1	Running Head: Uptake and translocation of endosulfan in Bidens laevis L.
2	
3	Corresponding author:

- 4 Name: Débora J. Pérez
- 5 Address: Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina.
- **Telephone and Fax:** + 54 223 4753150
- **Email:** deborajperez@yahoo.com.ar
- 8 Total number of words in the text: 2.166
- **References:** 905
- **Table (including table legend):** 98

- -

- ____

27	Root to shoot transfer and distribution of endosulfan in the wetland macrophyte Bidens
28	laevis L.
29	
30	Débora J. Pérez †, ‡*, Mirta L. Menone†, ‡, William J. Doucette §
31	
32	† Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC) –
33	Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad
34	Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina.
35	‡ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917,
36	1033 Cuidad Autónoma de Buenos Aires, Argentina.
37	§Utah State University, Utah Water Research Laboratory, 8200 Old Main Hill, Logan, Utah
38	84322-8200, USA.
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	

- ...

- 0

- -----

- 75 * deborajperez@yahoo.com.ar

76	Abstract- Endosulfan (EDS) is genotoxic in somatic cells of Bidens laevis and reproduction
77	could be affected if translocated from roots to flower buds. Hydroponic experiments were
78	conducted to quantify this transfer. While the root uptake of $[^{14}C]$ EDS and its transfer to
79	aboveground tissues was relatively low, the resulting average flower buds concentration (1.01
80	\pm 0.76 ng/g) after 30 d of exposure to an aqueous concentration of 5 μ g/L could still represent
81	a genotoxic risk for germ cells.
82	
83	Key words- Endosulfan, Bidens laevis, Transpiration stream concentration factor,
84	Bioconcentration factor, Wetland macrophyte
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	

INTRODUCTION

102	Endosulfan (EDS) is an organochlorine insecticide extensively used throughout the
103	world on food and non-food crops [1]. Despite recommendations for banning its application
104	starting in 2012 [2], several countries including Argentina have extended its use until July
105	2013 [3]. Endosulfan has been detected worldwide in soils, sediment, invertebrates, fishes
106	and macrophytes [4,5] and in run-off water from agricultural fields at concentrations as high
107	as 100 μ g/L [6]. The toxic effects of this compound have been demonstrated in various
108	animals [7-9] and in aquatic and wetland macrophytes [10,11].
109	Because of the frequent association between wetlands and agricultural lands and their
110	ability to accumulate agrochemicals, submerged and emergent macrophytes are used as in
111	situ bioindicators of water quality [12]. They comprise an important component of benthic
112	primary production in wetlands providing oxygen, nutrient cycling, sediment stabilization,
113	habitat and shelter for aquatic life [13]. Bidens laevis is a common macrophyte with an
114	extensive distribution throughout the Americas, including the USA, Mexico, Colombia,
115	Chile, Uruguay and Argentina [14]. Like Bidens cernua in Canada, this species is a
116	representative plant in many of the ecologically important areas [15] that are repeatedly
117	exposed to agrochemicals [16]. In Argentina, B. laevis inhabits marsh and stream edges [17]
118	in several provinces, including Buenos Aires Province, where extensive agricultural activities
119	occur. Previous studies have shown that EDS is genotoxic to mitotic chromosomes from
120	somatic root cells of <i>B. laevis</i> [11]. However, meiotic chromosomes of germ cells are
121	generally 10 times more susceptible to breakage than mitotic chromosomes [18] and sublethal
122	effects, like somatic and hereditable mutations, occurring on a few plant species may have
123	repercussions at the community or ecosystems levels [19]. If EDS is translocated from roots
124	to flowers of B. laevis, germ cells could suffer adverse effects potentially impacting the

125	reproductive success of natural populations. Thus the focus of this study was to examine the
126	potential root uptake of $[^{14}C]$ EDS and the subsequent transfer to flower buds by <i>B. laevis</i> .
127	

