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A fixed-mesh Eulerian–Lagrangian approach for stress
analysis in continuous casting
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SUMMARY

We present a method for the analysis of the strains and stresses developed in the solidified portion of a
metal strand during the continuous casting process. Steady-state conditions are assumed. The solidified
metal is modelled as a standard inelastic solid with isotropic hardening and von Mises yield criterion. Con-
stitutive equations are formulated over the material particles (Lagrangian approach) that instantaneously
occupy a fixed domain attached to the casting machine, which is discretized (Eulerian approach). Particle
tracking, needed to record the deformation history at each fixed sampling point, becomes trivial because
of the usual hypothesis of constant and homogeneous advection velocity. Backward-Euler (implicit) fi-
nite differences and mixed finite elements are used for time and spatial discretization, respectively. The
resulting non-linear algebraic equations are solved using the Newton–Raphson method. Copyright q 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Leaving aside particular design details, continuous casting consists in pouring liquid metal into an
open-chilled mould. The mould should remove enough superheat and latent heat from the melt in
order to form a solidified shell capable of containing the liquid inside at the mould exit. Below
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the mould, the strand is driven between support rolls through the secondary cooling region where
it is further cooled via water spraying.

We assume the process has reached steady-state conditions for the purpose of the current analysis.
Therefore, we are not concerned with start-up problems or any other transient phenomena, such
as mould oscillation, meniscus fluctuation, etc.

The strand cooling is not uniform, which leads to thermal gradients that induce thermal strains.
Since the strand deformation is constrained by the mould, this also causes thermal stresses within
the solidified material. Proper modelling of such phenomena requires an accurate description of
the complex relations among stresses, strains and time at high temperature. Indeed, the mechanical
behaviour of metals within the temperature range involved in continuous casting is highly inelastic,
i.e. the state of any material particle at any time depends on the entire deformation history
experienced by the considered particle up to this time.

Historically, the Lagrangian kinematics description—based on material particles—has provided
the most convenient way to compute stresses in inelastic bodies. However, the Lagrangian descrip-
tion requires to follow the strand as it moves down the caster in order to record the loading history
within it. Huespe et al. [1] model the early stages of continuous casting, namely the mould and
a small portion of the secondary cooling region, by taking a portion of the strand as long as the
domain of interest and following it from the instant it reaches the meniscus until it completely
leaves the domain. Bellet and Heinrich global non-stationary approach [2] considers a material
domain that continuously increases, driven by a fictitious extraction tool. Once the fictitious tool
has traversed a given section of the caster, this section tends to the steady state. Although the
objective is to simulate continuous casting processes in steady state, both approaches need to
perform a transient analysis until reaching stationarity making them computationally expensive.

Such inconvenience is usually overcome by restricting the analysis to a thin transverse slice
of the strand, giving rise to the so-called slice models. A slice is assumed to be subject to
simplified boundary conditions on its top and bottom surfaces. The most frequent assumption is
that of generalized plane strain (GPS), which implies constant strain in the out-of-plane directions.
Following Risso et al. [3], we will use henceforth the denomination extended plane strain (EPS)
instead of GPS, because the latter was used in the literature to designate a kinematic hypothesis
in plate analysis.

The EPS slice model has been the most popular way of analysing continuous casting processes
from the early one-dimensional models, such as the analytical model of Weiner and Boley [4]
widely used for validation purposes. Numerical models based on this approach were proposed by
Rammerstorfer et al. [5], Kristiansson [6], Thomas and coworkers [7–11], and recently Pascon
et al. [12], Li and Thomas [13], and Risso et al. [3]. Alternatively, some models make use of
simpler kinematic hypothesis: plane strain conditions have been assumed by Funk and coworkers
[14–16], Lee et al. [17], Han et al. [18], and Park et al. [19, 20]. Plane stress was often assumed
in earlier works, like those of Williams et al. [21], Lewis et al. [22], and Thomas et al. [23–25],
who turned later to EPS models they considered more realistic.

However, in a process in which boundary conditions and especially temperatures (responsible
for thermal strains and variations in the mechanical properties of the material) change markedly,
the simplified boundary conditions applied to the transverse slice model yield quite a crude
approximation of reality. Indeed, our experience in modelling the early stages of continuous
casting processes began with the plane-strain slice model [26], which was soon abandoned because
of accuracy considerations, and replaced by Lagrangian [1] and Arbitrary Lagrangian–Eulerian
(ALE) [27] models, where the domain of analysis embodied the whole region of interest from the
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meniscus to a certain distance below the mould such that the strain state at the mould exit, known
to be a critical section, was properly modelled. Actually, the displacement field computed with
the slice model [26] differs from those obtained with Lagrangian [1] and ALE [27] models to an
extent comparable to the gap between the billet and the mould, one of the main variables in the
coupled thermomechanical analysis of continuous casting processes.

On the other hand, the Eulerian approach—based on spatial points—is particularly appropriate
for modelling flows through a spatially fixed region such as the process we are interested in.
However, Eulerian evolution equations are more difficult to integrate than Lagrangian’s because
state variables are not associated to spatial points but to material points. Therefore, Eulerian-
formulated rate equations include an advective term that requires special treatment when numerical
methods are used. Such drawback has prevented the application of pure Eulerian schemes to the
continuous casting process.

Among the schemes where the mesh is attached to the caster, we can mention the works
of Sorimachi et al. [28] and Kelly et al. [29]. In these works, the thermal loads are applied
incrementally and therefore a sort of transient problem has to be solved. The material being
inelastic, a non-linear problem must be solved at each temperature increment which makes this
model as expensive as non-slice Lagrangian models.

