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Dynamic global sensitivity analysis (GSA) was performed for three different dynamic bioreactor models
of increasing complexity: a fermenter for bioethanol production, a bioreactors network, where two types
of bioreactors were considered: aerobic for biomass production and anaerobic for bioethanol production
and a co-fermenter bioreactor, to identify the parameters that most contribute to uncertainty in model
outputs. Sobol’s method was used to calculate time profiles for sensitivity indices. Numerical results have
shown the time-variant influence of uncertain parameters on model variables. Most influential model
parameters have been determined. For the model of the bioethanol fermenter, lmax (maximum growth
rate) and Ks (half-saturation constant) are the parameters with largest contribution to model variables
uncertainty; in the bioreactors network, the most influential parameter is lmax,1 (maximum growth rate
in bioreactor 1); whereas k (glucose-to-total sugars concentration ratio in the feed) is the most influential
parameter over all model variables in the co-fermentation bioreactor.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades, there has been growing interest in bio-
fuels production to complement fossil fuels. In particular, ethanol
production from renewable resources (bioethanol) can improve
energy security, reduce carbon dioxide emissions, and decrease
urban air pollution (Chen and Wang, 2010). Currently, blends of
gasoline and bioethanol can be used by more than 80% of light-
duty vehicles (Datta et al., 2011) and many countries have legis-
lated the commercialization of gasoline blends with increasing
bioethanol content. Fermenters constitute the heart of bioethanol
plants and much effort has been devoted to improve microorgan-
isms and operating conditions (Romaní et al., 2015). Corsano
et al. (2004) designed an optimal bioreactor network for bioethanol
production from glucose as a mixed integer nonlinear program-
ming problem. Many authors have proposed models for bioethanol
production bioreactors by co-fermentation, using hexoses and pen-
toses as feedstock, with different microorganisms. Krishnan et al.
(1999) proposed a model from glucose and xylose, using an engi-
neered strain of Saccharomyces. More recently, Moreno et al.
(2013) proposed and calibrated a model for an engineered Zymo-
monas mobilis, taking into account inhibition by furfural and HMF.

Bioreactor models for batch and fed-batch processes are formu-
lated as differential–algebraic equation systems that result from
mass balances formulation for substrates, biomass and products,
kinetic expressions, design equations, hydraulic equations, etc.
They include several parameters, most of which are related to bio-
chemical reaction kinetics and whose values are usually uncertain.
State variable values can be greatly influenced by the uncertainty
of model parameters. Furthermore, as parameters are usually
determined by means of experiments, there can be considerable
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Nomenclature

DVi volume of distillery vinasses added to bioreactor i, m3

FEEDi feed for bioreactor i, m3

Inoc mass of inoculum, kg
Ks substrate saturation constant, 20 kg m�3

Kj saturation coefficient for cell growth for substrate j,
g = 0.565, x = 3.4 kg m�3

Ki,j inhibition coefficient for cell growth for substrate j,
g = 283.7, x = 18.1 kg m�3

K0
j saturation coefficient for bioethanol production for sub-

strate j, g = 1.342, x = 3.4 kg m�3

K0
i,j inhibition coefficient for bioethanol production for sub-

strate j, g = 4890, x = 81.3 kg m�3

Mi volume of molasses added to bioreactor i, m3

Pi product concentration in bioreactor i, kg m�3

Pg product concentration from glucose, kg m�3

Px product concentration from xylose, kg m�3

pmaxj maximum bioethanol concentration for cell growth for
substrate j, g = 95.4, x = 59.04 kg m�3

p0maxj maximum bioethanol concentration for bioethanol pro-
duction for substrate j, g = 103, x = 60.2 kg m�3

Si substrate concentration in bioreactor i, kg m�3

R1 first bioreactor of the network
R2 second bioreactor of the network
Si0 initial substrate concentration in bioreactor i, kg m�3

Sg glucose concentration, kg m�3

Sf feed sugar concentration, kg m�3

Sx xylose concentration, kg m�3

SDV total concentration of reducing sugars in distillery vi-
nasses, kg m�3

SM total concentration of reducing sugars in molasses,
kg m�3

t operation time, h
TRSs total reduced sugar
Vinoc inoculum size, m�3

Vi unit size of bioreactor
Xi biomass concentration in bioreactor i, kg m�3

Xdeadi inactive biomass concentration in bioreactor i, kg m�3

x1,i contribution fraction of TRSs of molasses in bioreactor i
x2,i contribution fraction of TRSs of distillery vinasses in

bioreactor i
Yx/s,i biomass yield coefficient in bioreactor i, 2 = 0.124
Yx/p product yield coefficient, 0.23
Yp/sj yield coefficient for bioethanol on substrate j, g = 0.47,

x = 0.4

Subscripts
g glucose
i number of bioreactor in the network
j substrate
x xylose

Superscripts
int interactional index
tot total index

Greek symbols
k glucose-to-total sugar concentration ratio in the feed,

0.65
li specific growth rate of biomass in bioreactor i, h�1

lmax,i maximum specific growth rate of biomass in bioreactor
i, 1 = 0.5, 2 = 0.1 h�1

lmax,j maximum specific growth rate of biomass from sub-
strate j, g = 0.662, x = 0.19 h�1

mmax,j maximum specific rate of product formation from sub-
strate j, g = 2.005, x = 0.25 h�1

mdead biomass death rate, 0.02 h�1

/j power of bioethanol inhibition for cell growth from sub-
strate j, g = 1.29, x = 1.036

uj power of bioethanol inhibition for bioethanol produc-
tion from substrate j, g = 1.42, x = 0.608

