 5b). Within the ROI, the color
values in YIQ color space are clustered together using theMean Shift al-
gorithm (Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and
Peter, 2002).

The Mean Shift algorithm is a widely used mode-seeking method,
mostly used as a pre-segmentationmethod in computer vision. Basical-
ly itfinds localmaxima (modes) of anunknowndensity function (in our
case, pixel distributions in color space), which reduces the color vari-
ance within classes and therefore enables more crisp region
segmentation.

Given an initial population estimation x and a hypothesized kernel
distribution K (usually Gaussian), the method iterates the determina-
tion of the weight of the neighbor distribution members to re-estimate
x. The weighedmean of the density distribution within thewindow de-
termined by K is given by:

m xð Þ ¼
X

xi∈N xð ÞK xi−xð ÞxiX
xi∈N xð ÞK xi−xð Þ ; ð2Þ

K xi−xð Þ ¼ ec xi−xk k2 ; ð3Þ

where N(x) denotes the neighbors of x for which the kernel function is
nonzero. In every iteration, m(x)−x is the hypothesized shift of the
mean (and thus the name of the method), and therefore m is assigned
to m(x) and a new iteration is performed until the shift is below a con-
vergence threshold.

The main reason for using YIQ instead of HSV color space is that,
even though it splits luminance and chromaticity (as HSV does),
the chromaticity space IQ is “metric” (vector space), while HS is
not. In other words, distances in HS subspace has no clear meaning
since H is an angle and S a distance. In this way, clustering-based seg-
mentation algorithms in HSV space are unstable (with S close to zero,
as is our case, tiny H variations may assign wrong classes to pixels).
Also, since H is periodic, there is no exact formulation about neigh-
borhood that may apply to the mean shift method. Other vectorial
color spaces (Lab, Luv, L*a*b*, L*u*v*) were tested, yielding similar
results as the simpler YIQ.

The result of this processing step is a pre-segmentation that can
be appreciated in Fig. 5c. The color variance within the different re-
gions is decreased. However, the Mean Shift algorithm only reduces
the dispersion in the distribution of intensities, without generating
the association of elements into classes. Specifically, in Fig. 6, the
histogram of the mean image has peaks (modes) in the three
channels of the YIQ space. After this pre-segmentation, the process
of clustering pixels together according to their color properties is
more robust.

2.4. Classification

Our classification scheme consists of a (supervised) training stage
that must be performed only once, and a final (unsupervised) classifica-
tion stage that is able to perform in the open. The purpose of these pro-
cessing stages is to assign every pixel in the ROI to a specific class. The
classes are described by a feature vector (or prototype), obtained only
once during the calibration of the system. All the pixels in the same
class determine a region in the image, which ideally should be coinci-
dent to the portion of the image where a specific beach zone is
projected.

For this training, an expert selects small training rectangular areas in
the different beach zones (dry, wet, breaker, swash zone and water),
whose respective pixel colors will be used for establishing classification
prototypes. In addition to the four mentioned zones, building shadows
projected over the beach are considered as a fifth zone. The chosen
training areas of the different zones are shown in Fig. 7, shadows of
buildings in cyan, wet zone in yellow, dry zone in red, breaker zone in
magenta and swash zone and water in green. In Fig. 7b, the five classes
can be seen, while in Fig. 7a, shadows are not present.

The distribution of the pixels' color within each training area in
YIQ space (Fig. 8a) and its projection over the plane YI plane (Fig.
8b) exhibit a neat separation within areas. For this reason, the
mean color of every zone can be taken as an appropriate prototype.
Also, the distributions in the Y vs. I projections cluster together
better than with the others projections (Fig. 8). For this reason, in
the classification stage we only consider the Y vs. I of the pixels and
prototypes.