A mixed Eulerian–Lagrangian approach is proposed in this work, in order to retain the advantages
of both formulations: the boundary values problem for stress distribution is formulated over the
points inside a fixed region of the caster (Eulerian formulation), while the constitutive equations
are stated over the material points passing through this region (Lagrangian approach). The history
of the particle occupying a sampling point of the analysed region at a given instant will be built by
tracking the particle along its streamline from the molten region to the sampling point. This is the
so-called streamline integration method [30], where the streamline computation becomes trivial
because of the physics of the continuous casting process: (i) the strand is just slightly deformed
from its original cylindrical shape (small strains assumption) and (ii) the velocity associated to the
deformation of the strand is negligible with respect to the advection velocity of the solid particles.
Then, we can assume all the solid particles move with uniform axial velocity, coinciding with
the casting velocity. As it will be shown later, by using this strategy the mechanical analysis of a
steady-state continuous casting process truly remains a steady-state problem.

The examples are particularly devoted to the simulation of the early stages of round billet
continuous casting. The considered region contains the mould and a few water sprays in the
secondary cooling zone. An axial-symmetric model is used for the simulation, after assuming
this region to be straight. However, we remark that the same technique can be applied in three-
dimensional cases.

2. LAGRANGIAN FORMULATION OF THE CONSTITUTIVE EQUATIONS

According to the local state theory [31], the thermodynamic state at any particle X of a material
medium at a given instant t is completely defined by the values of a certain number of state variables
at this particle at this instant. Computations on inelastic materials take advantage of strain-driven
formulations, in which state variables are the total strain e and a set of phenomenological internal
strain-type variables describing material history, together with the temperature field T here assumed
to be known a priori.
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Since maximum strains are expected to be below 2% [32], small strains theory can be applied to
describe deformations during continuous casting processes. Then, the total strain can be additively
decomposed as follows

e= ee + ei (1)

ee being the elastic (reversible) strain including thermal expansion and ei the inelastic (irreversible)
strain. Either term may play the role of an internal variable, but ei is typically chosen (as in this
work).

We also adopt a scalar internal variable �, which characterizes isotropic hardening from the
phenomenological point of view. The hypothesis of isotropic hardening is widely accepted in
continuous casting applications [33]. Furthermore, the most popular choice for the hardening
parameter � relies on the equivalent inelastic strain:

� =
∫ t

0

√
2

3
‖ėi(�)‖ d� (2)

where ėi is the inelastic strain rate and ‖ėi‖=
√

�̇ii j �̇
i
i j its L2-norm.

Although driving variables lie in strain space, response functions (i.e. the yield criterion and the
evolution laws) are usually written in terms of their conjugated thermodynamic forces: the stress
tensor r (dual of e or ei) and the isotropic hardening variable in stress space, R = R(�).

The stress tensor r depends on e and ei through the decomposition (1). For linearly elastic
isotropic materials, the stress is defined by the state law:

r=C(ee − e0) (3)

where e0 is the initial strain field, and C= �l⊗ l+2�I is the fourth-order tensor of elastic moduli, l
being the second-order unit tensor with components �i j (the Kronecker delta), I the fourth-order unit
tensor with components Ii jkl = (�ik� jl + �il� jk)/2; � = �(T ) and � = �(T ) are thermal-dependent
material properties known as Lamé constants, which can be determined in terms of the elastic
(or Young’s) modulus E = E(T ) and Poisson ratio � = �(T ) as � = �E/[(1 + �)(1 − 2�)] and
� = E/[2(1 + �)].

Let us decompose the stress tensor as follows:

r= s + pl (4)

s= dev(r) being the deviatoric stress and p= 1
3 tr (r) the mean stress. From Equation (3), the

following constitutive equations for s and p are derived:

s= 2� dev(ee − e0), p= � tr (ee − e0) (5)

where �= � + 2�/3 is the bulk modulus.
Regarding the initial strain field e0, it is composed of the thermal strain eT and a strain e0s

that corresponds to the state a particle has just before developing mechanical strength. Under the
small-strain assumption, such decomposition can be written as follows:

e0 = eT + e0s (6)
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The thermal strain is defined as

eT =TLE(T )l with TLE(T ) =
∫ T

Tref
�T(�) d� (7)

TLE denoting the thermal linear expansion function, �T the linear thermal expansion coefficient
and Tref an arbitrary reference temperature.

The von Mises criterion, for the time being the most widely yield criterion used for metals, is
defined as follows:

f =‖s‖ −
√

2
3 [	Y + R(�)] (8)

where 	Y is the initial yield stress and R measures the isotropic hardening in the stress space.
Associated to this yield criterion, the following J2 flow rule is considered:

ėi = 
n (9)

n= s/‖s‖ being the normalized stress deviator defining the normal to the Von Mises yield surface
f = 0 in the deviatoric-stress space and 
�0 the consistency parameter. For plastic materials, 
 is
determined by means of the consistency condition


 ḟ = 0 (10)

On the other hand, viscoplastic (rate dependent) materials require a constitutive equation for 
. In
this work, the following law is proposed:


= 1

�
g( f )�(�) (11)

where � = �(T ) is the material viscosity, g is a non-negative, monotonically increasing function
of f , such that g= 0 if and only if f �0, and � = �(�) is the multiplicative-viscosity hardening
term. The constitutive equation (11) allows us to encompass all the ‘standard’ viscoplastic models
described by Lemaı̂tre and Chaboche [31], either with isotropic hardening or no hardening at all
(perfect viscoplasticity). For instance, by neglecting �(�), we recover the Lemaı̂tre and Chaboche’s
additive-viscosity hardening model, originally proposed by Perzyna [34].

Finally, having chosen the equivalent inelastic strain as hardening variable, the flow rule (9)
results

�̇ =
√

2
3 ‖ėi‖=

√
2
3 
 (12)

completely defining the hardening law.

3. INTEGRATION OF THE EVOLUTION EQUATIONS

Following Simo and Hughes [35], we discretize the evolution laws (9) and (12) using the implicit
Euler-backward finite-difference scheme. Then, given the total strain increment �e at the particle
X during the time interval [tn, tn+1], tn+1 = tn + �t , the material state at X is updated from the
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previous instant tn to the current one tn+1 as follows:

e(X, tn+1) = e(X, tn) + �e (13)

ei(X, tn+1) = ei(X, tn) + �
(X, tn+1)n(X, tn+1) (14)

�(X, tn+1) = �(X, tn) +
√

2
3 �
(X, tn+1) (15)

with �

.= 
�t .

