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Abstract

Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than

those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ‘‘lead’’ those in the PFC. Given

that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns

simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the

results in the VD task no such ‘‘lead’’ was observed in the DMTS task. We propose that when the task requires learning high-order

contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward,

but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A general agreement concerning the role of the
prefrontal cortex (PFC) has been stated in the past two
decades. The PFC has the ability to orchestrate and drive
information from and to other less cognitive structures
[26,45]. It can actively maintain task relevant stimuli and
internal goals [40]. It has a strategic neuroanatomical
position in the primate brain [12]. All these facts and the
behavioral deficits produced by its partial or total damage
[34] sustain the hypothesis of the PFC being involved in the
learning of behaviors where simple input–output mapping
are not sufficient. On the other hand, simple behaviors, as
avoiding aversive stimuli or learning to respond in the
e front matter r 2007 Elsevier B.V. All rights reserved.
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presence of visual cues in order to get appetitive reward can
be achieved by animals whose PFC is not developed
enough [47] and also in prefrontal damaged primates
unable to solve more complex rules [34]. Computational
models have been widely used to analyze different roles of
the PFC, ranging from working memory processes [7–9] to
the interaction of different structures and neurotransmit-
ters conveying to the PFC [14,29]. In this work we
developed a neurobiological plausible neural network
model to test recent interpretation of some neurophysio-
logical experiments in awake behaving monkeys [33].
In previous works, we developed a neural network model

that learns different tasks as the matching law, partial
reinforcement extinction, blocking, learned helplessness,
response selection, successive negative contrast effect,
modulation of the avoidance response, transfer of control
between conditioned stimuli and spontaneous recovery
[24], as well as all the experiments explained by the model
of Schmajuk and Zanutto [41]. Further refinement was
required in order to acquire other tasks like matching to
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sample and perceptual categorization, specially regarding
the role of lateral PFC (lPFC) [22]. This is in agreement
with the ideas presented in O’Reilly et al. [29]. The authors
suggested that mPFC encodes specific featural information
while lPFC is engaged in the representation of featural
dimension. Here, we further hypothesize that lPFC is the
key element for encoding higher-order contingencies and
solve more complex tasks.

Despite the general agreement concerning the impor-
tance of the PFC in learning high-order contingencies,
recently, strong experimental evidence has shown that
changes in the basal ganglia (BG) activity precede those in
the PFC during conditional visuomotor learning [33] (and
references therein). This evidence induced some authors to
hypothesize that anticipation in the BG activity can be a
‘‘training’’ signal for the PFC. In order to explore the
‘‘training’’ hypothesis, and to evaluate whether this
hypothesis is paradigm dependent (i.e. it depends on the
task complexity), we tested it in a refined version of our
previous model [24]. The model takes into consideration:
(a) the effects of dopamine (DA) on neuron excitability and
synaptic changes in the PFC and also in cortical and
subcortical motor structures such as the premotor cortex
and the basal ganglia (BG–PMC), (b) the effects of
norepinephrine (NE) modulating the energy flow of visual
information conveying to the BG–PMC, (c) the neuronal
mechanisms of competition and lateral inhibition in deep
layers of the PFC and the BG–PMC.

We run simulations of our neural network model in two
different paradigms. When our model was trained in a
visual discrimination (VD) task we obtained similar results
as in [33]. In contrast, when the model was trained in a
delayed matching to sample (DMTS) paradigm (a more
cognitively demanding task), the model predicted that there
is no leading between the BG–PMC and the PFC, thus,
contradicting the interpretation of [33].

