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Summary

Seedling emergence is one of the most important phe-

nological processes that influence the success of weed

species. Therefore, predicting weed emergence timing

plays a critical role in scheduling weed management

measures. Important efforts have been made in the

attempt to develop models to predict seedling emer-

gence patterns for weed species under field conditions.

Empirical emergence models have been the most com-

mon tools used for this purpose. They are based mainly

on the use of temperature, soil moisture and light. In

this review, we present the more popular empirical

models, highlight some statistical and biological limita-

tions that could affect their predictive accuracy and,

finally, we present a new generation of modelling

approaches to tackle the problems of conventional

empirical models, focusing mainly on soft computing

techniques. We hope that this review will inspire weed

modellers and that it will serve as a basis for discussion

and as a frame of reference when we proceed to

advance the modelling of field weed emergence.
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Introduction

Seedling emergence is one of the most important phe-

nological processes that influences the success of weed

species (Forcella et al., 2000) and, therefore, predicting

weed emergence timing plays a critical role in schedul-

ing weed management measures (Ghersa, 2000). For

example, from the chemical control perspective, many

post-emergence herbicides will not control weeds that

have not yet emerged at the time of application. Con-

versely, if control is applied too late, early emerged

weeds may be too large for adequate control (Dalley

et al., 2004). Moreover, if weeds are controlled too

late, potential crop yield can be reduced. Organic (eco-

logical) farming practices using mechanical weed con-

trol techniques also would benefit from weed

emergence predictive tools to better define intervention

times (Oriade & Forcella, 1999; Forcella, 2012).

Since the early 1990s, important efforts have been

made in the attempt to develop models to predict seed-

ling emergence patterns for several weed species (e.g.

Dorado et al., 2009; Izquierdo et al., 2013; Zambrano-

Navea et al., 2013; Werle et al., 2014) as a fundamen-

tal step in the development of IWM strategies. These
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efforts vary from empirical weed emergence models to

more complex mechanistic models.

Although mechanistic or reductionist models can

help to provide a close description of the basic eco-

physiological processes underlying weed emergence (i.e.

seed dormancy, germination and pre-emergence shoot

growth) (Vleeshouwers & Kropff, 2000; Batlla et al.,

2004; Gardarin et al., 2012), they usually require a

large amount of often unavailable or difficult to gather

experimental information to be developed, calibrated

and finally validated (Grundy, 2003). Conversely,

empirical weather-based models aim to identify the

relation between soil environmental variables and

emergence data collected under field conditions with

the final objective to provide real-time information on

weed management programmes.

Empirical models simply describe the general shape

of the data set to which the researcher is trying to fit a

curve. They provide a simpler framework for practical

support decisions regarding optimal time for interven-

tion. The most common means of analysing such rela-

tionships is some form of regression, which typically is

nonlinear.

In this review, we have restricted our attention to

empirical models, as they are the most common models

used for modelling weed emergence under field condi-

tions. We identify some statistical and biological limita-

tions that could affect their predictive accuracy and,

finally, we present briefly a new generation of algorithm

modelling approaches to overcome their limitations,

focusing mainly on soft computing techniques.

Predicting weed emergence

Empirical emergence models are tools for predicting the

percentage of total weed emergence occurrence based

mainly on the use of temperature and soil moisture

(Forcella et al., 2000; Grundy, 2003) and, more recently,

light (Royo-Esnal et al., 2015). They are based on the

thermal- or hydrothermal-time concepts (Gummerson,

1986; Roman et al., 2000; Martinson et al., 2007), which

assume that seeds need to accumulate a certain amount

of growing degree days (d °C; GDD) before completing

germination and emergence. They link emergence with

GDD and can be classified, in a general way, as ther-

mal-time, hydrothermal-time and photohydrothermal-

time models. In thermal-time models (TT), daily mean

soil temperature (eventually air temperature) is accumu-

lated above a specific threshold during the cropping sea-

son until weed emergence is completed. Thermal-time

accumulation can start at various times depending upon

specific situations. These dates could be the last soil til-

lage event or burndown herbicide application, crop sow-

ing or an arbitrary date such as 1 January for summer-

growing weeds in cold climates of the Northern Hemi-

sphere, or winter-growing weeds in warm climates of the

Southern Hemisphere.