Let X0,X1, . . . ,Xn be the particles currently occupying those positions (with respect to a fixed
reference frame) of X at the previous points t0 = 0, t1, . . . , tn of the time discretization, i.e.

x(X, t j ) = x(X j , tn+1), j = 0, 1, . . . , n (16)

Therefore, under steady-state conditions, the history of X may be traced by recording the current
state at the particles X j :

ei(X, t j ) = ei(X j , tn+1) (17)

�(X, t j ) = �(X j , tn+1) (18)

The initial state at X, coinciding with the current state at X0, is assumed to be known. In continuous
casting, it corresponds to the completely liquid material, where all the internal variables vanish:

ei(X, t0) = ei(X0, tn+1) = 0 (19)

�(X, t0) = �(X0, tn+1) = 0 (20)

Now, using Equations (17)–(20), the discrete evolutionary equations (14) and (15) can be
completely stated at the current instant tn+1:

ei(X, tn+1) =
n+1∑
j=1

�
(X j , tn+1)n(X j , tn+1) (21)

�(X, tn+1) =
√
2

3

n+1∑
j=1

�
(X j , tn+1) (22)

where Xn+1 ≡X.

4. EULERIAN FORMULATION OF THE BOUNDARY VALUE PROBLEM

The standard quasi-static boundary value problem in solid mechanics, stated in mixed u–p
form [36], consists in finding the displacement field u and the mean-stress field p that satisfy
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the integral equations∫
�
tr (s gradw) dV +

∫
�
p divw dV =

∫
�

b · w dV +
∫

��	

t̄ · w dS (23)

∫
�

[
tr (e− e0) − p

�

]
q dV = 0 (24)

throughout the domain �, for all the admissible displacement and mean-stress weighting functions
w and q , respectively.

Equation (23) is the weak form of the momentum balance equations, where b is the body-
force (per unit volume) and t̄ is the traction prescribed over the portion ��	 of the boundary
(displacement boundary conditions over the complementary portion ��u are assumed to hold
a priori). Inertial effects are ignored in momentum balance according to the assumption of constant
and uniform velocity field within the solid.

Equation (24) is the weighted residual form of the linear thermal-elastic constitutive equation
(5) for the mean stress p. The classical hypothesis of isochoric inelastic deformation, i.e.

tr (ei) = 0 (25)

which is implied by the J2 flow rule (9), is called for in Equation (24).

4.1. Finite element approximation

Appropriate mixed finite elements should be employed in order to deal with the numerical diffi-
culties eventually caused by the inelastically incompressible behaviour of metals. We refer to the
classical finite element literature [36, 37] for a detailed discussion of admissible u- and p-shape
functions that guarantee the fulfilment of the Babuška–Brezzi stability conditions.

The displacement and mean-stress trial functions are defined as follows:

u=
nu∑
i=1

NiUi =NU (26)

p =
n p∑
j=1

Npj Pj =NpP (27)

Ni being the displacement shape function associated to the displacement node i = 1, 2, . . . , nu ,
Ui the nodal displacement, Npi the mean-stress shape function associated to the mean-stress node
j = 1, 2, . . . , n p, and Pj the nodal mean stress.
After replacing u and p by their respective finite element approximations, and by adopting the

corresponding shape functions as weight functions (Galerkin formulation), it yields

R1 = Fint − Fext = 0 (28)

R2 =KT
pU − MpP − F0 = 0 (29)
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where

Fint =
∫

�
BTs dV + KpP (30)

Fext =
∫

�
NTb dV +

∫
��	

NTt̄ dS (31)

Kp =
∫

�
BTlNp dV (32)

Mp =
∫

�

1

�
NT

pNp dV (33)

F0 =
∫

�
tr (e0)NT

p dV (34)

In the above equations B is the typical finite element matrix defining the strain–displacement
kinematics relation

e=BU (35)

while symmetric second-order tensors like the stress deviator s and the unit tensor l are mapped
into vectors as usually done in the finite element practice.

4.2. Computation of strains and stresses

Due to the small strains hypothesis, Eulerian and Lagrangian strain and stress tensors actually
coincide. So, the Lagrangian version of Equations (23) and (24) is identical in form to the Eulerian’s,
but the integration domain � is different. While the domain of analysis � is a fixed portion of
the strand moving down the caster for Lagrangian formulations (and, therefore, � is submitted to
transient conditions), with Eulerian formulations � becomes a spatially fixed region attached to
the caster. We choose the latter approach, which is especially advantageous because of the steady
state developed into the spatially fixed domain �.

Let x be the fixed position of a typical sampling point within �, as well as the position of the
particle X at time tn+1:

x= x(X, tn+1) (36)

Let us now take a snapshot of every Lagrangian field at the current instant tn+1 in order to obtain
the corresponding Eulerian field, e.g.

ẽ(x) =B(x)U= e(X, tn+1) (37)

ẽi(x) = ei(X, tn+1) (38)

�̃(x) = �(X, tn+1) (39)

etc. The tilde identifies frozen Eulerian fields. From now on, we will work with fields of this kind,
omitting the tilde for conciseness.
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The (Cauchy) stress deviator at x, equal to the (nominal) stress deviator at X at tn+1, takes the
form

s= 2�(T ) dev(e− e0 − ei) (40)

The predictor–corrector algorithm known as return mapping [35] will be used to update the
material state. First, we define the trial state (solution of the predictor problem) by assuming a
completely elastic deformation at X during the period [tn, tn+1]. Then, the trial inelastic strain at X
at tn+1 coincides with the inelastic strain at this particle at tn , i.e. with the current inelastic strain
at the particle Xn:

ei, trial (x)= ei(X, tn) = ei(Xn, tn+1) = ei(xn) (41)

where x j = x(X j , tn+1), xn+1 ≡ x. Now, the trial deviatoric stress may be written as follows:

s trial (x)= 2�(T (x)) dev(e(x) − e0(x) − ei(xn)) (42)

Trial and real states are related by the expression:

s= s trial − 2�(T )�
n (43)

Both tensors, s and s trial , are collinear, that is

n= s
‖s‖ = s trial

‖s trial ‖ (44)

hence Equation (43) yields

‖s‖ = ‖s trial ‖ − 2��
 (45)

The latter equation shows that the corrector step leading to the real state reduces itself to the
determination of the consistency parameter 
 by invoking either the consistency requirement (10)
for plastic materials or the constitutive equation (11) for standard viscoplastic ones.