2. Experimental paradigms

Subjects performing a VD task associate two different
cues (conditioned stimuli CS1 and CS2) with saccadic
Fig. 1. Schematic diagram of the behavioral tasks. In both cases the delay perio

in opposite directions. (b) DMTS task. R1 and R2 represent the Go and No–G

which stimuli were presented as sample and comparison. (c) Reinforcement co

non-matching rule, the response index must be exchanged.
movements in opposite directions (R1 and R2). A condi-
tioned stimulus (CSi) is presented for 500ms followed by a
delay period of 1 s [1]. Then the subject is allowed to
respond and, if it is correct, an appetitive unconditioned
stimulus (US) is delivered 2 s after the cue onset.
In the DMTS task, the subject has to release (R1

¼ Go)
or hold (R2

¼ No–Go) a lever depending on the matching
or non-matching of two previous sequentially presented
stimuli: the sample and the comparison [36]. After
presentation of the sample stimulus for 500ms, a delay
lasting 1 s is interposed and then the comparison stimulus is
shown. When the matching rule is rewarded, if the sample
and comparison stimuli match/non-match, the subject
must release/hold the lever to obtain reward, which is
delivered 2.4 s after the onset of the sample stimulus.
In Fig. 1 temporal sequences of stimuli presentation,

response execution, and reward delivery in the VD and the
DMTS tasks are shown.
3. Model

The activity of each neuron in the model represents the
activity of a certain functional cluster of neurons. The time
is discretized in steps representing 100ms each. As shown
in Fig. 2, the input layer is constituted by a set of cue
selective neurons. Each time the CSi is present, CSi

¼ 1,
otherwise CSi

¼ 0. Each time the reward is delivered,
USt ¼ 1 for the following 10 time steps, otherwise USt ¼ 0.
In behaving monkeys, short-term memory activity (STM)
is observed in later stages of the visual ventral pathway,
that is, in V4 and inferotemporal cortices [11,21], as well as
in orbitofrontal cortex, where reward-related stimuli are
processed [10]. As neuroanatomical data reveals [6], those
STMs would be inputs to the BG–PMC and the PFC. The
STMs of those stimuli are computed in the input layer of
the model as

ttðS
iÞ ¼ ð1� aÞtt�1ðS

iÞ þ aSi
t if Si

t40,

ttðS
iÞ ¼ ð1� bÞtt�1ðS

iÞ if Si
t ¼ 0, ð1Þ
d can be set to zero. (a) VD task. R1 and R2 represent saccadic movements

o responses, respectively. The proper response to be executed depends on

ntingencies for the VD task (top) and the DMTS task (bottom). For the
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Fig. 2. Scheme of the neural network model. The first layer generates short-term memories of the stimuli as a result of the interaction between different

structures such as ventromedial PFC, inferotemporal ctx., posterior parietal ctx., hippocampus and amygdala. We used 80 neurons in the lPFC, three in

the BG–PMC and a TD(lTD) model in the VTA/SNc. The LC represents a modulation exerted by the locus coeruleus. In Section 4 there is a qualitative

description on how the model works. The parameters used during the simulations are: a ¼ 0.45; b ¼ 0.02; lTD ¼ 0.02; lTD ¼ 0.9; yhebb ¼ 0.1;

yanti-hebb ¼ �0.05; ut(P) ¼ wt(P) ¼ �0.05; yBG–PMC ¼ 0.4; basalPFC ¼ basalBG–PMC ¼ 0.2; alc ¼ 0.003; mPFC ¼ 0.99875; vPFC ¼ 0.0025;

mBG–PMC ¼ 0.99975; vBG–PMC ¼ 0.00125; Bwinner ¼ 0.14.

S.E. Lew et al. / Neurocomputing 71 (2008) 2782–27932784
where Si represents the CS or US stimuli, t is a time step
and tt represent the stimuli traces.

Considering that activity changes in the BG and the
PMC occur at the same time-course during VD learning
[5], we model the BG and the PMC as a single layer of
neurons.

If throughout a trial the activity of the BG–PMC
neurons does not exceed the activation threshold, a
random response is executed with probability 1/3. Random
responses are executed 400 or 600ms after the end of the
delay period for the VD and DMTS tasks, respectively.
When a response is executed, the activity of its associated
neuron is set to 1 along a period of 5 time steps, while the
others are forced to 0 along the same time period.

In a VD task these responses represent saccadic move-
ments to the right (R1), left (R2) and to any other non-
rewarded direction (R3). In the DMTS task these responses
represent a Go (R1), a No–Go (R2) and any other response
non-related with the task (R3). All of them are codified at
the motor-related structures layer.