128 MATERIALS AND METHODS

129 Chemical

Endosulfan, $[2, 3^{14}C]$ (specific activity 1.83 mCi/mL, radioactive purity > 95%), 130 hereafter [¹⁴C] EDS, was purchased from the Institute of Isotopes Co., Ltd (Budapest, HU) as 131 132 a mixture of the α - and β - isomers (α -endosulfan, CAS:959-98-8 and β -endosulfan, CAS: 133 33213-65-9) dissolved in acetonitrile. It was used as received from the vendor without any 134 additional purification. 135 Environmentally relevant physical-chemical properties of the α - and β - isomers of endosulfan (molecular weight 406.9 g/mol) respectively at 25° C are: octanol-water partition 136 coefficients (log K_{ow}) 4.74 and 4.79, aqueous solubilities 0.0063 and 0.089 mol/m³, vapor 137 138 pressures 0.0044 and 0.0040 Pa and Henry's law constants 0.70 and 0.045 Pa m3/mol units 139 [20, 21]. 140 141 **Plants** 142 Seeds of Bidens laevis were collected in La Brava lake (37° 53' South, 57° 59' West), 143 Argentina and were sent to the Research Greenhouse at Utah State University (Logan, USA) 144 after obtaining legal authorization from the USDA (United State Department of Agriculture) 145 and SENASA (Argentinean National Service of Agricultural Health and Quality). 146 Seeds were placed in a plastic box with a damp filter paper for germination at 20°C. 147 Rooted seedlings were transferred into pots containing a mixture of 50% vermiculite and 148 50% peat and grown within a controlled environment chamber (12- h light at 25°C and 12-h 149 dark at 20°C) for 1 mo. The plants were then transferred to a hydroponic environment and

152

153 Experimental design

154 Five plants, selected for size uniformity, were transplanted into individual 1.8 L glass 155 jars containing a complete nutrient solution [22] and fitted with aeration tubes. A 10 cm thick 156 closed-cell foam seal was used to provide support for the plants. The jars also served as the 157 root zone exposure chambers for the uptake experiment. The jars were placed in a constantly 158 ventilated greenhouse with no humidity control. Conditions during the experiment were 159 summer natural photoperiod and temperature (16-h day at $25 \pm 5^{\circ}$ C and 8-h night at $18\pm$ 5°C).

160

A single dose of $[^{14}C]$ EDS dissolved in acetonitrile was added to four of the jars to 161 162 yield an initial nominal exposure concentration of 5 μ g/L. This concentration was selected 163 because it was the lowest concentration that caused genotoxicity effects in *Bidens laevis* 164 during a previous study [11]. The fifth jar was used as an untreated control, no added EDS or 165 acetonitrile. Pumps were used to draw atmospheric air through the root zone chamber at a 166 flow rate between 40 and 50 mL/min to maintain adequate mixing and oxygen levels in the 167 root zone. The air exiting the root zone was directed through charcoal traps to reduce 168 volatilized EDS from entering the greenhouse atmosphere. 169 The nutrient solution in the root zone jars was replenished daily to replace the water 170 lost due to transpiration. Root zone solution samples were collected and analyzed every 1 to 2 d throughout the duration of the studies. The amount of $[^{14}C]$ in the root zone solution 171 172 samples was determined directly by liquid scintillation counting (Beckman LS1701, 173 Beckman Instruments) after adding 2 to 3 mL of sample to 7 mL of Ready Gel scintillation 174 cocktail (Beckman Instruments). Based on the results of preliminary kinetic experiments,

175 $[^{14}C]$ EDS was added to the dosed systems daily to maintain the root zone concentrations at 5 176 μ g/L.

177

178	Collection of xylem sap			
179	After 30 days of exposure, the plants were cut at the base of the stem while keeping			
180	roots in the root zone chamber. The tissues were immediately processed for [¹⁴ C] analysis as			
181	described in next section. Xylem sap was collected as it exited the stem using 1 ml disposable			
182	polypropylene syringes. A 1 to 2 mL sample of xylem sap was needed to collect enough [¹⁴ C]			
183	for direct liquid scintillation counting.			
184				
185	[¹⁴ C] tissue distribution			
186	The concentrations of the $[^{14}C]$ equivalents of EDS within the various plant tissues			
187	(leaves, steam, flower buds, bracts and roots) were determined by combusting of triplicate			
188	samples of tissue (1 to 2 g wet weight) at 900°C using a biological oxidizer (R.J. Harvey			
189	Model OX-600). Prior to combustion, the tissues were cut into small pieces with a stainless			
190	steel knife or scissors and thoroughly mixed. The evolved $[^{14}C]$ CO ₂ was collected in a			
191	solution of 50% Ready Gel, 40% methanol, 10% monoethanolamine and analyzed directly by			
192	liquid scintillation counting.			
193				
194	Root lipid content			
195	The lipid content of the Bidens laevis roots was determined by soxhlet extraction			
196	procedure described by Dettenmaier (2008) [23]. Data are presented as in lipid percentage by			
197	wet weight root tissue.			
198				