4.3. Newton–Raphson method

The non-linear system of Equations (28) and (29) is solved iteratively. To this end, let us approxi-
mate this system at the kth iteration using a linear Taylor expansion

R(k) =R(k−1) + K(k−1) (d(k) − d(k−1))︸ ︷︷ ︸
�d(k)

= 0 (46)

R and d being the residue and unknown vectors, respectively, and K the tangent matrix, given by

R=
[
R1

R2

]
, d=

[
U

P

]
, K= dR

dd
=
[
KD Kp

KT
p −Mp

]
(47)

The submatrices Kp and Mp in K are defined by Equations (32) and (33), and

KD = �R1

�U
=
∫

�
BT �s

�U
dV (48)
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Figure 1. Iterative computation of the line-search parameter a using the regula-falsi method.

The Newton–Raphson technique gives a quadratic asymptotic rate of convergence provided the
initial guess d0 lies within the zone of attraction of the final solution [38]. Otherwise, the iterative
guess dk must be forced to reach this zone. Here, a line-search algorithm is implemented to this
end. Thus, �d in Equation (46) is not assumed to define the increment of d but the searching
direction. The new guess d(k) is then defined as

d(k) = d(k−1) + a�d(k) (49)

where a (0<a�1) is a parameter controlling the step size, which is determined so that the projection
of the residue R onto the search direction �d be minimized (if possible).

4.3.1. Line-search algorithm. The parameter a in the previous equation is computed by means
of the line-search algorithm [39]. At each iteration k, once �d(k) is known, the computation of a
proceeds as follows:

• If ‖R(d(k−1) + �d(k))‖<‖R(d(k−1))‖, update d using Equation (49) with a = 1 and go to
the next Newton–Raphson iteration.

• Otherwise, let

F(a)=R(d(k−1) + a�d(k)) · �d(k) (50)

define the function to minimize in the interval 0<a�1.

— If sign (F(0))= sign (F(1)), set a = amin (amin = 0.01 for the current application), update
d using Equation (49) and go to the next Newton–Raphson iteration.

— Otherwise, a is computed using the iterative regula-falsi (or secant) technique schematized
in Figure 1. The process is stopped at a line-search iteration q for which Fq is below
a given tolerance, we adopted equal to 0.01F(1). Then, we set a = aq , update d using
Equation (49) and go to the next Newton–Raphson iteration.
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Non-zero components

Contributions from xContributions from x , x ,...,x0 n1

Figure 2. Typical sparsity pattern of the exact tangent matrix KD .

4.3.2. Computation of the tangent matrix. Computing the derivatives of the stress deviator s
(mapped into a vector as usual in the finite element formulation) with respect to the nodal dis-
placements, which appear in the integrand of the sub-matrix KD , is all that remains to be done
in order to complete the definition of the tangent matrix K. If we use indicial notation for conve-
nience’s sake, after differentiating Equation (40), we obtain:

�si j
�Uk

∣∣∣∣
x

=
[
2�

(
Ii j pq − 1

3
�i j�pq

)
��pq
�Uk

− 2�
��ii j
�Uk

]
x

(51)

Using finite elements, the derivative of the total strains is determined by the gradient matrix B.
Regarding the derivative of the inelastic strain, differentiation of Equation (21) yields

��ii j
�Uk

∣∣∣∣∣
x

=
n+1∑
j=1

[
n pq

��


�Uk
+ �


�n pq

�Uk

]
x j

(52)

with x≡ xn+1.
As it can be seen, after replacing Equation (52) into (51), and this one into (48), the tangent

matrix KD becomes non-symmetric and almost triangular because of the terms evaluated at points
other than x, which are located in different finite elements, as shown in Figure 2, which displays
a typical sparsity pattern of the tangent matrix for applications like those presented in Sections 6
and 7, where structured rectangular meshes are used. A sparse solver that takes advantage of this
particular pattern can be used, for instance, the LAPACK routines for LU factorization of sparse
general matrices [40] after sparse column minimum degree permutation [41].

It can further be seen that if these terms are disregarded, we recover the symmetric banded
tangent matrix of classical finite element analysis. Neglecting the contributions from some (even
all) of the points x j leads to an approximation of the tangent matrix KD . In that way we get a
modified Newton–Raphson method, whose convergence is worse than that of the exact Newton–
Raphson. However, the cost of solving the linear system (46) per iteration diminishes because the
band-width of KD diminishes.
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Standard viscoplastic model. Derivatives in the r.h.s. of Equation (52) take now the form:

��


�Uk

∣∣∣∣
x
= �(x)

[
ni j (x)

(
��i j
�Uk

∣∣∣∣
x
− ��ii j

�Uk

∣∣∣∣∣
xn

)
+ 1

2�(T (x))

(
�(x)−√2/3R′(x)

) ��

�Uk

∣∣∣∣
xn

]
(53)

�ni j
�Uk

∣∣∣∣
x
= 2�(T (x))

‖s trial (x)‖
(
Ii j pq − 1

3
�i j�pq − ni j (x)n pq(x)

)(
��pq
�Uk

∣∣∣∣
x
− ��ipq

�Uk

∣∣∣∣∣
xn

)
(54)

where (∗)′ stands for the derivative of the univariate function (∗)—particularly, R′ is the material
hardening modulus—and

� = g�′

g′�
(55)

�−1 = 1 + R′

3�
+ �

2�g′��t
− �√

6�
(56)

Evaluation of Equations (53) and (54) at any other point x j is straightforward: one only needs to
replace x≡ xn+1 for x j and xn for x j−1.