Along different phylogenetic species such as rats and
primates DA neurons have been shown to respond to
unpredicted rewards [32,42]. Moreover, after repeated
paired presentation of CS–US, neurons in midbrain
dopaminergic structures as the ventro tegmental area
(VTA) and the sustantia nigra pars compacta (SNc),
change their firing pattern codifying the prediction error
of being rewarded. Time difference models (TD) [28,32,44]
predict the firing of DA neurons for different paradigms
(classical and operant) employing one or multiple condi-
tioned stimuli.
In Fig. 2, the VTA/SNc block is a TD model whose

inputs are the CS’s and the US. The reward predicted by
each conditioned stimulus at time step t is calculated as
follows:

PCSi ðtÞ ¼ V CSid xCSi ðtÞ, (2)

where xCSi ðtÞ is a vector whose t component (at time t) is
set to 1 if the CSi onset takes place at time t or before, and
0 elsewhere. Its dimension is equal to the number of time
steps in a trial. Each xCSi ðtÞ has an associated weight vector
VCSi . Based on the reward and its predictions for each CSi,
d(t), the prediction error at time step t is computed as

dðtÞ ¼ rðtÞ þ
X
8CS

ðPCSi ðtþ 1Þ � PCSi ðtÞÞ, (3)

where r(t) ¼ USt at the onset of the reward and zero
elsewhere. Because the low basal firing rate of the DA
neurons, positive prediction errors produce an increment in
activity of about 270% over basal levels, while negative
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ones only decrease the firing rate 55% below baseline [10].
Because of this, in the model, negative prediction errors are
scaled by a factor of 1/6. At each time step, the synaptic
weight vector VCSi is updated according to the values of
d(t) and eCSi ðtÞ, the eligibility trace for the conditioned
stimulus CSi

DV CSi ¼ aTDdðtÞeCSi ðtÞ, (4)

where aTD is the learning rate parameter and the vector
eCSi ðtÞ is computed as follows:

eCSi ðtÞ ¼ lTDeCSi ðt� 1Þ þ xCSi ðtÞ. (5)

The TD(lTD) used here account for the experimental
results shown in [32], where a sequence of two conditioned
stimuli precede the reward delivery.

Although the TD model reproduces the phasic firing
pattern of dopaminergic neurons, postsynaptic effects of
DA on the PFC and motor-related structures persist for
longer periods of time [13,15]. In our model, we introduce
the variable W d

t as a gating window for the DA
postsynaptics effects. When DA bursts occur, if d(t)4yhebb,
W d

t ¼ 1 for the following T steps. The duration of this
window (T) depends on the amplitude of d(t), in
accordance with the experimental results obtained in
[13,15]. We propose to choose it according to

T ¼ minð50dðtÞ þ 10; 35Þ. (6)

When the predicted reward is omitted DA firing goes below
baseline. If d(t)oyanti-hebb, W d

t ¼ 0 for the following 15
time steps. When the DA firing is close to baseline, i.e.
yanti-hebbod(t)oyhebb, W d

t ¼ 0:5.
VTA stimulation decreases the spontaneous firing of

PFC pyramidal neurons, mainly by exciting interneurons
[19]. In our model, such inhibition is represented by
clamped negative synaptic weight utðW

d
t Þ from the VTA to

the PFC. However, due to the synergism between NMDA
and D1 receptors [48], we postulate that initially inhibited
PFC pyramidal neurons will fire strongly when afferent
inputs release large amounts of glutamate. This activated
cluster will then inhibit the other clusters [9]. To model this
effect, we apply a winner-take-all mechanism at PFC
output [22]. The following equations show the calculation
of the PFC neurons outputs:

Ok
t ¼

X
8CSi

uk
t ðCSiÞttðCSiÞ þ utðW

d
t ÞW

d
t þ BwinnerW

d
t

þ basalPFC if Ok
t 40; else Ok

t ¼ 0, ð7Þ

Mk
t ¼

Ok
t if k ¼ k�;

0 otherwise;

(
(8)

where k� ¼ argmax
k

Ok
t represents the index of the winner

neuron, Bwinner stands for the synergism between D1 DA
receptors and NMDA receptors, and basalPFC is the
baseline firing rate of PFC neurons.

