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ABSTRACT 

 

The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into 

mediators that regulate signal transduction.  The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-

9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary 

to nitrite disproportionation under the acidic conditions of digestion.  Broad anti-inflammatory and tissue-protective 

responses are mediated by nitro-fatty acids.  It is now shown that electrophilic fatty acid nitroalkenes are present in the 

urine of healthy human volunteers (9.9 + 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl 

β-oxidation metabolites. High resolution mass determinations and co-elution with isotopically-labeled metabolites support 

renal excretion of cysteine-nitroalkene conjugates.  These products of Michael addition are in equilibrium with the free 

nitroalkene pool in urine and are displaced by thiol reaction with HgCl2. This reaction increases the level of free 

nitroalkene fraction >10-fold and displays a KD of 7.5x10-6 M. In aggregate, the data indicates that formation of Michael 

adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is 

critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can 

constitute a sensitive non-invasive index of metabolic and inflammatory status. 
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INTRODUCTION  

Nitro-fatty acid derivatives are formed during both gastric acidification and by the array of oxidative inflammatory 

reactions that nitric oxide (
.
NO) and nitrite (NO2

-) undergo to induce nitrogen dioxide (
.
NO2)-dependent biomolecule 

nitration (1). Nitroalkene substituents are electrophilic and promote Michael addition of fatty acids with biological 

nucleophiles such as cysteine and histidine. The extent, rate and reversibility of these reactions will be dictated both by the 

concentration and reactivity of individual nucleophiles. In this regard, protein structure and compartmentalization affect 

the reactivity of individual nucleophilic centers and will define the molecular targets of electrophilic fatty acids. 

While enzymatically-oxygenated unsaturated fatty acids typically transduce anti-inflammatory actions via specific g 

protein-coupled receptor (GPCR) ligand activity (2, 3), transcriptional responses to electrophilic fatty acids reveal that a 

broader array of signaling events are instigated (4, 5). The basis for this pleiotropy resides in the facile Michael addition 

of electrophilic fatty acid derivatives with nucleophilic centers of proteins that regulate structure and function (6). 

Functionally-significant protein targets of electrophilic fatty acids include the transcriptional regulatory protein complex 

nuclear factor kappa B (NFkB), the Kelch-like ECH-associated protein 1 (Keap1) regulator of nuclear factor (erythroid-

derived-2)-like 2 (Nrf2), heat shock factor-1 (HSF-1), peroxisome proliferator-activator receptor-γ (PPARγ) and histone 

deacetylases (HDAC) (7). These transcriptional regulatory proteins contribute to the control the expression of hundreds of 

genes that include cytokines, antioxidant enzymes, heat shock response proteins and enzymes of intermediary metabolism 

(4, 5, 8-14).  

Conjugated 9,11-linoleic acid appears to be the preferred endogenous substrate for metabolic and inflammatory-

mediated fatty acid nitration. This is attributed to its clinical abundance and the high reactivity to addition reactions of the 

external flanking carbons of conjugated dienes, as opposed to monoalkenes or bis-allylic dienes (1). Once formed, 

electrophilic nitro fatty acids (NO2-FA) can undergo addition to glutathione (GSH), enzymatic reduction to a non-

electrophilic nitroalkene and -oxidation (15, 16). GSH nitroalkylation products are exported from cells as GSH 

conjugates by multidrug resistant proteins (MRP)(15). In turn, GSH-NO2-FA conjugates may also be metabolized by 

peptidases to cysteinylglycine and cysteine conjugates, N-acetylated and excreted via renal or biliary mechanisms. 