vg glucose conversion
vx xylose conversion
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uncertainty in their final value. For this reason, it is important to
identify the parameters to which model state variables are most
sensitive, which is achieved in general by a sensitivity analysis
(SA). Techniques for sensitivity analysis can be classified into local
and global. Local methods concentrate on the local impact of fac-
tors on the model, usually carried out by computing partial deriva-
tives of the output functions with respect to the input variables. It
is a particular case of one-factor-at-a-time (OAT) approach, since
when a factor is varied; all the others are held constant. Local
methods are less helpful when SA is used to compare the effect
of various factors on the output. It has been recognized (Cukier
et al., 1973) in the literature for a number of years that when the
model is nonlinear and various input variables are affected by
uncertainties of different orders of magnitude, a GSA method
should be used (Saltelli et al., 2008). Global sensitivity analysis
techniques include Morris’ method (Morris, 1991), Sobol’s method
(Sobol’, 2001), Fourier’s Test (FAST: Fourier Amplitude Sensitivity
Test) (Cukier et al., 1973) and control variate technique
(Kucherenko et al., 2015). Global techniques incorporate the influ-
ence of the whole range of variation and the form of the probability
density function in the input. GSA method evaluates the effect of
factor xi while all others xj, j– i, are varied as well. In contrast,
the local perturbative approach is based on partial derivatives,
the effect of variation of the input factor xi when all other
xj, j– i, are kept constant at their nominal value. Additionally,
when these techniques are applied in dynamic models, a temporal
profile of the influence of the parameters can be obtained, which
gives great insight on the importance of the parameters not only
related to each other but also during the time horizon.

Global sensitivity analysis (GSA) has been applied on a few bio-
logical systems during the last decade. Di Maggio et al. (2010) have
performed GSA on dynamic metabolic networks to determine the
most influential parameters in intracellular biochemical reactions.
GSA has also been applied dynamic bioreactor network (Ochoa and
Hoch, 2011). In addition, Kent et al. (2013) have applied GSA to a
selection of five signaling and metabolic models to study how
results can change under increasing amounts of parameter uncer-
tainty, concluding that random sampling may be the most suitable
technique for GSA. Other example of GSA on a biological model has
been presented by Román-Martínez et al. (2014) on the control of a
wastewater treatment. More recently, Savvopoulos et al. (2015)
carried out global sensitivity analysis on a mathematical model
of B cell chronic lymphocytic leukemia (B-CLL) using the random
sampling high dimensional mathematical representation
(RS-HDMR) method in order to determine the most critical
model parameters. Within ecological systems, Estrada and Diaz
(2010) applied GSA to a complex water quality model, on more
than 20 parameters in 30 differential and 60 algebraic equations.



668 M.P. Ochoa et al. / Bioresource Technology 200 (2016) 666–679
A comprehensive review, analysis and categorization research of
GSA methods and their applications in the field of hydrological
modeling has been presented by Song et al. (2015).

Regarding biofuels production, GSA has been applied to steady
state models. Three different methods, variance-based, moment-
independent and entropy-based, have been applied to quantify
the contribution of an individual uncertain parameter in the
techno-economic assessments of biodiesel production (Tang
et al., 2015). Todri et al. (2014) have used global sensitivity analysis
in bioethanol production processes, replacing complex models
with surrogate models. Muhaimin Samsudin and Mat Don (2015)
have carried out Monte Carlo simulations on an oil palm trunk
sap fermentation model to evaluate model uncertainty; however,
to analyze parametric sensitivity, they have performed local sensi-
tivity analysis by changing each parameter in ±10% and ±50%.

In this work, global sensitivity analysis on three different
dynamic models of bioethanol producing bioreactors of increasing
complexity was carried out. They include a bioethanol fermenter
based on glucose; a two-bioreactor network for bioethanol produc-
tion based on glucose and a co-fermentation bioreactor based on
glucose and xylose for bioethanol production. The models and
the GSA methodology were implemented in an equation oriented
environment with a differential algebraic equation solver in
gPROMS (PSEnterprise Ltd., 2014). The implemented GSA strategy
is variance-based (Sobol’, 1993) and allows the determination
and classification of model parameters, according to their sensitiv-
ity indices. Temporal profiles of first order effect sensitivity indices
and those due to interactions with other model parameters have
been calculated for parameters in the three studied bioreactor
models. Numerical results show that the higher computational cost
of global sensitivity analysis is thoroughly justified in complex
nonlinear models describing bioreactors, where not only first order
effects due to each parameter can be captured, but also due to
interaction with other model parameters. In the most complex
analyzed case, the co-fermentation bioreactor, GSA allows deter-
mining that parameters like yield and maximum growth rate are
more influential through their effects due to interactions with
(
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Fig. 1. Model (i). Scheme of the biomass-ethanol producing fermenter (a) and mean con
and 1250) for substrate and biomass (b) and product (c).
other parameters than due to first order effects along the entire
time horizon. A proper knowledge of model parameters influence
on state variables has allowed their classification and provides use-
ful information for parameter estimation in bioreactor and bioreac-
tor network models.

2. Methodology

2.1. Mathematical model

In this work, three different bioreactor models of increasing
complexity were proposed. Model (i) is a biomass-ethanol produc-
ing fermenter, model (ii) is a bioreactor network used in the pro-
duction of bioethanol from molasses sugar and vinasses
distillates in two stages (yeast growth and bioethanol production);
and model (iii) is an bioethanol co-fermentation bioreactor based
on glucose and xylose with a genetically modified yeast. The pro-
posed models comprise a set of differential and algebraic equations
that describe mass balances in fermenters, as well as algebraic
kinetic expressions and connection constraints in the network
case.

Kinetic models (i) and (ii) were the basis of dynamic optimiza-
tion of fermentation processes with design purposes (Corsano
et al., 2006, 2011; Albernas-Carvajal et al., 2014). Kinetic model
(iii) was implemented in a dynamic modeling framework for the
assessment of different operational scenarios by Morales-
Rodriguez et al. (2011a). In addition, the co-fermentation model
was also applied with optimal design (Chen and Wang, 2010)
and with multi-objective optimization purposes (Sharma and
Rangaiah, 2013).