A more complex approach includes the integration of

soil water potential with soil temperature into

hydrothermal time (HTT). These models can be better

at predicting emergence than TT models (McGiffen

et al., 2008), as they include soil water availability,

which is an important factor for seed germination and

shoot growth. In these models, GDD are accumulated

when the daily average of soil water potential and soil

temperature are above specified threshold values below

which seedlings cannot emerge (Gummerson, 1986). If

experimental soil temperature and water potential data

are missing, the weed modeller can easily and accurately

estimate such variables using free access software (e.g.

soil temperature and moisture model (STM2); Spokas &

Forcella, 2009). In photohydrothermal-time models

(PhHTT), photoperiod is used to modify TT based upon

day length (Royo-Esnal et al., 2015). The rationale is

that with longer day lengths, soil is irradiated longer

and accumulates more heat than with shorter day

lengths, even when maximum and minimum air temper-

atures are identical between days with long and short

day lengths. The output for these models is percentage

of the total annual emergence of a given species.

A typical nonlinear regression model (NLR) for

weed emergence is like the following

Y ¼ f x;uð Þ þ e ð1Þ
where e � N(0, r2), Y is cumulative emergence, x is

cumulative GDD (TT, HTT or PhHTT), and φ is

specific function parameter. The term f(x, φ) is a non-

linear S-shaped function. S-shaped curves start at some

fixed point, then increase up to an inflection point,

after which the slope of the curve decreases and the

curve approaches the upper asymptote (Ratkowsky,

1983) (Fig. 1). Different parametric S-type models have

been commonly fitted to emergence data (e.g. Schutte

et al., 2008; Dorado et al., 2009) and, among these, the

Logistic, Weibull and Gompertz have been used most

widely in predicting weed emergence (Table S1).

Logistic:

Y ¼ k= 1þ exp �aðx� pÞð Þð Þ ð2Þ
Gompertz:

Y ¼ k exp �exp �aðx� pÞð Þð Þ ð3Þ

Weibull

Y ¼ k 1� exp � aðx� pÞð Þcð Þð Þ ð4Þ
In these expressions, Y and x as in eqn 1, a is the

slope parameter (emergence rate), p represents the

inflection point on the x axis, c is a shape factor that
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determines the skewness and kurtosis of the distribu-

tion, and k is the maximum emergence fraction of the

model.

Gompertz and Logistic are very similar functions.

Both are special cases of a generalised Logistic model

(Calvo Haro et al., 1994). The main differences

between the Gompertz and Logistic functions is that

the Gompertz function approaches the asymptote

much more gradually, which often matches observa-

tions of late-emerging seedlings. The Weibull model is

a more flexible function than the Logistic and Gom-

pertz. It can acquire the characteristics of other types

of distributions based on the value of the shape

parameter c (eqn 4). It typically has been used for

modelling seedling emergence patterns (Table S1).

Comparison among models has been performed

(e.g. Dorado et al., 2009). However, a clearly general

favoured model has not emerged. Even the same spe-

cies (e.g. Chenopodium album L. and Avena fatua L.)

fitted different models best under diverse crops (see

Table S1).

Model limitations

Statistical limitations

The aim of NLR models is to predict weed emergence

easily and provide a practical tool to make informed

management decisions. In this sense, NLR fitting pre-

sents several statistical limitations that could affect

their predictive accuracy (Onofri et al., 2010; Cao

et al., 2011). Some of these issues are briefly presented

below:

- Fitting NLR models requires good initial parame-

ter estimates. Poor initial estimates could lead to

wrong solutions or may yield no solutions at all

(Holmstr€om & Petersson, 2002). The algorithm used to

find the solutions of nonlinear equations may incor-

rectly pinpoint local minima and thus only find local

optima and, therefore, resulting parameter estimations

are biased.

- The parameters are estimated by NLR fitting rou-

tine using algorithms such Marquardt–Levenberg
(ML) or Gauss–Newton (GN) (Ratkowsky, 1983).

There is a wide range of statistical software to fit NLR

models, which likely is the cause of NLR’s popularity.