Herein, we identify the two principal nitro derivatives of conjugated linoleic acid, 9-nitro-octadeca-9,11-dienoic acid 

and 12-nitro-octadeca-9,11-dienoic acid, in the urine of healthy humans. Electrophilic 16-, 14- and 12-carbon -oxidation 

metabolites and their corresponding cysteinyl-conjugates were also detected. Structural characterization and quantification 

via high resolution mass spectrometry was guided by the comparison of endogenous metabolites to both synthetic 9- and 

12-15NO2-CLA, and the products of 15NO2-CLA metabolism by isolated and perfused rodent heart. Notably, the detectable 

concentrations of fatty acid nitroalkenes and corresponding cysteine conjugates in human urine were strongly influenced 

by a chemical equilibrium induced by thiol availability and pH. The formation, protein adduction, metabolism and 

excretion of electrophilic fatty acids constitute a metabolic network capable of regulating steady-state levels and activity 

of these molecules under basal non-pathological conditions. 
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Inasmuch as fatty acid nitration is influenced by the dietary, metabolic and inflammatory status of organisms, the 

present data also provides an approach and perspective for non-invasively detecting the magnitude of redox reactions 

stemming from metabolism and products of partially reduced oxygen species, 
.
NO and NO2

-. 

EXPERIMENTAL PROCEDURES 

Materials - (9Z,11E)-octadeca-9,11-dienoic (9,11-CLA,  referred as conjugated linoleic acid, CLA) was purchased from 

Nu-Check Prep (Elysian, MN).  [13C18] (9Z,12Z)-octadeca-9,12-dienoic acid and [13C18] (9Z)-octadeca-9-enoic acid (> 

98% isotopic purity) and Na [15N]O2 were purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA). NO2-

OA, NO2-LA, NO2-[
13C18]LA, NO2-[

13C18]OA were synthesized as previously (17-19). NO2-CLA and 15NO2-CLA were 

synthesized by acidic nitration of (9Z,11E)-CLA with either [14N]nitrite or [15N]nitrite as previously (1). Specific 9-NO2-

CLA and 12-NO2-CLA were synthesized de novo and their chemical characterization will be separately reported. NaNO2 

and β-mercaptoethanol (BME) were obtained from Sigma/Aldrich (St Louis, MO).  Solvents used for synthetic reactions 

were of HPLC grade or better from Fisher Scientific (Fairlawn, NJ). Solvents used for extractions and mass spectrometric 

analyses were from Burdick and Jackson (Muskegon, MI). Solid phase extraction columns (SPE, C-18 reverse phase; 500 

mg, 6 ml capacity) were purchased from Thermo Scientific. 

Chromatography - Fatty acid nitration products in lipid extracts were analyzed by HPLC-ESI MS/MS using gradient 

solvent systems consisting of H2O containing 0.1% acetic acid (solvent A) and acetonitrile containing 0.1% acetic acid 

(solvent B). Lipid extracts were resolved for quantitation using a reverse phase HPLC column (2 x 20 mm C18 Mercury 

column; Phenomenex) at a 0.75 ml/min flow rate. Samples were applied to the column at 11% B (1 min) and eluted with a 

linear increase in solvent B (11%-100% B in 9 min). Characterization analysis to identify structural isomers and 

metabolites was performed using an analytical C18 Luna column (2 x 150 mm, 3 µm particle size, Phenomenex) at a 0.25 

ml/min flow rate.  Samples were resolved using the following gradient program: 0-1 min, 45% solvent B; 1-45 min, from 

45 to 80% solvent B; 45-46 min, from 80 to 100% solvent B. BME adduct analysis was performed on an analytical C18 

Luna column (2 x 100 mm, 5 µm particle size, Phenomenex) at a 0.75 ml/min flow rate.  Samples were resolved using the 

following gradient program:  0.5-3 min, from 5-35% solvent B; 3-15 min from 35-100% solvent B.  

Mass spectrometry - Analytes of interest were characterized both in CID and HCD mode using an LTQ Velos Orbitrap 

(Velos Orbitrap, ThermoScientific) equipped with a HESI II electrospray source. The following parameters were used: 

source temperature 400 ºC, capillary temperature 360 ºC, sheath gas flow 30, auxiliary gas flow 15, sweep gas flow 2, 

source voltage -3.3 kV, S-lens RF level 44 (%). The instrument FT-mode was calibrated using the manufacturers 

recommended calibration solution with the addition of malic acid as a low m/z calibration point in the negative ion mode. 