2.1.1. Model (i)
In this case, a fermentation process in which sub-products and

residues of a food process are used as substrates, such as molasses
diluted with water and distillery vinasses, was considered
(Corsano et al., 2004). Fig. 1(a) shows the scheme for this process.
Molasses are by-products obtained from a sugar plant crystallizer,
a) 
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Table 1
Uncertain parameters of the kinetic models.

Parameter Description Nominal value Sd Unit Range

Min Max

Model (i): Biomass and ethanol fermenter
lmax Maximum specific growth rate of biomass 0.100a 0.015 h�1 0.100c,d 1.000e

Yx/s Biomass yield coefficient 0.124a 0.020 – 0.001d 0.550e

Yx/p Product yield coefficient 0.230a 0.060 – 0.004d 0.600f

Ks Substrate saturation constant 20.000a 2.500 kg/m3 0.010d 20.000a

mdead Biomass death rate 0.020a 0.004 h�1

Model (ii): Bioreactor network
lmax,1 Maximum specific growth rate of biomass 0.500a 0.060 h�1 0.010c,d 1.000e

lmax,2 Maximum specific growth rate of biomass 0.100a 0.015 h�1 0.100d 1.000e

Yx/s,2 Biomass yield coefficient 0.124a 0.020 – 0.001d 0.550e

Yx/p,2 Product yield coefficient 0.230a 0.060 – 0.004d 0.600f

Ks
* Substrate saturation constant 20.000a 2.500 kg/m3 0.010d 20.000a

mdead* Biomass death rate 0.020a 0.004 h�1

Model (iii): Co-fermenter
lmax,g Maximum specific growth rate of biomass on glucose 0.662b 0.083 h�1 0.010c,d 1.000e

lmax,x Maximum specific growth rate of biomass on xylose 0.190 b 0.024 h�1 0.017d 0.417f

mmax,g Maximum specific rate of product formation from glucose 2.005 b 0.251 h�1 2.005b 5.120g

mmax,x Maximum specific rate of product formation from xylose 0.250 b 0.031 h�1 0.250b 3.080d

Yp/s,g Yield coefficient for ethanol on glucose 0.470 b 0.059 – 0.294a 0.600f

Yp/s,x Yield coefficient for ethanol on xylose 0.400 b 0.05 – 0.350h 0.796d

k Glucose to total sugar concentration ratio in the feed 0.650 b 0.081 –

* Are common parameters for both kinds of bioreactors in the network.
a Corsano et al. (2004).
b Krishnan et al. (1999).
c Todri et al.(2014).
d Moreno et al. (2013).
e Nielsen et al. (2003).
f Nakamura et al. (2001).
g Leksawasdi et al. (2001).
h Morales-Rodriguez et al. (2011b).
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whereas distillery vinasses or distillery broth are the non-distilled
residue in bioethanol production process. Model (i) consists of a
bioethanol and biomass producing fermenter through dynamic
mass balance equations for biomass, substrate, non-active biomass
and product described by Eqs. (1)–(4).

Biomass

dX
dt

¼ lX � tdeadX ð1Þ

Substrate

dS
dt

¼ � lX
Yx=s

ð2Þ

Non-active biomass

dXdead

dt
¼ tdeadX ð3Þ

Product

dP
dt

¼ lX
Yx=p

ð4Þ

Specific growth rate of biomass in the fermenter is Monod type
kinetics described by

Growth rate

l ¼ lmax
S

Ks þ S
ð5Þ

In this model, there are 5 parameters: lmax, maximum specific
growth rate of biomass; Yx/s, biomass yield coefficient, Yx/p, product
yield coefficient; Ks, substrate saturation constant and mdead,
biomass death rate, which are described in Table 1.
2.1.2. Model (ii)
This model represents a two-bioreactor network through Eqs.

(6)–(19). The network consists of a series of two batch bioreactors
fed with the same substrate as model (i). For this study, the opti-
mal configuration, determined by Corsano et al. (2004), was
adopted: one aerobic and one anaerobic reactor in series, as it is
shown in Fig. 2(a). The first bioreactor (R1) of the network is a
pre-fermenter required to enhance the production of yeast bio-
mass. Only biomass production takes place within this bioreactor,
with mass balances described by Eqs. (6)–(8) for sub-index i = 1.

Biomass

dXi

dt
¼ liXi � tdeadXi i ¼ 1;2 ð6Þ

Substrate

dSi
dt

¼ �liXi

Yx=si

i ¼ 1;2 ð7Þ

Non-active biomass

dXdead

dt
¼ tdeadXi i ¼ 1;2 ð8Þ

Specific growth rate of biomass in the fermenter is also Monod type
kinetics.

Growth rate

li ¼ lmaxi

Si
Ks þ Si

i ¼ 1;2 ð9Þ

In this case, the yield coefficient, Yx/s,1, an empirical efficiency mea-
sure for the substrate-biomass conversion depending on the carbo-
hydrate source is represented by Eq. (10) (Albernas-Carvajal et al.,
2014). Variables xij represent the fraction of total reduced sugar pro-
vided by molasses (j = 1) and vinasses (j = 2) in bioreactor i
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Fig. 2. Model (ii). Scheme of the bioreactor network (a) and mean concentration profiles as function of the number of scenarios (N = 1, 50, 100, 200, 700 and 1250) for
substrate and biomass (b) and product (c).
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Yield coefficient

Yxs;1 ¼ 0:3689x1;1 þ 0:2522x1;2 þ 0:3736x1;1x1;2 ð10Þ

xi;1 þ xi;2 ¼ 1 i ¼ 1;2 ð11Þ
The second bioreactor (R2), where alcoholic fermentation occurs, is
anaerobic to enhance bioethanol production. Dynamic mass bal-
ances are described by Eqs. (6)–(9) and Eq. (12) for sub-index i = 2.

Product

dPi

dt
¼ liXi

Yx=pi

i ¼ 2 ð12Þ

Eqs. (13)–(15) represent volume relations, where feed is composed
of distillery vinasses and molasses volume. Inoculation only takes
places in the first bioreactor.