Using Equations (52)–(54), Equation (51) can be recast for the viscoplastic model as follows:

�si j
�Uk

∣∣∣∣
x
= 2�(T (x))

[
(1 − �(x))

(
Ii jqp − 1

3
�i j�pq

)
− ϑ(x)ni j (x)n pq(x)

]
��pq
�Uk

∣∣∣∣
x

−2�(T (x))
[
(1 − �(x))Ii jqp − ϑ(x)ni j (x)n pq(x)

] ��ipq
�Uk

∣∣∣∣∣
xn

−�(x)(�(x) −√
2/3R′(x))ni j (x)

��

�Uk

∣∣∣∣
xn

(57)

where

� = 2��


‖s trial ‖ = 1 − ‖s‖
‖s trial ‖ (58)

ϑ = � − � (59)

Plastic model. The rate-independent formulation can be recovered from the previous rate-
dependent model as the viscosity parameter � tends to zero. In that case, the inverse viscosity or
fluidity �−1 playing the role of a penalty parameter, causes the states outside the loading surface
f = 0 to be increasingly penalized so that f tends to zero; and g( f ) (a monotonically increasing
function of f that vanishes for f �0) also does so. Therefore, we only need to take � = 0 and

�−1 = 1 + R′

3�
(60)

to fit the previous formulation to the plastic model.
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5. IMPLEMENTATION DETAILS

The present model will be applied to the simulation of the early stages of steel round billets
continuous casting. As usual, such process will be studied assuming axial-symmetry conditions.

For the spatial discretization, we use quadratic-displacement constant-mean stress triangular
finite elements (simply called T 6/1 for having six u-nodes and one p-node). These elements are
the simplest elements to fulfil the Babuška–Brezzi condition [42].

We further adopt a rectangular mesh with uniform element size hz in the axial direction z. This
choice is particularly advantageous in modelling steady-state continuous casting processes. First,
since the particles within the solidified shell move in the axial direction with a velocity that is (up
to an infinitesimal term) equal to the given constant casting velocity Vc, the positions x j previously
occupied by the particle currently located at any sampling point x of the mesh can be determined
immediately:

x j = x − Vc(tn+1 − t j ) (61)

Having taken hz constant, let us adopt a time step �t such that the Courant number is a natural
number

Co= ‖Vc‖�t
hz

∈ N (62)

the point x j will also be a sampling point of the mesh. In that case, all the history of the particle
occupying a sampling point at any point of the time discretization will be recorded in other sampling
points to avoid the need of interpolating the internal variables and the undesired numerical diffusion
introduced by such interpolation.

The present mechanical model is restricted to the solid material. The liquid material is just
modelled as a metallostatic pressure boundary condition applied on the solid–liquid interface. In
this context, let us point out that the terms ‘solid’ and ‘liquid’ stand for material zones whose
temperature is respectively below and above the zero-strength temperature (ZST), defined to be
the minimum temperature at which the material exhibits no strength [43, 44], although in general
it does not coincide with the solidification temperature (in low carbon steels, this temperature
corresponds to solid fractions of 0.6–0.8 [43, 44]).

The present strategy, which is based on using a rectangular mesh, hinders the accurate meshing
of the solid domain adjacent to the solid–liquid interface. However, if the mesh is fine enough, we
can discard the elements traversed by this interface without affecting the accuracy of the whole
solution, as shown in Figure 3. This reduces therefore the computational cost but requires special
care when dealing with the pressure boundary condition at the interface: the stress state in a particle
at the beginning of the solidification is equal to the ferrostatic pressure at the solid–liquid interface
(in fact, this pressure is negligible during the early stages of the continuous casting process, so
that a just-solidified particle must be stress free). This condition serves for determining e0s , which
must make up the difference between the total and the thermal strains in the liquid elements, as
suggested by Thomas and Parkman [11]. Due to the particular discretization strategy we have
adopted, this condition is shifted up to the first solidified sampling point x0, so that its value is

e0s = e(x0) − �T(x0)l (63)

and remains constant all along the trajectory beginning at x0.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:728–755
DOI: 10.1002/nme



STRESS ANALYSIS IN CONTINUOUS CASTING 741

Discarded element

Solid-liquid interface

l z
mc

06
=

z

0
x

Section where the
numerical solution is plotted

Meniscus

lx = 1 cm

Figure 3. Finite element mesh and boundary conditions for Weiner and Boley’s [4]
validation problem with �= 0.4 and m = 0.06.

Let us remark that the use of a rectangular mesh with uniform mesh size in the casting direc-
tion clearly simplifies the implementation of the model for the simulation of the early stages of
continuous casting process, assuming the caster to be straight or just slightly curved. But in fact it
is not compulsory to have neither a straight domain nor a structured mesh. All we need to know
a priori is the streamlines (up to an infinitesimal term due to deformation) in order to determine
the successive positions of the particles. For continuous casting applications, and keeping in mind
that we consider only the solidified shell, this may be possible even in the case of a curved caster.
Concerning the use of an unstructured mesh, the history of a particle occupying a sampling point
at a given instant will not be recorded anymore in other sampling points. This requires to project
the internal variables to the previous positions of the particle, as usually done when other ALE
methods are used (see for instance the ALE formulation for solidification problems proposed by
Bellet and Fachinotti [45]), but does not prevent in any way the use of this model with such
meshes.

6. VALIDATION

A simplified problem concerning the development of thermal stresses in a solidifying slab is solved
for validation purposes. This is an idealization of the early stage of solidification in a continuous
casting square mould, whose analytical solution was proposed by Weiner and Boley [4]. The
material is a pure metal with melting point Ts, that is initially liquid at a uniform temperature
T0 = Ts (i.e. there is no superheat). The mould (at x = 0) is maintained at a uniform temperature
Tm<Ts and perfect thermal contact is assumed between the mould and the slab, so that solidification
begins immediately.
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Table I. Thermomechanical and process parameters for the Weiner and Boley’s [4] validation
problem with �= 0.4 and m = 0.06.