Choice of the appropriate fitting algorithm is very

important. For instance, ML is more robust than GN,

which means that in many cases, it finds a solution

even if it starts very far from the global minimum.

Unfortunately, the algorithms used in the fitting proce-

dures may not be selected adequately and users often

rely on their statistical software0s default options.
- Observations are censored. When we make peri-

odic seedling counts, the ‘new emergence’ events could

have occurred at any time in the interval between the

last and current counts. Neglecting the existence of

censored data may lead to biased results.

- Observed cumulative emergence values obtained

from consecutive monitoring are not statistically

independent, resulting in positive autocorrelation of

the residuals and, therefore, which leads to erroneous

predictions.

Biological/Ecological limitations

Because TT, HTT and PhHTT models are developed

based on environmental conditions, they might be used

to predict weed emergence across different years and

geographical regions. Nevertheless, validation results

show that empirical models may not be accurate if

environmental conditions vary significantly from the

original conditions in which the experiment was con-

ducted (e.g. Izquierdo et al., 2013). Many reasons can

explain these differences. For instance, different soil

management (e.g. cultivation operation) may reduce

the accuracy of the model by varying the vertical dis-

tribution of the seeds within the soil profile (Grundy

et al., 1996). As a result, seeds will have different tem-

perature, soil moisture and light conditions, and the

rate of dormancy release and germination will be dif-

ferent (Cao et al., 2011). In addition, deeply buried

seeds need more time to emergence than seeds near the

soil surface, thereby delaying and/or extending the

emergence flush. Also, model accuracy may be limited

by possible population differentiation at diverse geo-

graphical locations, as a result of different selection

pressures in different environmental conditions

(Dorado et al., 2009).

In addition, the use of microclimate indices (TT,

HTT and PhHTT) as single explanatory variables is

based on the following assumptions: (i) the seedling

emergence process is considered as ‘a whole’ without

proper discrimination between seed dormancy, germi-

nation and post-germination growth subprocesses and

(ii) population-based thermal (Tb = base temperature)
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Fig. 1 Typical S-type model fitted to emergence data.
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and hydric (Ψb = base water potential) parameters are

assumed independent of soil microclimatic variables

(soil water potential and soil temperature, respectively).

As suggested by Dahal and Bradford (1994) and Keb-

reab and Murdoch (1999), interactions between Tb and

Ψ, as well as between Ψb and T, are to be expected,

mainly when estimated parameters are not constant

within the population (Bradford, 2002).

Further developments

Recently, a new generation of modelling approaches is

beginning to tackle the statistical problems of conven-

tional NLR models. For instance, Davis et al. (2013)

used nonlinear mixed-effect models, which can reduce

the number of restrictive assumptions presented by

NLR models. Onofri et al. (2010, 2011, 2014) pre-

sented new developments that maintain the positive

features of parametric approaches, and Cao et al.

(2013) described a nonparametric approach as a very

flexible tool to model weed emergence.

Other new conceptual approaches come from the

algorithmic modelling culture (sensu Breiman, 2001).

Algorithmic modelling departs from the concept of an

‘ideal system’ described by complete-and-precise infor-

mation and heads towards a real, uncertain and com-

plex system where precise and deterministic models

hardly apply. As highlighted by Bonissone (1997) ‘as

we attempt to solve real-world problems we realize

that they are typically ill-defined systems, difficult to

model and with large-scale solution spaces’. In this

context, soft computing techniques (also called com-

putational intelligence) are capable of dealing with

complex systems because it does not require strict

mathematical definitions. Unlike conventional com-

puting (i.e. hard computing), soft computing is toler-

ant of uncertainty, imprecision and partial truth,

providing a better rapport with reality (Das et al.,

2013). Among soft computing techniques (SCTs), arti-

ficial neural networks (ANNs) (Chantre et al., 2012,

2014) and genetic algorithms (GAs) (Haj Seyed Hadi

& Gonzalez-Andujar, 2009; Blanco et al., 2014) have

been proposed as promising tools for weed emergence

prediction.