Volume equations

FEEDi ¼ DVi þMi i ¼ 1;2 ð13Þ

V1 ¼ FEED1 þ Vinoc i ¼ 1 ð14Þ

Vi ¼ FEEDi þ Vi�1 i > 1 ð15Þ
Each fermenter is fed with a blend of molasses and vinasses, their
contribution fraction of TRSs is calculated by Eqs. (16)–(19) in order
to obtain Yx/s,1 value.

Feeding sugar contribution

ViSi0x1i ¼ MiSM i ¼ 1 ð16Þ

ViSi0x1i ¼ MiSM þ Vi�1Si�1x1i�1
i > 1 ð17Þ

ViSi0x2i ¼ DViSDVi i ¼ 1 ð18Þ

ViSi0x2i ¼ DViSDV þ Vi�1Si�1x2i�1
i > 1 ð19Þ

Note that for the biomass reactor, the substrate yield coefficient is
calculated using expression (10), while for the bioethanol bioreac-
tor the substrate and product yield coefficients Yx/s,2 and Yx/p,2 are
constant and assumed as model parameters. The model has 6
parameters, which are shown in Table 1.
2.1.3. Model (iii)
Obtaining bioethanol from lignocellulosic materials is a current

challenge for the biofuels industry in the world and has the poten-
tial for making a significant contribution to the solution of major
renewable energy and environmental problems. Lignocellulosic
feedstocks like wood, waste paper, agricultural residues and fast-
growing energy crops have been identified as economical starting
materials for bioethanol production. Lignocellulosic hydrolyzates
contain both fermentable sugars: pentoses and hexoses. Pentoses
are comprised of D-xylose and L-arabinose whereas the major hex-
ose is D-glucose. Advances in genetic engineering have led to the
construction of xylose-fermenting microorganisms. The use of Sac-
charomyces yeast is highly favored in commercial biomass to
bioethanol conversion processes owing to their traditional use,
their tolerance to bioethanol and other inhibitors, GRAS (Generally
Regarded As Safe) status, and their use as nutrient enhancers in
animal feed. Ho et al. (1998) reported the development of effective
recombinant yeast such as Saccharomyces 1400 (pLNH33), capable
of simultaneously co-ferment glucose and xylose in the same med-
ium to bioethanol with high bioethanol yields. However, both sug-
ars metabolism and bioethanol production can be inhibited by
toxic compounds generated during the acid hydrolysis of lignocel-
lulose (Moreno et al., 2013). For the sake of simplicity, this kind of
inhibition was not considered in the kinetic model. In this paper a
kinetic co-fermentation model proposed by Krishnan et al. (1999)
to describe cell growth and product formation of Saccharomyces
1400(pLNH33) on glucose and xylose mixtures was implemented.
Eqs. (20)–(23) represent the dynamic mass balances for product
obtained either from glucose or xylose, glucose and xylose, respec-
tively. The model incorporates the effect of substrate inhibition on
cell growth and bioethanol production using glucose and xylose as
substrate through a modified Monod form expression. In addition,
a two constant model is used to describe the kinetic pattern of
bioethanol inhibition on glucose and xylose fermentation.
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Product from glucose

dPg

dt
¼ mmaxg sg

K 0
g þ sg þ ðs2g=K 0

i;gÞ
1� pg

p0
maxg

 !ug
( )

X ð20Þ

Product from xylose

dPx

dt
¼ mmaxx sx

K 0
x þ sx þ ðs2x=K 0

i;xÞ
1� px

p0
maxx

 !ux
( )

X ð21Þ

Glucose

dSg
dt

¼ � 1
Yp=sg

mmaxg sg

K 0
g þ sg þ s2g=K

0
i;g

� � 1� pg

p0
maxg

 !ug
( )

X ð22Þ

Xylose

dSx
dt

¼ � 1
Yp=sx

mmaxx sx
K 0

x þ sx þ ðs2x=K 0
i;xÞ

1� px

p0
maxx

 !ux
( )

X ð23Þ

Model of biomass growth on sugar mixtures, represented by
Eq. (24), considers that competition for uptake occurs between
the two substrates.

Biomass
Table 2
Steps for computing sensitivity indices.

Step Calculations

1. Generate two random sets of model parameters, a = (g,f) and b = (g0 ,f0)
matrices
– Matrices dimension: N � k
– g, vector (N � 1) of random values for parameter xi
– f, submatrix (N � (k � 1)) of random values for all parameter

except xi
2. Define a new matrix ci = (g, f0)

– Matrix ci formed by all columns of b except the ith column, which
is taken from a

3. Calculation of state variables for all parameter values in the sample
matrices of Steps 1 and 2
– Three vectors (N � 1) of state variables are obtained, ya = f(a), yb =

f(b), yci = f(ci)
4. Calculation of variance and conditional variances for state variables, at

each time instant.
– Defined by Eqs. (43)–(45)

5. Calculation of sensitivity indices at each time instant

dX
dt

¼ sg
sg þ sx

lmaxg sg
Kg þ sg þ ðs2g=Ki;gÞ 1� pg

pmaxg

 !/g
8<
:

9=
;þ sx

sg þ sx

lmaxx sx
Kx þ sx þ ðs2x=Ki;xÞ 1� px

pmaxx

� �/x
( )2

4
3
5X ð24Þ
Eqs. (25) and (26) represent both glucose and xylose conversion
with respect to fed sugar concentration (Chen and Wang, 2010).

Glucose conversion

vg ¼ 1� sg
ksf

ð25Þ

Xylose conversion

vx ¼ 1� sg
ð1� kÞsf ð26Þ

There are 23 parameter in this model described in the nomencla-
ture section together with their nominal value. The model parame-
ters in the substrate and product inhibition expressions were
determined from single substrate experiments by Krishnan et al.
(1999). Table 1 includes description, nominal value, standard
deviation considered for the GSA and range of variation taken from
literature of uncertain parameters.