Analyte quantification was performed in multiple reaction monitoring mode (MRM) using an AB5000 or a API4000 

Qtrap triple quadrupole mass spectrometer (Applied Biosystems; San Jose, CA) equipped with an electrospray ionization 

source. Internal standard curves using synthetic NO2-CLA and 15NO2-CLA were prepared using human urine as matrix to 

quantify endogenous nitrated fatty acids.  Precursor ion scans were performed to identify any other eluting lipids losing a 

nitro group (m/z 46) upon CID.   
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Lipid extraction from urine - Urine samples (first void of the day) were collected from healthy human volunteers 

(University of Pittsburgh IRB PRO07110032 or 0905750B-7) and either stored at -80oC (<1 month) or extracted 

immediately, with no significant differences in either lipid profile or concentrations observed under these conditions. For 

experiments studying the reversibility of nitroalkene-cysteine reactions, urine was incubated with 10 mM HgCl2 for 30 

min at 37oC before lipid extraction. Urinary fatty acids and Michael addition products were extracted using C-18 SPE 

columns. Columns were conditioned with 100% methanol (MeOH), followed by 2 column volumes of 5% MeOH.  For 

clinical samples, internal standards NO2-[
13C18]LA, NO2[

13C18]-OA and or 15NO2-CLA were added to 1-3 ml urine 

containing 5% MeOH (1.8 pmol/ml final concentration); vortexed and equilibrated at 4 ºC for 5 min prior to extraction. 

Samples were loaded into the SPE column and washed with 2 column volumes of 5% MeOH and the column was dried 

under vacuum for 30 min. Lipids were eluted with 3 ml MeOH, solvent was evaporated, and samples were dissolved in 

MeOH for analysis by HPLC-electrospray ionization mass spectrometry (ESI MS/MS).  Nitro-fatty acid levels were 

normalized to urine creatinine concentrations that were determined using a colorimetric assay measuring absorbance at 

535 nm after dilution in NaOH and reaction with picric acid (20).   

Generation of cysteine and mercapturic acid conjugate standards - Synthetic standards were generated by the reaction of 

200 mM N-acetyl-cysteine with 100 µM NO2-CLA or 100 µM 15NO2-CLA in 50 mM phosphate buffer pH 8 at 37 °C for 

3 h. The lipid conjugates were loaded on a C-18 SPE column pre equilibrated with 5% MeOH and then eluted with 

MeOH. Mass spectrometric structural analysis of cysteinyl- and N-acetyl-cysteinyl-conjugates (mercapturates) was 

performed in both negative and positive ion mode using accurate mass determinations and respective MRMs.  

Generation of NO2-CLA metabolites by Langendorff-perfused hearts – Hearts from male Sprague-Dawley rats (Harlan 

lab, Indianapolis, IN, USA) were isolated and perfused (at 8-10 ml/min) in a Langendorff system as previously (21). 

Hearts were stabilized for 30 min and then 15NO2-CLA (10 mM in methanol) was introduced to the perfusate at 10 l/min. 

NO2-CLA was dissolved in methanol because of poor solubility in aqueous milieu. The use of albumin to stabilize and 

solubilize NO2-CLA in buffer was avoided because of alternative reactions with protein cysteine and histidine residues.   

The effluent was collected and metabolites recovered after solid phase extraction. Labeled cysteinyl conjugates were 

synthesized by reacting fractions containing 15NO2-CLA metabolites with cysteine (100 µM) in 50 mM KH2PO4 buffer 

pH 8 for 3 h. All animals were housed in accordance with the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996) and all animal studies were 

approved by the University of Pittsburgh Institutional Animal Care and Use Committee (approval 12070398). 

Determination of equilibrium constants by UV-visible spectral deconvolution – The reaction of cysteine with NO2-OA in 

20 mM sodium phosphate buffer at pH 7.4, was monitored by UV-visible spectroscopy. Briefly 50-85 M NO2-OA was 

reacted with 0.5-10-fold excess cysteine at 25oC until spectral changes were no longer observed. Resulting concentrations 

of free NO2-OA, free cysteine and Cys-NO2-OA adducts were determined by spectral deconvolution analysis (22). 