199 **RESULTS AND DISCUSION**

200 Plant transpiration and growth

201	During the 30 d exposure period, no difference in plant growth and transpiration rates
202	was observed between exposed plants and the control. Average shoot length increased from
203	20 to 130 cm and the average amount of water transpired was 35 L. No phytotoxicity (i.e.
204	necrosis or chlorosis) was observed in any of the plants.
205	
206	Additional considerations
207	The biotransformation of EDS within plants yield several metabolites including the
208	corresponding sulfate, diol, ether, and lactone [24]. Due to [¹⁴ C] analytical methodology
209	used, we cannot discriminate between EDS and metabolites. However, depending on the
210	metabolite(s) formed, the toxicological risk may be increased. For example, EDS-sulfate is
211	more toxic and more persistent than the α - and β - isomers [25].
212	
213	Root uptake and transfer to shoots
213 214	Root uptake and transfer to shoots Experimental data quantitatively describing the extent of chemical uptake by plants
214	Experimental data quantitatively describing the extent of chemical uptake by plants
214 215	Experimental data quantitatively describing the extent of chemical uptake by plants roots are often expressed as bioconcentration factors (BCFs) or ratios of chemical
214 215 216	Experimental data quantitatively describing the extent of chemical uptake by plants roots are often expressed as bioconcentration factors (BCFs) or ratios of chemical concentrations in the plant (e.g., roots, shoots, xylem sap) to that in the exposure medium
214215216217	Experimental data quantitatively describing the extent of chemical uptake by plants roots are often expressed as bioconcentration factors (BCFs) or ratios of chemical concentrations in the plant (e.g., roots, shoots, xylem sap) to that in the exposure medium (soil, soil pore water, hydroponic solution) measured at the time the samples are collected.
 214 215 216 217 218 	Experimental data quantitatively describing the extent of chemical uptake by plants roots are often expressed as bioconcentration factors (BCFs) or ratios of chemical concentrations in the plant (e.g., roots, shoots, xylem sap) to that in the exposure medium (soil, soil pore water, hydroponic solution) measured at the time the samples are collected. The terminology used can vary depending on the type of plant tissue analyzed. For example,
 214 215 216 217 218 219 	Experimental data quantitatively describing the extent of chemical uptake by plants roots are often expressed as bioconcentration factors (BCFs) or ratios of chemical concentrations in the plant (e.g., roots, shoots, xylem sap) to that in the exposure medium (soil, soil pore water, hydroponic solution) measured at the time the samples are collected. The terminology used can vary depending on the type of plant tissue analyzed. For example, the ratio between the chemical concentration in the roots and that in the exposure media
 214 215 216 217 218 219 220 	Experimental data quantitatively describing the extent of chemical uptake by plants roots are often expressed as bioconcentration factors (BCFs) or ratios of chemical concentrations in the plant (e.g., roots, shoots, xylem sap) to that in the exposure medium (soil, soil pore water, hydroponic solution) measured at the time the samples are collected. The terminology used can vary depending on the type of plant tissue analyzed. For example, the ratio between the chemical concentration in the roots and that in the exposure media (water or soil) is referred to as Root Concentration Factor (RCF) [26,27]. The transpiration
 214 215 216 217 218 219 220 221 	Experimental data quantitatively describing the extent of chemical uptake by plants roots are often expressed as bioconcentration factors (BCFs) or ratios of chemical concentrations in the plant (e.g., roots, shoots, xylem sap) to that in the exposure medium (soil, soil pore water, hydroponic solution) measured at the time the samples are collected. The terminology used can vary depending on the type of plant tissue analyzed. For example, the ratio between the chemical concentration in the roots and that in the exposure media (water or soil) is referred to as Root Concentration Factor (RCF) [26,27]. The transpiration stream concentration factor (TSCF) specifically describes the ratio of the contaminant

equivalents of EDS) divided by the average $[^{14}C]$ concentration in the root zone samples 225 collected over the last 48 h of the exposure period. A TSCF was calculated using the $[^{14}C]$ 226 concentration in the xylem sap divided by the average $[^{14}C]$ concentration in the root zone 227 228 samples collected over the last 48 h exposure period, the period of time where the 229 concentration in the root zone solution was close to the nominal concentration. 230 Lipophilicity, often described by the octanol-water partition coefficient (K_{ow}), is 231 thought to be the most important physicochemical property governing root uptake and 232 translocation to above ground tissues for neutral organics [28,29]. The log K_{ow} of the EDS α -233 and β - isomers are 4.74 and 4.79, respectively [20] suggesting a relatively low translocation 234 potential. The concentrations of EDS and BCFs in the various plant tissues and xylem sap are 235 summarized in Table 1. The highest concentration of EDS was found in the roots yielding a 236 RCF of 148.00 ± 26.50 mL/g. This compares favorably with the RCF value of 142 predicted 237 from log K_{ow} using the relationship by Briggs et al. (1982) [26]. The lipid percent in roots 238 was 0.058% on wet weight basis. That is similar to other species like soybean (0.047%) and 239 tomato (0.062%) [23].