It has been hypothesized that DA modulates the
excitability of striatal neurons allowing the BG to inhibit
competent programmes and to release the correct one [27].
As in the PFC, in our model the released DA inhibits the
motor area through clamped negative synaptic weight
wtðW

d
t Þ, and, in contrast to this general inhibition, the

winner neuron is excited proportionally to the released DA.
The effect of this mechanism is to apply a ‘‘brake’’ over all
possible motor programmes and to release the one whose
activity surpasses a fixed threshold. The output of the
response neurons is computed as

R
j
t ¼

X
8CSi

w
j
tðCSiÞttðCSiÞlct þ

X
8Mk

w
j
tðM

kÞMk
t

þ wtðW
d
t ÞW

d
t þ BwinnerW

d
t þ basalBG�PMC , ð9Þ

where basalPFC is the baseline firing rate of BG–PMC
neurons and lct represents a modulation exerted by
noradrenergic neurons of the locus coeruleus (LC) over
visual and somatosensory cortical neurons. Effects of
NE on the modulation of glutamate-evoked responses
have been proved to have an inverted U shape [4],
that is, low and high doses of NE produce a decrease on
neuron excitability, while medium doses increase their
excitability. In behaving monkeys, tonic firing of LC
neurons shows a defined correlation with performance [46].
Tonic frequencies of 2–3Hz are associated with good
performance periods while frequencies 43Hz are related
to periods where erratic performance and distractibility
are observed. This gives a hint of the function of the
noradrenergic system in the regulation of exploratory
behavior [2]. We model the tonic firing of LC neurons as a
function of the received reward in a time window that
includes many trials:

tlongt ðUSÞ ¼ ð1� alcÞt
long
t�1 ðUSÞ

þ alcUSt; lct ¼ 1� 5tlongt ðUSÞ. ð10Þ

Short-term memories for the response neurons are com-
puted according to

ttðR
jÞ ¼ ð1� aÞtt�1ðR

jÞ þ aR
j
t (11)

and as in (8) for the PFC area, a winner-take-all rule is
applied.
In addition to excitability, DA effects on PFC pyramidal

neurons are also related to modifications of synaptic
efficacy via LTP and LTD [30,38]. For this reason,
previous models have used the DA signal in the modula-
tion of synaptic weights modifications [24,29]. When
W d

t ¼ 1, Hebbian learning is applied to both PFC and
BG–PMC neurons. The opposite occurs when W d

t ¼ 0.
No modifications in synaptic weights take place when
VTA/SNc firing is close to baseline. Thus, when W d

t ¼ 1 or
0, the PFC winner neuron k* and BG–PMC neurons
update their synaptic weights, which belong to (0,1),
according to

uk
t ðCSiÞ ¼ mPFCuk

t�1ðCSiÞ � ð�1ÞW
d
t nPFCttðCSiÞOk

t if k ¼ k�,

(12)
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w
j
tðCSiÞ ¼ mBG�PMCw

j
t�1ðCSiÞ

� ð�1ÞW
d
t nBG�PMCttðCSiÞttðR

jÞlct,

w
j
tðM

kÞ ¼ mBG�PMCw
j
t�1ðM

kÞ

� ð�1ÞW
d
t nBG�PMCMk

t ttðR
jÞ. ð13Þ

In the previous equations, mPFC and mBG–PMC are first-
order momentum constants while nPFC and nGB–PMC are
learning rates for the PFC and BG–PMC, respectively.
4. How the model works

The input to the model is composed by different stimuli
from the environment (CSs and US). The first layer of the
model generates short-term traces for those stimuli,
computed as shown in (1). These short-term memories
maintain information about stimuli during the delay
period, decaying exponentially after their offset. Biologi-
cally, this is not the result of the information processing by
a single structure. Actually, it is the result of the interaction
between sensory cortices, associative cortices (mPFC, ITC)
and subcortical structures (amygdala, hippocampus).

The second layer also involves the interaction of many
structures. The lPFC conveys information from mPFC and
also from ITC, cingulate and parietal cortex. It allows
further filtering of task relevant stimuli (by leading to
highly selective lPFC clusters that encode the S–R
mappings).