Melting point Ts = 1490◦C
Mould temperature Tm = 1362◦C
Density = 7200 kg/m3

Latent heat of solidification L = 272 000 J/kg
Specific heat cp = 680 J/(kg◦C)
Thermal conductivity ks = 34 W/(m◦C)

Thermal diffusivity �s = ks
cp

= 6.944× 10−6 m2/s
Elastic modulus E = 40 000 MPa
Poisson ratio �= 0.35
Initial yield stress at Tm Y0 = 40 MPa
Thermal expansion coefficient �T = 8.46354× 10−5/◦C
Reference temperature for thermal expansion Tref = 1490◦C
Casting velocity ‖Vc‖ = 1.6 m/min

The domain of analysis consists of the section of the solidified shell lying on the longitudinal
mid-plane, taken to be coincident with the xz-plane. For small time t (t = 0 corresponds to the
initial condition T = T0), the thermal field in this region is closely approximated by Neumann’s
solution for the solidification in a semi-infinite slab (see [46, pp. 285–286] for details). Then, the
thickness of the solidified shell at time t is given by

ls = 2�
√

�st (64)

where �s is the thermal diffusivity in the solid and � is a real constant.
Weiner and Boley [4] presented results for some particular values of �. We adopted � = 0.4 for

the purpose of making a comparison. As �2 	 1, the following relationship holds [4]:

� =
√
cs(Ts − Tm)

2L
(65)

where cs is the heat capacity of the solid, and L is the latent heat per unit mass. Then, knowing
the material properties cs, Ts and L , we adjust the mould temperature Tm in order to get � = 0.4
(see Table I).

Now, the temperature at time t can be computed as

T (x̂, t) = Tm + D(Ts − Tm) erf(�x̂), 0�x̂�1 (66)

where we introduce the dimensionless abscissa x̂(t) = x/ ls(t) and constant D = 1/erf(�) (the above
solution was actually obtained under the hypothesis of similarity [46]).

In the context of continuous casting, assuming that the strand moves in z-direction with a
constant velocity Vc, let us change the time variable t by the z-co-ordinate using the relationship

z = ‖Vc‖t (67)

The level z = 0 corresponds to the meniscus.
Then, we build a mesh of a rectangular box of height lz (equal to the mould length) and width lx

(equal to the shell thickness at z = lz), so that it contains the solidified region defined by Equation
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(64) inside the mould. Such mesh consists of rectangular T 6/1 finite elements, with uniform size
hz in z-direction. For lz = 0.6 m, we adopt hz = lz/90 and Co= 1, which determine a time step
�t = 0.25 s. At z = lz , there are 33 finite elements in the x-direction, their sizes ranging from
6.8 mm at x = 0 to 4.7 cm at x = lx . Each node of the mesh is assigned a temperature determined
by Equation (66). Please note that only the elements with all their nodes having a temperature
below Ts are considered.

Model geometry and boundary conditions as well as the location of the Ts-isotherm (solid–liquid
interface) are depicted in Figure 3.

The material is assumed to be elastic–perfectly plastic, with a initial yield stress 	Y = 	Y(T )

defined by

	Y = Y0
Ts − T

Ts − Tm
(68)

where Y0 is the initial yield stress at the mould temperature Tm.
Now, let us introduce the following dimensionless stress:

	̂i j = (1 − �)	i j
�TE(Ts − Tm)

(69)

Weiner and Boley obtained the following similarity solution for the variation of 	̂ = 	̂yy = 	̂zz
(	̂xx = 0) along the shell thickness:

	̂=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m[D erf(�x̂) − 1], 0�x̂<x̂2

m[1 − D erf(�x̂1)] + D[erf(�x̂1) − erf(�x̂)]

− 2√
�
D(1 − m)�x̂1 exp(−�2 x̂21) log

x̂1
x̂

, x̂2�x̂�x̂1

m[1 − D erf(�x̂)], x̂1<x̂�1

(70)

where

m = (1 − �)Y0
�T E(Ts − Tm)

(71)

and the abscissas x̂1 and x̂2, x̂2<x̂1, are determined by solving the non-linear system of equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(1 − m)�2 x̂1(x̂1 − x̂2) exp(−�2 x̂21)

= (1 + m) exp(−�2 x̂22) − (1 − m) exp(−�2 x̂21) − m[exp(−�2) + 1]
2√
�

(1 − m)�x̂1 exp(−�2 x̂21) log
x̂1
x̂2

= (1 − m) erf(�x̂1) − (1 + m) erf(�x̂2) + 2m erf �

(72)

In the region x̂<x̂2 (close to the cooled surface) the material exhibits plastic behaviour and is
subject to compression; from x̂ = x̂2 to x̂ = x̂1 there is a region of elastic unloading where the
stress change of sign; in the region x̂>x̂1 (close to the solid–liquid interface) the material behaves
as a plastic and is under tension. As for �, Weiner and Boley results correspond to some values
of m. Here, we choose m = 0.06 and adjust the material parameters in Table I to this end. Solving
Equation (72) for m = 0.06 and � = 0.4, we obtain x̂1 = 0.4527 and x̂2 = 0.2140.
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Figure 4. Finite element vs analytical computed stresses for Weiner and Boley’s [4]
validation problem with �= 0.4 and m = 0.06.

Figure 4 shows good agreement between the numerical computed stress components 	̂yy and 	̂zz
and the analytical one 	∗. The section from which the numerical solutions were taken corresponds
to z = 50 cm. The slight difference observed in the plastic zone next to the chilled surface is
attributed to the steps of the stair-shaped mesh in the proximity of the meniscus. This deviation
associated to the spatial discretization is considered an admissible numerical error for the purpose
of the current analysis.

7. INDUSTRIAL APPLICATION

Let us model the early stages of the continuous casting of steel round billets. The analysed domain
� goes from the meniscus to a short distance below the mould, as shown in Figure 5. The curvature
of the strand will be ignored and the process is assumed to have axial symmetry. The finite element
mesh of the solidified portion of the domain is shown in Figure 6. The uniform mesh size in the
axial direction is hz = 6.667 mm, so that, assuming Co= 1, the time step size is �t = 0.25 s.

7.1. Thermal solution

The numerical computation procedure of the thermal field in continuous casting processes has
been described in a previous work [47]. The material data used in this analysis is listed in
Table II.