2.2. Global sensitivity analysis

Sensitivity analysis can be defined as the study of how uncer-
tainty in model dependent variables can be assigned to different
sources of uncertainty in model parameters (Saltelli et al., 2008).
Sensitivity analysis can be addressed through local and global
methodologies.

Local techniques evaluate sensitivity indices as first order
partial derivatives of dependent variables with respect to uncertain
parameters, based on Taylor’s series expansion around the param-
eters nominal value. However, the assumption of linearity is
usually valid only within a narrow range of parameter variation.
Thus, results obtained from local sensitivity analysis cannot be
representative when nonlinear models and the entire space of
parameter variation are considered.

On the other hand, global sensitivity analysis is based on the
exploration of the entire range of parameter variation, sampling
from a distribution function associated to each input parameter
and simulating the model repeatedly. Even when the computa-
tional cost for global sensitivity methods is higher than for local
sensitivity approaches, the former provide more reliable and real-
istic results, also taking into account the interaction between
parameters (Saltelli et al., 2008).

In this work Sobol’s method is used to compute sensitivity
indices. This method is based on variance decomposition, using
Monte-Carlo simulation methods (Sobol’, 2001; Saltelli and
Tarantola, 2002).

Given a function y = f(x, t), where y is a differential or algebraic
state variable (such as biomass concentration), x is a vector of k
input parameters and t is the independent variable in differential
equations, e.g., time; when all uncertain parameters xi vary under
its probability density function, the uncertainty of y(x, t) can be
quantify by its unconditional variance V(y). To determine the con-
tribution of each parameter on the unconditional variance the con-
cept of conditional variance is introduced. Based on probability
theory, the unconditional variance can be decomposed as the
sum of the variance of a conditional expected value and the
expected value of a conditional variance:

VðyÞ ¼ VðEðyjxiÞÞ þ EðVðyjxiÞÞ ð27Þ

VðyÞ ¼ VðEðyjx�iÞÞ þ EðVðyjx�iÞÞ ð28Þ
V and E correspond to variance and expected value operators,
respectively. In Eq. (27), Vi ¼ VðEðyjxiÞÞ computes the variance (over
all possible realizations of parameter xi) of the conditional expected
value of the state variable y under all parameters variation, except
xi. It represents the expected reduction in the state variable variance
that could be obtained if xi could be known or fixed. Vi is the first-
order effect associated to parameter xi. The second term,
Ei ¼ EðVðyjxiÞÞ, is the expected value (over all realizations of param-
eter xi.) of the conditional variance of the state variable y when all
parameters except xi change. It represents the average state variable
variance if xi could be known or fixed.

The same can be stated for Eq. (28), by replacing xi for ‘‘all
parameters except xi” (x�i). Thus, the term VTOT

i ¼ EðVðyjx�iÞÞ com-
putes the average state variable variance if all parameters except xi
could be known or fixed.

If Eqs. (27) and (28) are divided by the unconditional variance,
the following expressions are obtained:



Table 3
Influence of parameters based on its indices values.

Indices Relative value Condition for parameter xi

Si High Influential parameter
Si
int High Important interactions between xi and other parameters
Si
int Small Little or no interactions between xi and other parameters
Si and Si

TOT Small Non influential parameter

Si, Siint and Si
TOT stand for first order, interactional and total sensitivity index for parameter i.
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Fig. 3. Model (iii). Scheme of ethanol co-fermentation bioreactor (a) and mean concentration profiles as function of the number of scenarios (N = 1, 50, 100, 200, 700 and
1250) for glucose (Sg) and xylose (Sx) (b), glucose (vg) and xylose (vx) conversion (c), biomass (d) and product from glucose (Pg) and from xylose (Px) (e).
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Fig. 4. First order sensitivity index profiles for substrate concentration and substrate conversion. Substrate concentration for biomass-ethanol producing fermenter (model
(i)) (a), substrate concentration for bioreactor network (model (ii)) (b) and glucose (c) and xylose (d) concentrations and glucose (e) and xylose (f) conversions profiles for co-
fermentation bioreactor (model (iii)).
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1 ¼ VðEðyjxiÞÞ
VðyÞ þ EðVðyjxiÞÞ

VðyÞ ð29Þ

1 ¼ VðEðyjx�iÞÞ
VðyÞ þ EðVðyjx�iÞÞ

VðyÞ ð30Þ

Finally, the first-order sensitivity index, Si and the total sensitivity
index Si

TOT are defined as:

Si ¼ VðEðyjxiÞÞ
VðyÞ ¼ Vi

VðyÞ ð31Þ

STOTi ¼ EðVðyjx�iÞÞ
VðyÞ ¼ VTOT

i

VðyÞ ð32Þ
As it can be seen from Eqs. (31) and (32), to calculate sensitivity
indices is necessary to compute the unconditional and conditional
variances of each state variable and these involve the calculation
of multiple integrals. Sobol’ proposes a methodology to compute
the variances considering only evaluations of functions (y = f(x, t)),
a brief description of this methodology is given below. A square inte-
grable function y = f(x, t) was considered, where y is a differential or
algebraic state variable (such as biomass concentration), x is a vector
of k input parameters and t is the independent variable in differen-
tial equations, e.g., time. For the sake of clarity, subscript t is omitted
in the following analysis, assuming f, its expected value and its vari-
ance are calculated at each time instant. Function f can be decom-
posed into terms of increasing dimensions (Sobol’, 2001), as follows:
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Fig. 5. First order sensitivity index profiles for biomass concentration. Biomass-ethanol producing fermenter (model (i)) (a), bioreactor network (model (ii)) (b) and co-
fermentation bioreactor (model (iii)) (c).
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f ¼ f 0 þ
X
i

f iðxiÞ þ
X
i

X
j>i

f ijðxi; xjÞ þ � � � þ f 12...kðxi; xj; . . . ; xkÞ ð33Þ

where each term is also square integrable and is a function of
the factors in its index, i.e., f i ¼ f iðxiÞ, f ij ¼ f ijðxi; xjÞ and so on.