However, it is a key component for learning the DMTS
task, as joint representations of the sample and comparison
will be generated in this layer. These clusters will then be
associated to the proper response (in the third layer)
according to the contingencies of the task. Thus, although
mPFC and lPFC are engaged in working memory
processes, they represent different kinds of information
[29]. Moreover, we share the approach of Atallah et al. [3]
as the second layer selects the initially most activated
clusters in order to establish the mappings, while the
remaining clusters are inhibited (winner-take-all rule).

Responses executed first randomly, simulating a motiva-
tional state generated by deprivation, proceed after
acquisition of S–R mappings represented in the synaptic
weights of the model. Reinforcement information reaches
the VTA/SNc and LC, mainly from frontal structures
related to its processing, as the mPFC. However, both the
VTA/SNc and the LC process such information in a
different way in order to produce different patterns of
neural responses and/or learning mechanisms. Once
information about reinforcement reaches the VTA/SNc,
DA is released, and those conditioned stimuli traces active
at that time can be associated with reinforcement. As
learning proceeds, the probability of being reinforced
increases and the synaptic weights VCS

i in VTA/SNc will
represent the association between conditioned stimuli and
reinforcement. Consequently, every time that a conditioned
stimulus is presented to the model, the VTA/SNc will fire
strongly, releasing DA over the lPFC and BG–PMC
structures. Effects of DA on these structures are repre-
sented by W d

t . Hebbian learning in the lPFC and BG–PMC
neurons takes place whenever W d

t is 1, increasing the
associative strength between stimuli/lPFC and stimuli/
BG–PMC neurons. The opposite is applied if W d

t is 0 (anti-
Hebbian learning). This mechanism allows the model to
learn paradigms based on reinforcement and to build S–R
mappings that, unless the task contingencies change,
remain over time.
Related to the LC processing of reinforcement, we

propose it as a mechanism that allows the model to react to
environment or schedule changes in order to find best
strategies related with plausible behavioral responses
(exploration strategies). We propose that tonic levels of
NE are a function of a long-term processing of reinforce-
ment. Due to the effect of NE over the excitability of visual
and dopaminergic neurons, the action of LC activation
modulates the energy flow between layer 1 to the response
layer.
Despite the fact that in three-term contingencies, as in

the VD task case, direct S–R mappings between input and
output neurons are enough to learn the paradigms, high-
order contingencies need additional resources to be
learned. A previous version of this model that does not
include the lPFC structure (layer 2 in the model) can
explain experiments such as the matching law, partial
reinforcement extinction, blocking, learned helplessness,
response selection, successive negative contrast effect,
modulation of the avoidance response, transfer of control
between conditioned stimuli and spontaneous recovery
[17,18,24,41]. However, when tested in DMTS paradigm,
its performance is close to chance level. Contrary to the VD
task and those previously mentioned experiments, input
patterns in the DMTS paradigm can be proved to be
linearly non-separable [39], that is, there is not a plane in
the input space that separates those input patterns
associated to the Go response from those associated to
the No–Go response. Under this condition, the DMTS
paradigm cannot be learned using a unique layer of linear
threshold neurons. Although only four lPFC neurons are
sufficient to map the rules involved in a DMTS task, more
neurons give more variability to the network and conse-
quently rules are learned faster. We used 80 neurons in the
lPFC structure, a number that allows to learn the task at
least in 80% of the simulations, reaching an averaged
performance of 90% in approximately 300 trials.

5. Model parameters

Although the model works properly over a wide
subspace of the parameter space, the parameters used in
the simulations were chosen in order to explain behavioral
and physiological results from classical and operant
paradigms. Simple operant learning allows a wide combi-
nation of parameter values with model performance over
criterion, while in DMTS paradigm, the parameters range
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must be restricted to a subset of the ones for the VD task in
order to predict behavioural and physiological predictions.

We adjusted the learning rate of the TD model to predict
future rewards in a range of conditioning trials varying
from 30 to 100 and to exhibit DA bursting at the
comparison presentation time even at trial 400 [32].