Artificial neural networks (ANNs)

Artificial neural networks are machine learning com-

puter techniques that provide a practical and flexible

modelling framework for multivariate nonlinear map-

ping (Lek & Gu�egan, 1999). Such models are inspired

by the operation of biological neural networks, specifi-

cally the animal brain. ANNs are generally represented

as a system of interconnected processing units (also

called nodes or neurons), which exchange signals (i.e.

information) between each other. The connections

have numeric weights that are adjusted during the

training process using a given learning algorithm.

Therefore, an ANN model is characterised by (i) its

architecture (i.e. the pattern of connections among

nodes), (ii) its method of determining the weights on

the connections (i.e., learning or training process) and

(iii) its activation functions (i.e. mathematical functions

that process input data). Briefly, a feed-forward neural

network (also called multilayer perceptron) consists of

input variables (xn), output variables (Yn) and a given

number of hidden layers containing n nodes (for fur-

ther details on ANN architectures the reader is

referred to Fausett (1994)).

A basic three-layer feed-forward ANN was imple-

mented successfully by Chantre et al. (2014) for Avena

fatua field emergence prediction in different temperate

regions of the United States, Canada and South

Australia (Fig. 2).

As observed in Fig. 2, each of the input nodes of the

model receives a given input variable (note that cumu-

lative thermal time and hydrotime are considered inde-

pendent variables) and broadcasts it to each one of the

hidden neurons. Hidden neurons compute their activa-

tion functions and broadcast their results (z1, z2, z3)

to the single output neuron that finally produces the

response of the network (Y). The output signal of each

hidden neuron (zj) is calculated as follows:

ϴT

z1
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z3

f

f

f

f
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y
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Fig. 2 A three-layer feed-forward ANN. The network has two

inputs thermal time (ϴT = (T - Tb)tg) and hydrotime (ϴH =
(w - wb)tg), three neurons in the hidden layer and a single output

variable (y = cumulative emergence). The term f(.) = the activa-

tion function of the network; vij = connection weights between

input- and hidden-layer neurons and wj = connection weights

between hidden- and output-layer neurons; v0j = bias on hidden

neuron j; w0 = output neuron bias (adapted from Chantre et al.,

2014).
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zj ¼ f
X
i¼1;2

vijxi þ v0j

 !
j ¼ 1; � � �; 3 ð5Þ

while the output of the network is given by:

zj ¼ f
X
j¼1;3

wjzi þ w0

 !
ð6Þ

In Eqns (5) and (6), f(.) is the activation function of

the network, xi is the corresponding input variable, vij
is the weight of the connection between the input and

hidden neurons, and v0j is the bias of hidden neuron j.

Similarly, wj represents the weight of the connection

between hidden and output neurons, and w0 is the bias

of the output neuron.

From a statistical point of view, ANNs have many

positive features that should be highlighted. They (i)

effectively implement a wide range of nonlinear map-

ping problems due to their excellent potential for data

interpolation, (ii) admit multivariate input/output map-

ping, (iii) have no requirements for a given a priori

shape fitting function (i.e. ANNs can easily generate

an outcome in the form of a polynomial function of

degree n) and (iv) for certain cases involving complex

emergence patterns, ANNs require fewer adjustable

parameters than conventional multivariate techniques

to obtain a similar parsimony.

Among the negative aspects of ANNs implementa-

tion, we might cite the following: First, they have very

low extrapolation capacity. Thus to adequately opti-

mise a given objective function (e.g. error minimisa-

tion), a wide range of observed scenarios is needed to

exploit ANN interpolation capability. Second, ANNs

employ a ‘black-box’ model approach with limited

explanatory power from a mechanistic biological per-

spective. Third, trial and error is usually required to

identify the network that renders the largest parsimony.

Although ANNs have been used intensively to solve

highly complex nonlinear mapping problems in agro-

nomic and biological systems (Saberali et al., 2007;

Fortin et al., 2010; Dai et al., 2011), their application

for modelling weed emergence remains largely unex-

plored. Recent studies performed by Chantre et al.