Each image and the corresponding prototypes are stored in a data-
base during the training stage (Fig. 1). In the automatic stage, to classify
a new image, the database is consulted and the corresponding proto-
types are selected automatically. Once the prototypes are defined for
each class, the minimum distance method (Girard and Girard, 1999) is
used for classification. The Euclid distance between every pixel and
the prototypes is calculated for each pixel:

dkp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yp−Yk
� �2 þ Ip−Ik

� �2q
; ð4Þ

where Yk and Ik are the median values of the prototypes of each class k,
and Yp and Ip are the components of the pixel. The classification assigns
the pixel p to the class forwhich the distance to its prototype isminimal.
Fig. 9 shows the five classes resulting of the classification stage corre-
sponding to Fig. 7b.



Fig. 12. Mean images corresponding to different metereological conditions: sunset, sunrise, clouds or rain.
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Fig. 13. Variation of areas in (m2) of the different beach zones along time.
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2.5. Post-processing

The classification performed above is a per-pixel segmentation pro-
cedure that assigns each pixel in the ROI a class within the set of
predetermined beach zones. The next purpose is to determine a clean
representation of the area associated to each zone. However, as expect-
ed, the segmentation based on minimal distance produces some
misclassified regions due to different uncontrolable conditions. This is
illustrated in Fig. 10a, where the first zone segmented (dry beach) has
‘holes’ that do not belong to the class. In thewet beach,misclassified re-
gions arise as small isolated groups of pixels, which also occurs in the
third and fourth classes (breaker and water).

In order to obtain a clean representation for each zone, we compute
the borders around the different image areas (Fig. 10b), retaining only
the outermost contour associated to each zone (Fig. 10c and d). The
final segmentation is produced by joining together the regions that
were individually processed as explained above. In these figures, black
regions represent the regions in the image that could not be classified.
Within the dry zone, these regions mostly correspond to shadows,
whereas in the wet zone they correspond to people in the beach.
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Fig. 14. Transects
2.6. Measurement

The planimetric area of each zone can be measured taking into ac-
count their correlative area in the picture, since after the zenital
reprojection, every pixel in the reprojected image represents the same
area unit. However, pixel counting has not enough precision if borders
among areas are too convolved. For this reason, it is useful to represent
the regions as enclosed in countours, represented using chain codes,
fromwhich the area calculation is performedwithmore precise numer-
ical integration algorithms. Among the most used algorithms we can
mention Chain Code (Freeman, 1970), Teh Chin Chain (Teh and Chin,
1989) and MSI (Cipolletti et al., 2012).

Another feature of interest in the beach is the width of the differ-
ent regions. For this, we consider an straight transect orthogonal to
the shoreline, which intersects the borders of the zones (Fig. 11a).
The length of each region is determined by the distance between
the intersection of the transect and the borders of the regions.
As this information is registered in a video sequence, it is possible
to measure the region width evolution along different transects
(Fig. 11b).
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Fig. 15. Integration of automatically segmented beach zones in a Geographic Information System (original GIS is in Spanish for local managers).
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3. Results and discussion

A set of videos were selected as representative examples of the re-
sults under different meteorological, oceanographic, and illumination
conditions to study the robustness of the developed methodology (Fig.
12). After the rectification stage, we computed the mean image for
5 min video bursts. A preliminary analysis of these mean images allows
the identification of the four zones of the beach (dry and wet beach,
breaking zones, and swash zone and waters) but there are other ele-
ments that can be identified, for instance certain periodicities along
the beach due to particular dynamic processes such as edge waves
(Fig. 12a) or rhythmic bars (Fig. 12c). By themselves, changes in their
area provide significant information regarding tidal stage, variations
on the wave set up, changes in the breaking and offshore waters,
which are all related to the modifications of the wave conditions off-
shore but also with variations in the underwater beach morphology.

Mean images are also very useful for quick qualitative identification
of geomorphological features and, when rectified based on known coor-
dinates, to estimate the areas of the different zones, along and across
beach forms or particular sediment properties (i.e., areas of shell con-
centration or rock outcrops) and characteristics of the wave-induced
conditions by following the form distribution. The presence of buildings
or natural structures may cast shadows, and an unsupervised workflow
must have a set of pixel prototypes to filter this kind of perturbation
without losing information about the conditions at the beach.