Once these parameters were adjusted, learning rates of
neurons in the lPFC (mPFC and vPFC) and in the BG–PMC
(mBG–PMC and vBG–PMC) structures were found in agree-
ment with behavioral results of monkeys performing
operant conditioning in response selection, VD and in
delayed matching to sample experiments [33,43] reaching
criterion in approximately 50, 100–200 and 150–250 trials,
respectively.

The dynamics of the LC tonic firing were chosen to show
high values when performance is erratic and low values
when the correct rule is exploited.

Additional parameters as the dopaminergic inhibition
over pyramidal neurons (utðW

d
t Þ and wtðW

d
t Þ), the syner-

getic effect between DA and glutamate (Bwinner) and the
baseline firing rates (basalPFC and basalBG–PMC) were
explored to predict results related to neuron selectivity
and their correlation to behavioral performance in a VD
task [23,33].
6. Simulations and results

The duration of each trial is 50 time steps (5 s). Each
experiment is conducted during 1000 trials. All the
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Fig. 3. For the VD task, averaged values from 100 out of 100 (100%) simu

acquisition, NE (lct is calculated using (10)) level and reaction times (number of

by 100) are shown. The curves are smoothed using a Gaussian window with a
simulations are the result of the ensemble average of 100
independent experiments. The estimated performance
(which will be correlated with the time to half-maximum
selectivity (HTMS)) at each correct trial was estimated by
averaging the results of previous responses within a sliding
window of 16 trials length.
6.1. Visual discrimination and DMTS tasks

In the VD task the subject must learn the association
between the cue stimuli CS1 and CS2 with the responses R1

and R2, respectively [1]. A 100% of the simulations learned
with more than 90% performance, reaching an averaged
performance of 100% in 300 trials on average. Fig. 3 shows
the average performance, NE level and reaction times. As
expected, the NE level and reaction times are large when
the performance is near chance, and they decrease as the
performance is improved.
In the DMTS paradigm, the subject must learn to match

(or non-match) a comparison stimulus with a previously
presented sample stimulus. A certain stimulus is codified
by different neurons at the input layer depending on
its presentation at the sample or comparison periods (see
Fig. 2). From the three possible responses, two responses
are related to reward, i.e. to release (R1) or to hold (R2) the
lever. Therefore, a total of four rules are learned using
stimuli CS1 and CS2 (see Fig. 1c).
Eighty percent of the simulations learned with more

than 90% performance, reaching an averaged performance
150 200 250 300

150 200 250 300

150 200 250 300

 Number

lations that reach a performance of 90% were computed. Performance

steps to the response execution from the end of the delay period, multiplied

span of 10 samples.
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of 90% in approximately 300 trials on average. Fig. 4
shows the average performance, NE level and reaction
times for the DMTS task. As in the VD task, the NE
level and reaction times are negatively correlated with the
performance.
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Fig. 4. Averaged values of performance acquisition, NE (lct) level and reac

performance of 90% are shown. The curves are computed as in Fig. 3.
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In Fig. 5, the DA firing for both tasks is shown for a
single run of the model. Three rewarded trials were chosen
for each task in three different stages of the learning
process. At the beginning of training, non-predicted
rewards elicit a phasic DA response at the time when
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reward is delivered. Early training DA responses show
phasic activity at both cues and reward onset. In late
training stages, DA neurons show activation at the CS’s
onset, while no activation is observed when the predicted
reward is delivered.

6.2. Analysis of neuron selectivity index (SI) for VD and

DMTS tasks

Motivated by the results shown in [33] we analyze the
changes in the SI of PFC and BG–PMC neurons for both
tasks.