Transfer from roots to shoot was minimal with the stems, leaves and flowers having concentrations roughly 150 times less than found in the roots (Table 1). The average TSCF calculated from [¹⁴C] EDS measurements in the xylem sap and hydroponic exposure solution was 0.14 ± 0.02 mL/g. This compares favorably to the TSCF value of 0.1 estimated from Log K_{ow}, [29] suggesting that the model previously developed using terrestrial plants could be extended to wetlands macrophytes.

No $[^{14}C]$ EDS was detected in the control plant xylem sap. However, $[^{14}C]$ was detected in the foliar tissue of the control plant (0.18 ± 0.01 ng $[^{14}C]$ equivalents of EDS/g fresh plant tissue) suggesting EDS volatilization from the nutrient solution followed by deposition/sorption to the leaves and/or the uptake $[^{14}C]$ CO₂ generated from the exposed to

250	the control plant [30]. This fact is possible because the isomers of EDS are semi-volatile,
251	with vapor pressures of 0.0044 and 0.0040 Pa for the α - and β - isomers of EDS, respectively
252	making them susceptible to volatilization to the atmosphere with subsequent atmospheric
253	transport and deposition [21].
254	Based on the EDS measure in the control plant, a fraction of EDS measured in the
255	leaves and flower buds of exposed B. laevis plants could come from the deposition of EDS
256	volatilized from the hydroponic solution. Assuming that the EDS in control leaves comes
257	only from volatilization/ deposition (0.18 \pm 0.01 ng/g), the percentage due to volatilization/
258	deposition in EDS treated plants (1.10 \pm 0.56 ng/g in leaves and 1.01 \pm 0.76 ng/g in flower
259	buds) would be estimated to be about 10%.
260	In the present study the transfer of EDS into the flower buds was minimal, 1.01 ± 0.76
261	ng [¹⁴ C] equivalents/g fresh plant tissue (Table 1). Although we do not know the genotoxic
262	concentrations for each tissue, the concentration detected still could represent a potential
263	genotoxic risk for germ cells in chronic exposures. This hypothesis is based on the significant
264	increase of aberrations frequency observed in the genotoxicity assays with somatic root cells
265	of <i>B. laevis</i> exposed during 48 h to environmentally relevant concentrations from 1 to 100
266	μ g/L EDS (acute exposure) [11]. Therefore, chronic exposure could be a worse scenario
267	because deleterious effects could accumulate affecting the development and growth,
268	influencing the energetic metabolism and the reproductive success of the populations [19,31].
269	
270	CONCLUSION
271	The present study showed that the EDS or its metabolites can translocate from root to
272	flowers in <i>B. laevis</i> resulting in flower concentrations that are a potential genotoxic risk. With
273	the conservation of genetic diversity emerging as one of the central issues in conservation

biology, evaluation of acute and chronic effects in germinal cells (i.e. chromosome

275	aberrations and/or pollen viability assays) should be included in future risk assessment
276	studies.
277	
278	Acknowledgment- Funding for this study was provided by the "2011 SETAC / Procter and
279	Gamble Fellowship for Doctoral Research in Environmental Sciences" granted to Dra.
280	Débora J. Pérez and UNMDP- Argentine. We also thank to N. Orita and J. Chard for her help
281	in the experimental set up.
282	
283	REFERENCES
284	1. Kumar, M., Philip, L. 2006. Adsorption and desorption characteristics of hydrophobic
285	pesticide endosulfan in four Indian soils. Chemosphere 62: 1064-1077.
286	2. SC: Stockholm Convention on POPs. 2011. http://www.iisd.ca/chemical/pops/poprc4
287	3. SENASA. Proyecto de norma de prohibición de endosulfán. Servicio Nacional de
288	Sanidad y Calidad Agroalimentaria, Argentina. http://www.senasa.gov.ar/Archivos/
289	File/File4347- endosulfan.pdf.
290	4. Menone, M.L., Bortolus, A., Botto, F., Aizpún de Moreno, J.E., Moreno, V.J.,
291	Iribarne, O., Metcalfe, T.L., Metcalfe, C.D. 2000. Organochlorine Contaminants in a
292	Coastal Lagoon in Argentina: Analysis of Sediment, Crabs and Cordgrass from Two
293	Different Habitats. Estuaries Coasts 23: 583-592.
294	5. Ruey-An Doong, Chin-Kai Peng, Yuh-Chang Sun, Pei- Lin Liao. 2002. Composition
295	and distribution of organochlorine pesticide residues in surface sediments from the
296	Wu-Shi River estuary, Taiwan. Mar Pollut Bull 45: 246-253.
297	6. Mersie, W., Seybold, C.A., McNamee, C., Lawson, M.A. 2003. Abating endosulfan
298	from runoff using vegetative filter strips: the importance of plant species and flow
299	rate. Agric Ecos Environ 97: 215-223.