The evolution of the area of each zone may be followed by plotting
their changes in time along each mean image while enough illumination
is available on thebeach to adequately process the information. For exam-
ple, we show the variation in the width and area of each zone during five
hours in a specific spot of the beach of Monte Hermoso (Fig. 13). The se-
lected video also includes, within the swash zone, the presence of a
curved channel separating the swash bar from the dry beach. The wet
zone (yellow) decreases when water covers the beach. The breaker
zone stays with few oscillations like the dry zone (red). As the tide rises,
the water area (green) increases. Results of the variation of the beach
zones are coincident with the qualitative information showed in images.

As mentioned above, another application of the segmentation of the
different zones is themeasurement of each zone lenght through a cross-
shore profile. As an example, we take three transectsW1,W2 andW3 to
calculate the lenght of the beach (Fig. 14) and trace the variation of each
zone. In transectW1 the areas of water offshore and dry beach have few
variations. The wet zone decreases and the area of shadows is constant.
It can be observed thatwhen the breaker zonedecreases the offshore in-
creases correspondingly. The zone variation along transectW2 is similar
toW1; however, in this case the area of thewet zone is constant and the
curve of shadow decreases. In W3 the features are similar to W2.

As final result, we present the integration of the results in a Geo-
graphic Information System as a decision making tool.4 In this case,
the automatically segmented beach zones are georreferenced in a digi-
tal map of the Monte Hermoso beach (Fig. 15). This kind of information
is increasingly required for coastal administration, which includes
managment decisions and scientific studies. In addition to visual infor-
mation,meteorological informationwas stored in the Geographic Infor-
mation System. The meteorological conditions were taken and
registered with the weather station designed and constructed by the
Instituto Argentino de Oceanografía (IADO). The station is located
200 m to the W of the camera position along the coast and belongs to
the coastal monitoring network facility of the Institute (EMAC, 2003).
The meteorological parameters considered were air temperature, hu-
midity, solar radiation, and wind direction and velocity.
3.1. Validation

The accuracy of the image rectification was tested using a set of dis-
tances between known points that were measured (Fig. 16a). These

http://qgiscloud.com/Nrevollo/BeachZonesGIS


a)

b) c)

Fig. 16. Accuracy of the image rectification. a) Distances between points in terrain. b) Distances of the ground points over the rectified image. c) Image scale in pixels and their
corresponding values in meters.
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distanceswere also calculated among the corresponding points over the
rectified image (Fig. 16b). After the reprojection, the pixel resolution on
the image was about ≈0.5 m/pixel with a standard deviation of
0,025 m/pixel. A grid was superimposed on the image with a scale in
pixels and their corresponding values in meters (Fig. 16c). For this
image we provide the values of both real and estimated areas with the
corresponding absolute error and percentage of matching for each seg-
mented zone (Table 1).

The validation of the proposed pipeline requires measurements
made by other techniques, in our case, human experts in recognizing
beach zones from images. Direct, real-time inspection andmeasurement
Table 1
Area estimation, accuracy and error.

Actual area Estimated area Accuracy Error

Dry zone 3940m2 3735m2 94.0% −215m2

Wet zone 7429m2 7463m2 99.0% +34m2

Breaker zone 14085m2 13888m2 98.0% −197m2

Water 10810m2 10611m2 93.0% −199m2
is simply not feasible since beach zones are doomed to change duringon-
site inspection. In other words, there is no feasible “ground truth” to test
against, and, therefore, a different validation methodology is required,
which consists on themanual outlining of the different zones, performed
by human experts using a GIS software. These supervised segmentations
were used for testing the quality of the results of our unsupervised
classification workflow. For this, three different segmentations were
independently performed by three different experts (Fig. 17). Fig. 18
shows a zoom out of a comparison between the experts' segmentations
and the automatic method.