For the VD task, in each experiment, the most selective
PFC neuron for stimulus CS1 was found. As in [33],
only correct trials were included in the analysis. This
means that the correct response for CS1 is R1. Then the SI
across correct trials for the most selective PFC neuron and
for the one in the BG–PMC (associated with R1) were
computed as

SItðPFCÞ ¼
Ok

t ðCS1Þ �Ok
t ðCS2Þ

Ok
t ðCS1Þ

, (14)

SItðBG � PMCÞ ¼
R

j
tðCS1Þ � R

j
tðCS2Þ

R
j
tðCS1Þ

, (15)

where Ok
t ðCS1Þ and R

j
tðCS1Þ are the activities of neurons in

the lPFC and BG–PMC structures, respectively, when
stimulus CS1 is presented. If the SI was negative on a
certain step, it was set to 0 (a negative SI represents that at
that time the neuron was more selective to the other
stimulus/response). The average values of PFC and
BG–PMC neuron SI are shown in Fig. 6. At the beginning
of training, neurons in both, the PFC and BG–PMC
structures show no preference or selectivity for any
particular stimulus. As learning progresses, the selectivity
increases earlier in the trial and neurons in the PFC and the
BG–PMC respond strongly for those stimuli they are
selective. Even though the selectivity behaves in a similar
way in both, the PFC and the BG–PMC, faster changes
can be observed in the BG–PMC (Fig. 6b). Around trial
20, the SI surpass the half of its maximum value near-time
step 2 (200ms), whereas the same behavior can be observed
around trial 30 in the PFC (Fig. 6a).

For the averaged results, the THMS was computed for
each correct trail and then correlated with the estimated
mean performance (Fig. 7). The resulting values were
�0.95 and �0.78 for PFC and BG—PMC, respectively,
which are in agreement with the experimental results for
the same task [33].

We repeated the same procedure for the DMTS task. In
this case we chose one of the four possible rules and
calculate the SI across correct trials as

SItðPFCÞ ¼

3Ok
t ðrule1Þ �

P4
i¼2

Ok
t ðruleiÞ

3Ok
t ðrule1Þ

, (16)
SItðBG � PMCÞ ¼
3R

j
tðrule1Þ �

P4
i¼2R

j
tðruleiÞ

3R
j
tðrule1Þ

. (17)

Although Eqs. (16) and (17) look different to Eqs. (14) and
(15), as the SI index has never been experimentally
computed for the DMTS task, we propose these expres-
sions in order to make the comparison with the VD task as
fair as possible. The average values of PFC and BG–PMC
neuron SI for the DMTS task are shown in Fig. 8.
When the THMSs were computed, contrary to the

results shown in the VD task, we found that the correlation
with the estimated performance was �0.91 and �0.9 for
the PFC and BG–PMC, respectively (Fig. 9). It should also
be noted in Fig. 8b that the SI for BG–PMC neurons is
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very low during the sample and delay periods due to the
fact that, at this time, it is not possible to predict if the
correct response is Go or No–Go. Actually, the neuron
under analysis in the PFC is activated by two out of the
four possible during the sample and delay periods. On the
other hand, during the same period of time, the neuron
under analysis in the BG–PMC is activated with prob-
ability 1

2
by the four possible rules, leading the numerator of

(17) to a very low average value.
As can be seen from Fig. 9 and from the correlation

between THMSs and performance, in the DMTS task
no lead is observed in PFC and BG–PMC circuits. This
result can be interpreted as that learning occurs simulta-
neously in the PFC and BG–PMC during the execution of
complex tasks, whereas in simple ones a direct pathway
from input to motor structures is enough to enable
accurate performance.

7. Discussion

We have introduced a biologically plausible neural
network model that explains changes in activity in PFC
neurons and motor structures during learning of simple
and complex contingencies.

Although the neural network model has several para-
meters, and might seem complex at a first glance, the key
assumptions are simple. The model relies on a layer with
STM traces, a reward prediction neural cluster, the PFC
layer, a winner-take-all mechanism, the layer with possible
responses and a mechanism to balance the energy flow
between input–output layers governed by NE release. All
these assumptions are widely accepted in the field. The fact
that we observed different predictions in the role of
BG–PMC/PFC depending on the task is due to the way
the model can balance its different structures to accomplish
the tasks. The pathway from layer 1 to the responses layer
allows the model to select those responses associated with
reward with a consequent fast increment in the selectivity
of BG–PMC neurons. In the absence of a PFC like
structure, a simple task can be solved mainly by this direct
pathway, while a more complex one requires both the
direct and the PFC-(BG–PMC) circuitry. This makes sense
from an evolutionary perspective, where animals with
simpler structures than the PFC are unable to perform
complex tasks as DMTS, while animals with a more
developed PFC can do it. This is mainly because the
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addition of the PFC allows the animals to solve XOR type
of problems, which cannot be solved with a single layer (the
DMTS task is a linearly non-separable problem). None-
theless, our previous models [17,18,24,41] lacking the PFC
layer proved to be able to explain many of the key operant
conditioning paradigms. We believe that the overall
structure of our neural network model, and not its
particular implementation, is responsible for the findings
in this work.