This expansion is called High Dimensional Model Representa-
tion (HDMR). Sobol’ proved that if each term of the expansion
has zero mean, i.e.:Z 1

0
f i1 ...is ðxi1 . . . xis Þdxn ¼ 0 ð34Þ

then all the terms of the decomposition are orthogonal in pairs:Z 1

0

Z 1

0
f i1... is f k1 ...kl dxidxk ¼ 0 ð35Þ

As a consequence, all terms in Eq. (33) can be univocally calculated
using the conditional expectations of the state variable y, as

EðyÞ ¼
Z

f ðxÞdx ¼ f 0 ð36Þ

EðyjxiÞ ¼
Z

f ðxÞ
Y
k–i

dxk ¼ f 0 þ f iðxiÞ ð37Þ

Eq. (36) corresponds to the definition of the expected value of a
variable y which is function of uncertain variables. Eq. (37) is the
definition of conditional expected value of a variable y when xi is
known, and it is obtained integrating Eq. (33) over all variables
except xi.
By square integrating each term of Eq. (33)Z Z
. . .

Z
f 2ðxÞdxi . . .dxn � f 20 ¼

Xk
s¼1

Xk
i1<...<is

Z Z
. . .

Z
f 2i1... is dxi1 . . .dxis

ð38Þ
where

VðyÞ ¼
Z Z

. . .

Z
f 2ðxÞdxi . . .dxn � f 20 ð39Þ

Vi1 ...is ¼
Z Z

. . .

Z
f 2i1... is dxi1 . . . dxis ð40Þ

VðyÞ and Vi1 ...is are the unconditional and conditional variance of the
state variable respectively. Then, the so-called ANOVA-HDMR
decomposition can be derived,

VðyÞ ¼
X
i

V i þ
X
i

X
j>i

V ij þ . . .þ V12...k ð41Þ

Dividing both sides of the equation by VðyÞ the index decomposi-
tion is obtained:

1 ¼
X
i

Si þ
X
i

X
j>i

Sij þ
X
i

X
j>i

X
l>j

Sijl � � � þ S123...k ð42Þ

In this work, the methodology was implemented following Saltelli
and Tarantola (2002) which is an extension of the original approach
proposed by Sobol’ (1993) and Homma and Saltelli (1996). This pro-
cedure computes the variances based on model evaluations, as
defined by Eqs. (43)–(45).
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Fig. 6. First order sensitivity index profiles for product concentration. Biomass-ethanol producing fermenter (model (i)) (a), bioreactor network (model (ii)) (b) and
concentration product from glucose (c) and xylose (d) for the co-fermentation bioreactor (model (iii)).
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VðyÞ ¼ 1
N

XN
j¼1

ðyj
aÞ

2 �
XN
j¼1

y j
ay

j
b

 !
ð43Þ

VðEðyjxiÞÞ ¼ 1
N

XN
j¼1

y j
ay

j
ci
�
XN
j¼1

yj
ay

j
b

 !
i ¼ 1 . . . k ð44Þ

VðEðyjx�iÞÞ ¼ 1
N

XN
j¼1

yj
by

j
ci
�
XN
j¼1

yj
ay

j
b

 !
i ¼ 1 . . . k ð45Þ

where N is the number of scenarios for the Monte Carlo simula-
tions; a, b and ci are matrices of N random values for the k uncertain
model parameters and ya, yb and yci are vectors of N model outputs
values obtained whenmodel variables are evaluated in matrices a, b
and ci, respectively. The main steps for the case of a differential
algebraic model are described in Table 2.

First order (Si) and total effect (SiTOT) indices measure the effect
of the variation of the parameters on the model state variables.
First sensitivity indices provide the reduction on the unconditional
variance of the state variable that can be obtained if xi is fixed at its
true value. On the other hand, total sensitivity indices take into
account the interactions among parameters, so they give informa-
tion on the non-additive part of the model.

Usually,
Pk

i¼1Si < 1 and Si < Si
TOT. However for a purely additive

model and orthogonal inputs,
Pk

i¼1Si ¼ 1, which can be observed
from Eq. (42) when the interaction terms are canceled.

An additional index, Siint takes into account the effects of all
interactions among model parameters and it can be calculated as:

Sinti ¼ STOTi � Si ð46Þ
Table 3 gives information on the influence of parameter xi based on
the value of its indices.
3. Results and discussion

A dynamic global sensitivity analysis was carried out on the
previously described bioreactor models comprising differential
algebraic systems of equations. The DAE models were imple-
mented in an equation-oriented environment, within gPROMS
(PSEnterprise Ltd., 2014).

The model (i) has 4 differential and 1 algebraic equations and 5
parameters; in model (ii), there are 7 differential and 14 algebraic
equations and 6 parameters and in model (iii), there are 5 differen-
tial and 2 algebraic equations and 23 parameters. For models (i)
and (ii), GSA was carried out over all model parameters (5 and 6,
respectively), which are shown in Table 1. To reduce the number
of uncertain parameters in model (iii) over which GSA was applied,
and hence the computational effort, a preliminary screening
through local sensitivity analysis was carried out on the entire
set of model parameters. By taking into account only those param-
eters that have a greater impact in the model output, the following
parameters for GSA were selected: lmax,g, lmax,x, mmax,g, mmax,x, Yp/s,g,
Yp/s,x and k. Normal probability distributions were associated to
uncertain parameters. Mean values and standard deviations were
estimated based on information from the literature. Parameter
nominal values were considered as their mean values and 12.5%
standard deviations. In general, this represents a typical range of
variation of parameters. Matrices of random parameters a, b and
ci were generated for each DAE model within gPROMS to perform
stochastic simulations.
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The number of scenarios for each model has been estimated by
performing stochastic simulations for increasing number of sce-
narios (N = 1, 100, 700 and 1250) (Estrada and Diaz, 2010) and
comparing mean concentration profiles for substrate, biomass,
product and substrate conversion. As it can be seen in Fig. 1
(b) and (c) for model (i), Fig. 2(b) and (c) for model (ii) and Fig. 3
(b)–(e) for model (iii), the main differential state variables (sub-
strate, biomass and product concentrations) and algebraic state
variables (substrate conversions profiles) mean profiles remain
unchanged for N = 1250 scenarios. So, 1250 scenarios were consid-
ered as representative for the whole set of possible scenarios.