The experts' evaluations also differ from each other, and, therefore, a
methodological consensus index that takes into account all the mutual
agreements and disagreements should be considered. A similar situa-
tion arises in the context of medical imaging, where also there is no
ground truth against which an automated segmentation algorithm can
be tested, and the quality assessment is related to experts' opinion.
Often used for validation in this context is the Dice Similarity Coefficient
(DSC) (Dice, 1945),which is based on the ratio of the intersection of two
segmentations to their mean area. DSC, however, is reported to be less
sensitive than newer validation methods, like the Validation Index
(VI) (Juneja et al., 2013).



Fig. 17. Comparision of segmentation results. a) Automatic. b) Expert 1. c) Expert 2. d) Expert 3.
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VI is based on different levels of agreement between multiple ex-
perts. In our case, the quality of the unsupervised segmentation can be
evaluated by measuring the spatial coincidence or overlaps, of the dif-
ferent automatically andmanually segmented zones. Hits (resp.misses)
where more experts agree have a stronger positive (resp. negative) in-
fluence in the VI than the ones where fewer experts agree.

Given N human experts, a membership value m ¼ k
N is defined over

every pixel, where k is the number of human experts classifying that
given pixel as a specific zone type. For each area of overlap Vk (which
k experts agreed that pertain to the same zone), the correlative area Sk
segmented by the algorithm is defined as follows:

Sk ¼ S if k ¼ N
Skþ1− Vkþ1∩Sð Þ if k∈ 1;N−1½ �

�
ð5Þ

The DSC of the automatically segmented zone Sk is then computed as
follows:

DSC kð Þ ¼ 2
Vk∩Sk

Vkj j þ Skj j ð6Þ

The validation measure (VM) of a specific point is defined as the
product of its membership value m and the associated DSC(k) at that
point. Finally,the validation index (VI) is the average of the validation
measures.

VMi ¼ miDSC kið Þ ð7Þ
VI ¼
XN
k¼1

mDSC kð Þ ð8Þ

VI equals zero if segmentation and expert outlines are disjoint
and equals 1 if segmentation and all expert outlines overlap perfect-
ly. VI for the segmentation is given in Table 2, the last column, indi-
cates values greater than 0.75 in all the cases. These values indicate
a near optimal performance of the automatic measurement of
beach zones.

In addition, a confusion matrix was used to summarize the re-
sults of the automatic and manual segmentation (Fig. 19). For
this we considered a sample of 24 images which were segmented
manually. The diagonal values represent the percentage of accu-
racy for each zone with a mean of 95% of accuracy and an error
of ±200 m2.

4. Conclusions and further work

Image and video processing of natural phenomena using inexpen-
sive equipment posses a significant challenge and opportunity in envi-
ronmental studies. In this work, we implemented a coastal monitoring
and feature estimation system using image processing techniques to
segment and measure some basic features of the beach. Specifically,
the methodology was applied to segment beach zones during different
tidal conditions. Our processing framework acquires videos froma static
vantage point in a building. The results show that our proposed unsu-
pervised processing algorithm classifies and measures the zones



Fig. 18. Zoom out of the zones segmented showing the users segmentation versus the automatic segmentation.
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automatically with high accuracy. The processing pipeline requires the
callibration of only a small set of externally fixed parameters (the posi-
tion and projection of four geographic coordinates and the selection of
small training areas in the images) which typically require less than
an hour to set up.

We are currently developing an autonomous embedded system that
integrates the complete video-based monitoring system and is able to
automatically upload the monitoring data through GSM connectivity.
In that way we will be able to develop low-cost and easy to deploy
video based sensor networks that will be able to operate autonomously
in large geographical areas. Also, we are studying adaptive, automated
color clustering methods in a way such that the zone identification is
performed without human supervision.
Table 2
Validation measures according to the experts' segmentations.

Beach zone VM1 VM2 VM3 VI

Dry zone 0.328 0.651 0.991 0.766
Wet zone 0.33 0.688 0.99 0.783
Breaker zone 0.33 0.646 0.99 0.772
Water 0.328 0.687 0.999 0.780 Fig. 19. Confusion matrix of the segmentation algorithm. The diagonal values represents

the percentage accuracy for each class considered.
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