Tested on a simple discrimination paradigm, the model
fits behavioral and physiological results. As suggested
in [33], the fact that the THMS of the BG–PMC is faster
than the one of the PFC during the VD task, can be
interpreted as a leadership of the former structures over the
latter one. Here, we reproduced these results without a
direct path from BG–PMC to cortical areas. Although it
might seem natural to require a direct path for supporting
the ‘‘training’’ hypothesis introduced in [33], this inter-
pretation cannot be ruled out as the control can be done
indirectly. The activity in the BG–PMC, and the resulting
responses, will change the reward delivery probability. This
will affect the DA firing, which in turn can modulate
synaptic changes in PFC according to the mechanisms
proposed in this work. Actually, other models of BG
include feedback connections via the thalamus or the
superior colliculus, but in both cases the purpose of
this pathway is to inhibit cortical motor neurons after
the selected response is executed [20,25]. However the
‘‘training’’ hypothesis has been criticized using different
arguments [35].

On the other hand, from the results on the DMTS
task, it is not possible to conclude that there is a lead in
activity changes from neither PFC nor BG–PMC. This
suggests that the hypothesis proposed in [33] would be
paradigm-dependent. In this task, the input–output path
cannot provide the necessary information to solve the
task correctly. Each CS presented contributes to R1 and R2

in the same way, and, therefore, it does not allow an
early increase in BG–PMC selectivity. It would be
interesting to test this prediction experimentally. We
postulate that when the task requires learning high-order
contingencies, such as in the DMTS case, motor structures
quickly select the subset of responses allowing the subject
to obtain reward, but learning in the cortico-basal ganglia
loop progresses in a concurrent way in order to maximize
reward.
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Glossary

Stimuli and short-term memory traces

CSi: conditioned stimulus i

US: unconditioned stimulus (reward)

tt(CSi): short-term memory (STM) of CSiat time step t

tt(Rj): short-term memory (STM) of Rj at time step t

tt
long(US): long-term memory of the US

Structures and neuron outputs

VTA: ventro tegmental area

SNc: sustantia nigra pars compacta

LC: locus coeruleus

PFC: prefrontal cortex

BG–PMC: basal ganglia and premotor cortex

PCS
i(t): prediction of the US due the presence of CSi at time step t

d(t): prediction error (phasic dopaminergic activity) at time step t

Wd
t: gating window for the DA postsynaptic effects

eCS
i(t): eligibility trace for the conditioned stimulus CSiRt

joutput of the

BG–PMC neuron j at time step t

Ot
k: output of the PFC neuron k at time step t

Mt
k: output of the PFC neuron k after the winner-take-all at time step t

lct: tonic activity of the locus coeruleus at time step t

Excitability and plasticity

BasalPFC,BG–PMC: basal activity of PFC and BG–PMC neurons.

VCS
i: association of tt(CSi) with the US

aTD: learning constant for the TD model

Ut
k(CSi): synaptic weight from CSi to the kth neuron of the PFC

wt
j(CSi): synaptic weight from CSi to the jth neuron of the BG–PMC

wt
j(Mk): synaptic weight that connect the kth neuron of the PFC with the

jth neuron of the BG–PMC

yhebb, yanti-hebb: thresholds for Hebbian or anti-Hebbian learning

Bwinner: synergism D1-NMDA

vPFC, vBG–PMC: learning constant for synaptic weights of PFC and

BG–PMC neurons

mPFC, mBG–PMC: first-order momentum for synaptic weights of PFC and

BG–PMC neurons

SI: selectivity index
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