Concerning boundary conditions, the meniscus and the bottom surfaces are adiabatic, while heat
is extracted through the external surface of the shell according to the following laws:

qmould = 3.071 − 0.361
√
t along the billet–mould interface (73)

qsprays = h(T − Text) along the surface subjected to water spraying (74)
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Figure 5. Steel round billet continuous casting process. Schematized geometry and
temperature within the analysed domain.

where qmould is given in MW/m2 for t = z/‖Vc‖ in seconds, h is the heat convection coefficient
and Text the temperature of the environment in the sprays zone (see Table II). Equation (73) is a
Savage–Pritchard law, whose coefficients were obtained by means of an inverse analysis for the
conditions met in plant [48].

Let us remark that, unlike mechanical analysis, thermal analysis concerns the solid as well as
the liquid sub-domains of �. The model of phase change used here is of fixed-mesh type [47] takes
into account the phase change is of fixed-mesh type, i.e. the heat exchange in the solidification
front is implicit in the weak form of the heat equation and does not need to be treated explicitly
as a boundary condition.

The resulting temperature distribution in � is plotted in the right of Figure 5.

7.2. Plastic model

The cast steel will be modelled first as a plastic material with linear isotropic hardening, i.e.

R(�) = K (T )� (75)

where K (= R′) is the material hardening modulus. All the mechanical properties for this model
were taken from the work of Rugonyi et al. [49] (except the TLE function, extracted from Reference
[29]), and are listed in Table III. Rugonyi et al. fitted Wray’s experimental data [50] for a strain
rate of 1.5× 10−4 s−1 they considered as characteristic of the process.

Figure 7 shows the tensile curves for this material, at high temperatures.
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Table II. Thermal properties for the steel round billet continuous casting simulation.

Pouring temperature 1530◦C
Zero-strength temperature ZST = 1495◦C
Solidus temperature 1490◦C
Liquidus temperature 1501◦C
Liquid fraction Linear between solidus and liquidus
Density 7200 kg/m3

Latent heat of solidification L = 272 000 J/kg
Specific heat cp = 680 J/(kg◦C)
Thermal conductivity in solid 34 W/(m◦C)
Thermal conductivity in liquid 68 W/(m◦C)
Casting velocity ‖Vc‖ = 1.6 m/min
Convection coefficient in the sprays zone h = 500 W/(◦Cm2)
External temperature in the sprays zone Text = 40◦C
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Table III. Plastic model of a medium-carbon steel: thermal-dependent
mechanical properties.

T (◦C) E (MPa) � 	Y (MPa) K (MPa) TLE

900 32 378 0.33 14.0 160 −0.01326
1000 20 000 11.0
1100 14 542 8.0
1200 12 896 5.5 160 −0.00675
1300 11 954 0.33 4.0 80
1400 8068 0.36 3.5 50
1416 40 −0.00200
1450 5062 0.40 1.9
1490 97 0.41 0.5 7 −0.00029
1495 2 0.41 0.5 7 0.00000
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Figure 7. Tensile curves for the plastic and viscoplastic models at elevated temperatures.

7.3. Standard viscoplastic model

We now describe the behaviour of steel using the classical Perzyna model [34], which is a standard
viscoplastic model with additive-viscosity hardening. Therefore, the multiplicative-hardening term
�(�) in Equation (11) is set to one. This model was proposed by Huespe et al. [51] as the multiaxial
generalization of Kozlowski et al.’s one-dimensional model III [32]. This model assumes:

g = 1
2 ( f + | f |)N (76)

� = (2/3)(N+1)/2C−1 exp
Q

kT (◦C)
(77)

	Y = 0 (78)

R(�) = K�M (79)
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the latter defining the Ramberg–Osgood non-linear hardening law [31]. The parameters in the
above equations, taken from Reference [32], are given by

N = 8.132 − 1.540× 10−3T (◦C) (80)

C = 46 550 + 71 400c + 12 000c2 (81)

Q

k
= 44 650 (82)

K = 130.5 − 5.128× 10−3T (◦C) (83)

M = − 0.6289 + 1.114× 10−3T (◦C) (84)

where c is the steel carbon content in percentage (here, assumed equal to 0.3).
Also according to Kozlowski et al. [32], the following formula for the thermal-dependent elastic

modulus is considered:

E = 960 800 − 2330T + 1.9T 2 − 5.18× 10−4T 3 (85)

The other material properties, such as Poisson ratio and TLE function, are the same as those of
the previous plastic model (Table III).

As seen in Figure 7, at the elevated temperatures involved in continuous casting, the tensile
curves for this material agree quite well with those of the previous plastic model when the strain
rate is 1.5× 10−4 s−1 (the characteristic value assumed by Rugonyi et al. [49]).

7.4. Stress and strains solution

Figure 8 shows the radial displacement of the shell surface for �t = 0.25 s (Co= 1), as computed
using both the plastic and viscoplastic models of the previous paragraph. There is very good
agreement between both curves. In fact, the maximum difference between them is about 1/1000 the
maximum radial displacement and is located at the mould exit. Let us remark that the interfacial gap
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Figure 8. Radial displacement of the external surface.
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that forms between the strand and the mould, which has fundamental influence on the strand cooling
conditions inside the mould, is usually one-order-of-magnitude smaller than the displacement. In
consequence, the material model, either dependent or not on strain rate, is not determinant in gap
computations.

Axial stresses are plotted in Figure 9. The viscoplastic model predicts maximum compressive
and tensile stresses that are slightly higher than those computed using the plastic model. But the
more relevant difference between plastic and viscoplastic models is that observed in the zone of
maximal tensile stresses at the mould exit. The viscoplastic model allows stress relaxation so that
the region of maximal tension extends to a short distance below the mould (the high tension zone
at the bottom of the domain is a numerical error introduced by blocking the axial displacement of
the bottom nodes). On the other hand, the maximal tension zone predicted by the plastic model
continues all along the analysed domain. This difference has important consequences on cracking
prediction, as it will be pointed out later.