(2012, 2014) have shown that ANNs are able to out-

perform conventional NLR models. As discussed by

Chantre et al. (2014), the adoption of two independent

input variables (i.e. thermal time and hydrotime)

instead of a single explanatory variable (i.e. hydrother-

mal time) weighted differently within the neural net-

work which produced better results. This possibly was

due to a more intimate discrimination of the germina-

tion and post-germination growth processes. In other

words, the use of two (or more) independent variables

instead of a single aggregated variable enhances the

statistical power of ANNs compared with NLR. Thus,

additional variables such as (i) seed burial depth (til-

lage system), (ii) dispersal or seeding date, (iii) pho-

toperiod or (iv) seedbank dormancy level might be

included. However, overparameterisation may occur

by increasing the number of input variables, thus gen-

erating less parsimonious models.

Genetic Algorithms (GAs)

Genetic algorithms are stochastic optimisation tech-

niques, based on the evolution of sets of potential solu-

tions (also called individuals or phenotypes) following

natural selection rules (i.e. selection, crossover, muta-

tion). Each individual has a set of specific properties

(chromosomes in a biological sense), which can suffer

crossover and mutation. Basically, from an initial pop-

ulation of randomly generated individuals, the GA

algorithm iteratively performs a stochastic search in

which successive generations (i.e. populations) are

obtained. The fitness (i.e. the value of the objective

function in the optimisation problem) of every individ-

ual in successive populations is evaluated, and the evo-

lutionary process proceeds until the best fitness value

(i.e. solution) is obtained. These techniques have

demonstrated good performance in nonlinear uncon-

strained models (Michalewicz, 1996; Rangaiah, 2010;

Blanco et al., 2014). In fact, GAs show a good balance

between exploration and exploitation of the search

space, increasing the probability of convergence to glo-

bal optima (i.e. expected solutions) instead of reaching

local minima (Blanco et al., 2014). In addition,

stochastic techniques only use objective function values

(e.g. by minimising an error function) in the calcula-

tion compared with deterministic algorithms, which

also require calculation of derivatives). This feature

facilitates their computational implementation and

robustness of the search, due to a higher convergence

speed. Either GA or ANN approaches can be imple-

mented with average computing time of 15–20 min

(personal observation).

For more information on GAs, the interested reader

is referred to Michalewicz (1996). Based on the men-

tioned strengths, Haj Seyed Hadi and Gonzalez-Andu-

jar (2009) suggested that GAs are more appropriate to

deal with ill-conditioned optimisation problems than the

deterministic optimisation algorithms usually used in

the NLR approach. The authors compared GAs with

NLR for fitting emergence data of six weed species and

found that GAs often provided a better fit than NLR.

Recently, Blanco et al. (2014) developed an emer-

gence model for Avena fatua based on the disaggrega-

tion of seed dormancy release (i.e. after-ripening

process) and germination/pre-emergence growth
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processes. Logistic functions (eqn 2) were adopted to

model separately (i) seedbank dormancy release as a

function of after-ripening thermal-time accumulation

and (ii) germination/pre-emergence growth as a func-

tion of hydrothermal-time accumulation (Fig. 3A). In

such work, a GA optimisation approach was imple-

mented for parameter estimation. The logic of the

model illustrated in Fig. 3A is that on each calendar

day, a specific seedbank fraction loses its dormant con-

dition due to after-ripening thermal-time accumulation

(hAT). The accumulated dormancy release function

(AcDr) is obtained by integrating such fractions over

time following a Logistic distribution (Fig. 3A). There-

after, each specific non-dormant fraction undergoes the

germination/post-germination process by accumulating

hydrothermal time (hHTG). Finally, accumulated

emergence (AcG) is obtained by integrating each day

the germinated/post-germinated fractions correspond-

ing to the different portions of the seedbank that lost

dormancy during the previous days.

The scheme of the model (i.e. Genetic Algorithm

Block) is shown in Fig. 3B. Model input consists of

the soil microclimatic data (daily mean soil tempera-

ture and soil water potential). Thereafter, hAT and

hHTG (cumulative time variables) constitute the input

of the dormancy release (AcDr) and accumulated

emergence (AcG) Logistic functions, respectively. In

the present example, the solutions are represented by

individuals, each one constituted by the parameters of

the Logistic functions = adr, ag, pdr, pg) (see Fig. 3).