300	7. Lajmanovich, R.C., Cabagna M., Peltzer, P.M., Stringhini, G.A., Attademo, A.M.
301	2005. Micronucleus induction in erythrocytes of the Hyla pulchella tadpoles
302	(Amphibia: Hyliadae) exposed to insecticide endosulfan. Mutat Res 585: 50-59.
303	8. Neuparth, T., Bickham, J.W., Theodorakis, C.W., Costa, F.O., Costa, M.H. 2006.
304	Endosulfan-induced genotoxicity detected in the gilthead seabream, Sparus aurata
305	L., by means of flow cytometry and micronuclei assays. Bull Environ Contam
306	<i>Toxicol</i> 76: 242–248.
307	9. Da Cuña, R.H., Rey Vázquez, G., Piol, M.N., Guerrero, N.V., Maggese, M.C., Lo
308	Nostro, F.L. 2011. Assessment of the acute toxicity of the organochlorine pesticide
309	endosulfan in Cichlasomadimerus (Teleostei, Perciformes). Ecotoxicol Environ Saf
310	74: 1065-1073.
311	10. Menone, M.L, Pesce, S.F., Díaz, M.P., Moreno, V.J., Wunderlin, D.A. 2008.
312	Endosulfan induces oxidative stress and changes on detoxification enzymes in the
313	aquatic macrophyte Myriophyllum quitense. Phytochemistry 69: 1150-1157.
314	11. Pérez, D.J., Lukaszewicz, G., Menone, M.L., Camadro, E.L. 2011. Sensitivity of
315	Bidenslaevis L. to mutagenic compounds. Use of chromosomal aberrations as
316	biomarkers of genotoxicity. Environ Poll 159: 281-286.
317	12. Lewis, M.A. 1995. Algae and vascular plants tests, in Rand, G.M. (Ed).
318	Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment,
319	second ed. Taylor and Francis, Washington, D.C., 135-169 pp.
320	13. Nimptsch, J., Wunderlin, D.A., Dollan, A., Pflugmacher, S. 2005. Antioxidant and
321	biotransformation enzymes in Myriophyllum quitense as biomarkers of heavy metal
322	exposure and eutrophication in Suquía River basin (Córdoba, Argentina).
323	Chemosphere 61: 147-157.

324 14. Lahitte, H.B., Hurrell, J.A. 1997. Plantas de la costa. Literature of Latin America 325 (L.O.L.A). Colin Sharp, Buenos Aires. 200 pp. 326 15. Montes, L., Cerono, J.C., Nuciari, M.C. 1993. Bidens aurea (Asteraceae: 327 Heliantheae): Adventice cytotypes in Argentina. *Phytologia* 75:192-198. 328 16. Boutin, C., Lee, H-B., Peart, T., Batchelor, P.S., Maguire, R.J. 2000. Effects of the 329 sulfonylurea herbicide metsulfuron methyl on growth and reproduction of five 330 wetland and terrestrial plant species. Environ Toxicol Chem 19: 2532-2541. 331 17. Cabrera, A.L., Crisci, J.V., Deluchi, G., Freire, S.E., Giuliano, D.A., Iharlegui, L., 332 Katinas, L., Sáenz, A.A., Sancho, G., Urtubey, E. 2000. Catálogo ilustrado de las 333 compuestas (= Asteráceae) de la provincia de Buenos Aires, Argentina: sistemática, 334 ecología y usos, Zavaro, C.A., Buenos Aires. 136 pp. 335 18. Stachetti Rodriguez, G.S., Ma, T-H., Pimentel, D., Weinstein, L.H. 1997. 336 Tradescantia bioassays as monitoring systems for environmental mutagenesis: a 337 review. Crit Rev Plant Sci 16: 325-359. 338 19. Bickham, J.W., Sandhu, S., Hebert, P.D.N, Chikhi, L., Athwal, R. 2000. Effects of 339 chemical contaminants on genetic diversity in natural populations: implications for 340 biomonitoring and ecotoxicology. Mutat Res 463: 33-51. 341 20. US EPA: United State Environmental Protection Agency. 342 http://www.epa.gov/espp/litstatus/effects/redleg-frog/endosulfan/appendix-i.pdf. 343 21. Weber, J., Halsall, C.J., Muir, D., Teixeira, C., Small, J., Solomon, K. Hermanson, 344 M., Hung, H., Bidleman, T. 2010. Endosulfan, a global pesticide: A review of its fate 345 in the environment and occurrence in the Arctic. Scie Total Environ 408: 2966–2984. 346 22. Bugbee, B. 1995. Nutrient management in recirculating hydroponic culture. 347 Proceedings, 16th annual conference on hydroponics, San Ramon, CA, USA, 348 Hydroponic Society of America, San Ramon, CA, pp 15–30.