Stochastic simulations, conditional and unconditional variances
and sensitivity index calculations for the different set of parame-
ters for each time instant have been carried out in gPROMS
(PSEnterprise Ltd., 2014).

GSA results for three differential state variables (substrate, bio-
mass and product concentration) and two algebraic state variables
(glucose and xylose conversion) are presented in cumulative plots
and tables for the three studied models. Figs. 4–6 show temporal
profiles for first order sensitivity (Si) while Tables 4–6 show first
order (Si) and interactions (Siint) indices at three reactions times.
In the following discussion, each state variable global sensitivity
analysis was addressed with respect to parameters for each ana-
lyzed model.

3.1. Substrate concentration

In the biomass-ethanol producing fermenter, model (i), sub-
strate concentration S (Fig. 4(a) and Table 4) is mainly influenced
throughout the entire horizon of time by lmax, which represents
the maximum specific growth rate of biomass, explaining between
20% and 100% of substrate concentration variance with first order
effects, with the maximum contribution at the beginning of the fer-
mentation. The biomass yield coefficient Yx/s explains up to 7% of
the variance at the end of the time horizon, with the most impor-
tant contribution through its interactions with other parameters
(Sint between 0.33 and 1.14) (Table 4).

In model (ii), the biomass-ethanol bioreactor network, the most
influential parameter for substrate concentration (S) is lmax,1, the
maximum specific growth rate in the first reactor, which explains
between 25% and 100% of substrate concentration variance in the
network, being higher at the beginning of the process (Fig. 4(b)).
As it can be seen in Table 4, lmax,1 also contributes to uncertainty
in substrate concentration through its interactions with other
parameters (Sint up to 0.51 at the end of the time horizon). In model
(ii), at the beginning of the fermentation process (after t = 10 h), the
following parameters are influential, to a lesser extent: Yx/s,2 (bio-
mass yield coefficient), lmax,2 (maximum specific growth rate for
the second reactor) and Ks (substrate saturation constant). These
results are consistent with the fact that growth is the main process
in the first bioreactor (R1), but biomass concentration (dependent
on substrate concentration) also influences the rest of the process.
Fig. 4(b) and Table 4 show that in model (ii), Yx/s,2 is the second
most influential parameter in first order effect after 10 h and, at
the same time, it is the main parameter involved in interactions
(Sint) along the entire time horizon. However, this kind of effect
at the first stage of the network (R1) can be attributed to Ks and
mdead, which represent substrate saturation constant and biomass
death rate respectively; and then to lmax,1 and Ks. The presence
of interaction effects reveals that the model is non-additive.

In model (iii), which corresponds to a bioreactor where co-
fermentation of glucose and xylose takes place, there is a well-
known preference of the engineered yeast for the first substrate.
Glucose (Sg) is totally consumed at time t = 1.5 h, when only 20%
xylose (Sx) has been consumed, as it can be seen in conversion
profiles mean values shown in Fig. 3(c).



Table 5
Biomass concentration sensitivity indices.

Model (i) Model (ii) Model (iii)

X X X

Si Si
int Si Si

int Si Si
int

t = 2 t = 5 t = 25 t = 2 t = 5 t = 25 t = 2 t = 5 t = 25 t = 2 t = 5 t = 25 t = 1 t = 2 t = 5 t = 1 t = 2 t = 5

Yx/s 0.01 0.01 0.01 Yx/s,2 0.03 0.02 0.05 Yp/s,g 0.09 0.2 0.2
Yx/p 0.03 0.03 0.02 Yx/p,2 0.01 0.02 0.09 Yp/s,x 0.03 0.01
lmax 0.06 0.65 0.42 0.06 lmax,1 0.63 0.71 0.54 0.54 0.4 0.38 lmax,g 0.14 0.13 0.15
Ks 0.52 0.25 0.08 lmax,2 0.02 0.02 0.1 lmax,x 0.04 0.02 0.14
tdead 0.10 0.17 0.27 0.11 Ks 0.12 0.07 0.15 mmax,g 0.12 0.2 0.14

tdead 0.04 0.02 0.25 mmax,x 0.08 0.05
k 0.56 0.5 0.5

R 0.65 0.46 0.44 0.79 0.80 1.00 R 0.92 0.96 0.93

Sub-index 1, 2, g and x stands for biomass production bioreactor, ethanol production bioreactor, glucose and xylose respectively. Si and Si
int represent first order and

interactional sensitivity indices for parameter i. t: time (h). The highest values obtained are marked in bold.
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Fig. 4(c) shows that until t = 1.5 h, k (glucose-to-total sugar con-
centration ratio in the feed), Yp/s,g (yield coefficient for ethanol) and
mmax,g (maximum specific rate of product formation) are the most
influential parameters, explaining 100% of glucose concentration
variance. After t = 1.5 h (when glucose is depleted), only the effect
of interaction between parameters are important (Table 4) again
being Yp/s,g and mmax,g the most important together with lmax,g

(maximum specific growth rate of biomass on glucose). For xylose
concentration (Fig. 4(d)), the most influential parameter
throughout the entire time horizon is k, which explains almost
100% of the total variance. The effects of interactions among
uncertain parameters (Siint) are negligible, as compared to first
order effects (Si), as it can be seen in Table 4. Consequently, total
variance for xylose concentration can be explained only by first
order effects of k.
3.2. Conversion

In this section, temporal profiles for sensitivity indices corre-
sponding to two algebraic state variables of model (iii): glucose
(Fig. 4(e)) and xylose (Fig. 4(f)) conversion (xx and xg, respectively)
were analyzed. Fig. 4(e) shows cumulative plots of first order
indices for glucose conversion. There are only three relevant
parameters, Yp/s,g, k, and mmax,g that account for 80% of glucose con-
version variance for time t < 1.5 h; this effect vanishes along the
time horizon, together with glucose depletion. Interaction effects
are totally negligible for this variable.