The GA algorithm performs selection, crossover and

mutation operations (Forrest, 1993) on such

Fig. 3 Genetic algorithm based model for Avena fatua field emergence prediction (adapted from Blanco et al., 2014). (A) Schematic

representation of the model showing that accumulated dormancy release (dashed line) is obtained by integrating daily dormancy release

(bars). Dotted lines represent accumulated germination/pre-emergence growth of each non-dormant fraction. Note that as time increases,

the dotted line reaches the height of the bar, meaning that each non-dormant seedbank fraction germinates during the following days

according to a specific distribution. Accumulated emergence (solid line) is obtained by integrating each day the germinated/post-germi-

nated fraction corresponding to each non-dormant seedbank fraction. (B) Genetic algorithm based parameter estimation scheme.

© 2016 European Weed Research Society

6 J L Gonzalez-Andujar et al.



individuals (i.e. optimisation variables) from a ran-

domly selected initial population along a pre-specified

number of generations or until some convergence crite-

rion is met. The main output of the model is the accu-

mulated emergence function, which is obtained by

integrating the daily germinated fraction of A. fatua

corresponding to each non-dormant seedbank fraction

which, in turn, is finally represented by the cumulative

dormancy release curve (Fig 3A).

As discussed by Blanco et al. (2014), the GA opti-

misation approach provided enough flexibility to clo-

sely represent complex A. fatua emergence patterns in

the semi-arid region of Argentina. In this case, the pos-

sibility to quantify separately dormancy release

requirements (after-ripening thermal-time accumula-

tion) from hydrothermal-time needs for germination

and emergence clearly outperformed the prediction

accuracy of previously developed NLR and ANN

models. Although the model proposed by Blanco et al.

(2014) is rather simple in terms of the equations used

(Logistics) and parameters interpretation, a negative

aspect of such a modelling approach is the fact that it

requires moderate programming skills and sufficient

level of expertise to develop its heuristics.

Conclusion

Models based on SCTs can provide enough flexibility

to represent weed seedling emergence patterns better

than NLR models and, therefore, offer more reliable

results. An important feature of these new modelling

alternatives is the lack of substantial conceptual draw-

backs observed in NLR models (Cao et al., 2011), such

as the requirement for initial parameter estimates to

start the optimisation process that conditions the final

solution. Failure to provide an accurate prediction has

practical consequences for weed emergence models.

Economic losses may occur if control measures do not

coincide with the seasonal dynamics of the weed popu-

lations, not only in terms of crop/weed competition,

but harvest efficiencies and production of seeds by

escaped weeds as well.

From a practical point of view, the implementation

of SCT models for use by farmers and technicians can

be performed effectively. A good example of a success-

ful implementation is the AVEFA-Bordenave model

developed by Blanco et al. (2014), which was described

previously. Output from this model can accessed

freely on line at http://www.meteobahia.com.ar/pro-

ductoavefa.php. Extension of this system to multiple

sites within a region as well as multiple regions can be

envisioned easily. The implementation of these tech-

niques can also be seen as submodels integrated within

operational planning of herbicide-based (Lodovichi

et al., 2013) or strategic IWM programmes (Beltran

et al., 2012).

Despite their advantages, some caveats of ANNs

and GAs should be mentioned (i) to obtain reliable

model predictions, a good pool of input data (i.e. ser-

ies of cumulative field emergence data with their corre-

sponding soil microclimatic data) are required. These

should be representative of a wide range of observed

field scenarios to take advantage of the maximum

interpolation capacity of both ANNs and GAs during

the training process.

(ii) Although SCTs are relatively simple to develop

and implement, they require a minimum degree of

familiarity with specific programming platforms. For

example, the MatLab environment (MathWorks, Inc.,

Natick, Massachusetts, United States) provides well-

developed toolboxes for modelling ANNs and imple-

menting GA optimisation.

Nevertheless, SCT models are a valuable alternative

to the classical parametric nonlinear regression models

to describe and predict weed emergence. However, fur-

ther research is required to establish more generally

the usefulness of these approaches.
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Supporting Information

Additional Supporting Information may be found in

the online version of this article:

Table S1 Empirical and soft computing based mod-

els for weed emergence published from 1996 to 2015.

This list does not pretend to be exhaustive, but only

gives a sample of the multitude of empirical weed

emergence models developed in the last 20 years.
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