349	23. Dettenmaier, E.M. 2008. Measuring and modelling of plant root uptake of organic
350	chemicals. Thesis of Doctor of Philosophy in Civil and Environmental Engineering.
351	Department of Civil and Environmental Engineering, Utah State University. Logan,
352	United State of America. 189 pp.
353	24. Arrebola, F.J., Egea-González, F.J., Moreno, M., Fernández-Gutiérrez, A.,
354	Hernández-Torres, M.E., Martínez-Vidal, J.L. 2001. Evaluation of endosulfan
355	residues in vegetables grown in greenhouses. Pest Manag Sci 57: 645-652.
356	25. Kwon, GS., Sohn, HY., Shin, KS., Kim, E., Seo, BI. 2005. Biodegradation of
357	the organochlorine insecticide endosulfan, and the toxic metabolite, endosulfan
358	sulfate, by Klebsiellaoxytoca KE-8. Appl Microbiol Biotechnol 67: 845–850.
359	26. Briggs, G.G., Bromilow, R.H., Evans, A.A. 1982. Relationships between
360	lipophilicity and root uptake and translocation of nonionized chemicals by barley.
361	Pestic Sci 13: 495–504.
362	27. Topp E., Scheunert I., Attar A., Korte F. 1986. Factors affecting the uptake of 14C-
363	labeled organic chemicals by plants from soil. <i>Ecotoxicol Environ Saf</i> 11:219–228.
364	28. Bromilow, R.H., Chamberlain, K. 1995. Principles governing uptake and transport of
365	chemicals, in: Trapp, S., Farlane, C. (Eds), Plant contamination: modeling and
366	simulation of organic chemical processes. Lewis Publishers, Boca Raton, pp. 37-67.
367	29. Dettenmaier, E.M., Doucette, W.J., Bugbee, B. 2009. Chemical hydrophobicity and
368	uptake by plant roots. Environ Sci Technol 43: 324–329.
369	30. Trapp, S. 1995. Model for uptake of xenobiotics into plants, in: Trapp, S., Farlane, C.
370	(Eds), Plant contamination: modeling and simulation of organic chemical processes.
371	Lewis Publishers, Boca Raton, pp. 107-150.
372	31. Brain, R.A., Cedergreen, N. 2008. Biomarkers in Aquatic Plants: Selection and
373	Utility. Rev Environ Contam Toxicol 198: 49-109.

376			
377		EDS concentration ^a	BCF ^b
378	Leaves	1.10 ± 0.56	0.28 ± 0.14
379	Flower buds	1.01 ± 0.76	0.26 ± 0.19
380 381	Bract	1.01 ± 0.37	0.26 ± 0.09
382	Stem	0.31 ± 0.29	0.08 ± 0.07
383	Roots	575.00 ± 103.00	148.00 ± 26.50
384	Xylem sap	0.56 ± 0.06	0.14 ± 0.02^{c}
385			
386			
387	^a ng [¹⁴ C] equivalents of EDS/ g fresh plant tissue		
388	^b [¹⁴ C] equivalents of	EDS concentration/ average solution	phase concentration
389	EDS: endosulfan		
390	BCF: Bioconcentration Factor (mL/g)		
391	^c Transpiration Stream Concentration Factor (TSCF) value.		
392	All values are average \pm standard deviation.		

Table 1: Concentration of [¹⁴C] EDS in tissues and xylem sap of *Bidens laevis*