Fig. 4(f) show first order sensitivity indices profile for xylose
conversion. First order effects explain more than 80% of this vari-
able total variance and are dominated by kwith an almost constant
value of Si of 60%, followed by mmax,x which contributes around 30%
to xylose conversion variance. Finally, Yp/s,x explains around 6% of
the uncertainty in xylose conversion along the time horizon.
3.3. Biomass concentration

First order sensitivity indices profiles for biomass concentration
(X) are shown in Fig. 5(a)–(c), whereas interaction indices results
are shown in Table 5. In model (i), first order effects of parameters
explain 50% of biomass concentration variance, mainly contributed
by Ks and mdead, being Ks, the substrate saturation constant, domi-
nant at the beginning of the fermentation (almost 100%) and mdead
contributing between 10 and 27% at the beginning and the end of
the fermentation process, respectively (Fig. 5(a) – Table 5). Param-
eter lmax, maximum specific growth rate of biomass in this fer-
menter, contributes with 6% of first order effects but it is the
most important regarding its contribution by interaction with
other parameters (Sint), which explains between 65% and 6% along
the fermentation process (Table 5). Biomass and product yield
coefficients only contribute together with 4% of biomass concen-
tration variance as first order effects and do not contribute in inter-
actions with other parameters. Therefore, these two parameters
can be regarded as the less influential parameters in biomass con-
centration of model (i).

First order effects explain between 79% and 100% variance of
yeast biomass concentration (X) in the biomass-fermenter net-
work, model (ii) Fig. 5(b) and Table 5. It is mainly influenced by
lmax,1, maximum specific growth rate of biomass, contributing
between 54% and 71% (Table 5). It is followed by mdead which
becomes important at the later stages of the process (25%), when
fermentation metabolism dominates (Fig. 5(b)). Ks is also an impor-
tant parameter, as it explains between 12% and 15% of biomass
variance along the time horizon. Regarding interactions with other
parameters, lmax,1 provides also the most significant contribution,
between 35% and 54%. It is concluded that lmax,1 is the most influ-
ential parameter in the biomass-fermenter network and yield coef-
ficients (Yx/s,2, Yx/p,2) are negligible.

In the co-fermentation system (model (iii)), k is again the most
influential parameter, explaining more than 50% of biomass
concentration (X) variance throughout the time horizon; mmax,g

and Yp/s,g also contribute up to 30% of the variance (Fig. 5(c) and
Table 5). Interaction effects are negligible, as compared to first
order effects, which represent over the 90% uncertainty throughout
almost the entire time horizon.
3.4. Product concentration

In model (ii), bioethanol concentration profiles (P) were ana-
lyzed starting at t = 10 h of the bioreactor network, because only
in the second reactor bioethanol is produced. Bioethanol concentra-
tion for models (i) (Fig. 6(a)) and (ii) (Fig. 6(b)) is mainly influenced
by first order effects of parameters explaining between 97% and
100% and 68% and 100%, respectively. In model (i), Yx/p is the main
parameter followed by lmax and Ks. These three parameters are
influential through the entire bioethanol production period. The
maximum specific growth rate of biomass lmax is also influent
through its interactions, with Sint between 21% and 28% (Table 6).

In model (ii), Yx/p,2 is the main parameter throughout the entire
batch time and explains between 30% and 40% of total variance of
bioethanol concentration (Fig. 6(b) and Table 6). Also, Ks and lmax,2

are important, with decreasing influence at the end of the produc-
tion process, together explaining between 49% and 10% of first
order effects. In the case of Yx/s,2, its influence increases along the
time horizon. Additionally, lmax,1 and mdead have some influence
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at the beginning of the fermentation stage. Interaction effects
become important in the last part of bioethanol production pro-
cess, after time t = 10 h (Table 6), being lmax,1 and lmax,2 the most
influential parameters, which together have Sint between 0.50 and
0.80 in bioethanol concentration.

In model (iii), bioethanol concentration is represented by two
differential state variables, Pg (Fig. 6(c)) and Px (Fig. 6(d)), that cor-
respond to bioethanol produced from glucose and xylose concen-
trations, respectively. The model captures the high bioethanol
production rate during the initial phase of primarily glucose fer-
mentation, followed by the slower rate from xylose after glucose
is consumed. The simultaneous utilization of both substrates is
also predicted by the model. Up to glucose depletion (around
t = 1.5 h), the maximum specific rate of ethanol production from
glucose, mmax,g, is the most important parameter for first order
effects, explaining over 75% of total variance (Fig. 6(c) and Table 6);
and it is influential through its interactions (Sint = 0.13). When glu-
cose is depleted, both Yp/s,g and k together explain the 96% of the
bioethanol from glucose concentration (Pg) variance due to first
order effects. For bioethanol produced from xylose concentration
(Px), Si profile shows that first order effects explain around 70% of
the total variance for Px concentration being mmax,x the most influ-
ential parameter, explaining from 77% to 56% of ethanol from
xylose concentration variance along the time horizon. As it can
be seen in Fig. 6(d), Si concentration profiles for bioethanol pro-
duced from xylose are smoother than from glucose, which is in line
with slower xylose conversion.
4. Conclusions

Parametric dynamic GSA was carried out on bioreactor models
of increasing complexity for bioethanol production. Time profiles
for sensitivity indices related to each parameter, allowed the iden-
tification of model parameters that were more influential on model
variables. In model (i) lmax and Ks were the most influential param-
eters, followed by mdead and Yx/s. In model (ii), the parameter with
largest contribution to model variables uncertainty was lmax,1,
both through first order effects and interactions with other param-
eters. In model (iii), the most influential parameter over all model
variables was k, due to its first order effects and interactions.
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