Regarding the other stress components, hoop stresses are very close to axial ones either for
plastic or viscoplastic models, the radial and shear stresses were not significant throughout the
domain.

Figure 10 plots the equivalent inelastic strain �. Plastic and viscoplastic models give similar
results, with no significant inelastic strain developed inside the mould. Maximal inelastic strains
are located at the shell surface along the sprays region, where compressive axial and hoop stresses
are formed. Considering that the zones exhibiting high inelastic strains in addition to high tensile
stresses are susceptible to cracking, the region located at the shell surface along the sprays region
should not be affected since, as observed in Figure 9, main stresses in this zone are compressive. On
the contrary, the region of high inelastic strain near the solidification front coincides with regions of
tensile stresses in Figure 9. At this point, the differences between plastic and viscoplastic models in
the extension of the regions of highest tensile stresses become very important. In fact, the highest
tension and high inelastic strain are observed at the bottom of the domain using the plastic model,
indicating possible cracking. On the other hand, using viscoplastic model, thanks to the stress
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relaxation phenomenon, the highest tension develops before the inelastic strain becomes high, so
that no cracking is expected.

Even if the viscoplastic model is more sophisticated when it comes to phenomena such as
relaxation which the plastic model ignores, and hence the viscoplastic solution is in theory more
accurate than the plastic one, there is no experimental data to support this conclusion.

Finally, Figure 11 serves for validating the hypothesis of small strains assumed all along this
work. Actually, the tensile radial strains adjacent to the solidification front shown in this figure
are the highest strains in magnitude throughout the solidified domain. Although higher than 2%,

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:728–755
DOI: 10.1002/nme



STRESS ANALYSIS IN CONTINUOUS CASTING 751

the maximal value predicted by Kozlowski et al. [32], these strains are in the range of validity of
the small-strain theory (|�i j |<2-to-5%, according to Lemaı̂tre and Chaboche [31]). On the other
hand, no significant differences between plastic and viscoplastic models are observed in strain
solutions.

7.5. Performance of the non-linear equation solver

The non-linear system of Equations (28) and (29) has been solved using either the exact or the
modified Newton–Raphson method. The former implies the exact computation of the tangent
matrix, while the latter assumes certain approximation of this matrix. Here, the tangent matrix is
approximated by neglecting some of the terms associated to the previous points x j occupied by
the particle currently located at the considered sampling point x.

Figure 12 shows the evolution of the residue norm ‖R‖= √
R · R throughout the iterative

solution process, assuming plastic behaviour and Co= 1 (in this case, a reduced mesh of bilinear
quadrilateral elements was employed, but the results concerning convergence capability are quite
general). The theoretical quadratic convergence rate of Newton–Raphson method is effectively
attained when the matrix is computed exactly. Regarding the modified Newton–Raphson method,
fewer history points are considered for computing the approximate tangent matrix, and more
iterations are needed to achieve convergence. The maximum number of iterations corresponds to
the case of symmetric approximation to the tangent matrix, without taking into account contributions
from previous points.

At certain Newton–Raphson iterations, line search was used to improve convergence (this is
done when we detect that the residual norm at the next iteration will increase). The number of
iterations of the line-search cycle is typically two, so that the cost of the overall Newton–Raphson
iteration does not increase too much with the line search.

However, as the approximation is improved by taking more previous points along particle
streamlines, the computational cost per iteration (CPU-time and memory consumption) increases
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Figure 12. Evolution of the residue norm.
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since the band-width of the non-symmetric coefficient matrix increases accordingly. Therefore,
there is a compromise between convergence rate and cost per iteration, which depends on the
available computer resources.

Note that the cost per iteration corresponding to the symmetric case is comparable to that of
other schemes of similar accuracy (this excludes the slice model, in which accuracy is deterio-
rated), such as the Lagrangian and the ALE techniques previously implemented by the authors
(References [1, 27], respectively). Such methods require as many analyses as time steps taken for
the time discretization, each analysis requiring a certain number of iterations. For instance, in
order to solve the problem mentioned in this section, assuming �t = 0.25 s, 150 analyses must
be performed. If we assume each one takes typically 4–6 iterations [1, 27] to reduce the residue
norm to 10−4 times its initial value (corresponding to a completely null displacement field), we
get a total of 600–900 iterations. Meanwhile, the proposed Eulerian–Lagrangian technique just
needs to consider a single time step, taking about 30 iterations to reach convergence with the same
error tolerance when the symmetric approximation is used, so that it is an order of magnitude
cheaper than the other schemes. Furthermore, the savings in computational cost increase as the
time discretization becomes finer.

8. CONCLUSIONS

We have proposed a method for the analysis of stresses and strains developed in the solid region
of a metal strand during continuous casting processes. By formulating the constitutive equations
over the material particles (Lagrangian approach), we do not need to consider advection effects
whose treatment can be cumbersome when numerical methods are used. On the other hand, by
formulating the boundary value problem in Eulerian co-ordinates, the discretized domain remains
fixed, coinciding with the region of interest within the continuous caster.

The present scheme, unlike the widely used slice model, does not need to simplify the kine-
matics at the transverse sections, allowing a better modelling of the variable conditions encoun-
tered by each material particle as it moves down the caster, and especially when it passes from
one to another stage of the casting process (as it happens in current applications at the mould
exit).

Besides, the evolution equations were formulated in a single time instant, which avoids the need
to perform as many analyses as time steps taken for the time discretization. So, the computational
cost involved in the proposed technique is considerably lower than that of other techniques with
similar accuracy. Moreover, the advantages of using it increase as the number of time steps
increases.

Finally, the non-linear governing equations are solved using either the exact Newton–Raphson
method, which guarantees quadratic convergence rate, or its modified version, based on
approximations to the tangent matrix. Among these approximations, we have the classical
symmetric coefficient matrix. A line search algorithm was implemented in order to improve
convergence.

Future work concerns the application of this model to a wider region of the caster, including
particularly the secondary cooling zone, and to completely general three-dimensional processes,
which involves curved casters, with consideration of lack of symmetry due to casters defects
(misalignment of sprays, rolls, etc.).
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