Equilibrium constants were obtained by non-linear regression analysis adjusting to a one-site specific binding model using 

GraphPad Prism 5.0. Reference spectra for cysteine, NO2-OA and Cys-NO2-OA were acquired between 220 and 400 nm 

and extinction coefficients were obtained at each wavelength. Cys-NO2-OA was generated by reacting 35 M NO2-OA 

with excess cysteine (3mM) at pH 7.4 and subtracting the contribution of the thiolate absorbance to the final spectrum. 
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RESULTS 

Conjugated linoleic acid nitration products in human urine. Free and protein-adducted NO2-CLA regioisomers were 

detected in human plasma generated by inflammatory, metabolic and proton-catalyzed reactions in the gastric 

compartment (1). This motivated the analysis of NO2-CLA regioisomers and their metabolites in human urine as a non-

invasive approach for determining the endogenous production and reactions of these species. LC-ESI-MS/MS analysis of 

urine using MRM 324.2/46 (m/z corresponding to NO2-CLA and the formation of the NO2
- anion upon CID) presented 

two well-defined chromatographic peaks that co-eluted with synthetic 9-15NO2-CLA and 12-15NO2-CLA (Fig 1a-c). These 

molecular ions displayed retention times that were intermediate between NO2-[
13C18]LA (bis-allylic LA, shorter retention 

time) and NO2-[
13C18]OA (longer retention time) (Fig 1d,e).   

Quantification of conjugated diene-containing fatty acid nitration products in human urine.  Levels of NO2-CLA in 

human urine were measured in the MRM scan mode using 15NO2-CLA as an internal standard to correct for losses due to 

extraction. The content of NO2-CLA in urine was 9.97 +/- 3.98 pmol/mg creatinine, with up to 100-fold differences in 

basal NO2-CLA concentrations in different healthy volunteers (0.5 to 42.6 pmol/mg creatinine, Suppl. Table 1).  

Electrophilic-oxidation products of NO2-CLA in urine.  Mitochondrial -oxidation of synthetic NO2-OA occurs in mice 

following intravenous injection (16). In order to evaluate if endogenous NO2-CLA -oxidation metabolites could be 

detected in human urine, a sequential scan for precursor ions of 46 (NO2
-) with mass losses of 28 amu (C2H4) from the 

parent NO2-CLA was performed. Chromatographic peaks corresponding to dinor-NO2-CLA (m/z 296.2, 1 round of -

oxidation) and tetranor-NO2-CLA (m/z 268.2, 2 rounds of -oxidation) ion precursors were detected (Fig 2a).  

Fatty acid nitration yields electrophilic nitroalkene derivatives that undergo conjugate addition with low and high 

molecular weight thiols. To test the electrophilic nature of these newly-identified urinary fatty acid nitration products, 500 

mM of -mercaptoethanol (BME) was added to urine samples for 2 h and products were determined by LC-MS/MS after 

extraction (Fig 2). After BME addition, all species previously identified as nitrated fatty acids were transformed into the 

corresponding BME addition products and no longer detected at their original retention times (Fig 2b, structures shown in 

2d). Peaks co-eluting with BME adducts (Fig. 2b-c) that displayed the m/z of non-adducted species (Fig. 2c) provided 

additional diagnostic insight. These peaks reflected in-source fragmentation products due to the neutral loss of BME ( 

elimination reaction) during adduct ionization (23).  This indicated the electrophilic nitroalkene configuration of both 

urinary NO2-CLA and its -oxidation products, with no other additional hydroxy-, oxo- or non-electrophilic nitroalkane-

containing derivatives of NO2-CLA detected in urine (data not shown).  

High resolution mass spectrometry comparison of NO2-CLA -oxidation products in urine and NO2-CLA metabolites 

formed by isolated and perfused rat hearts. The addition of nitrated fatty acids to the perfusate of Langendorff rat heart 

preparations yielded corresponding -oxidation derivatives in the effluent. Thus, 15NO2-CLA was infused into isolated rat 

hearts in order to generate isotopically-labeled standards for characterizing putative NO2-CLA products in human urine. 

Accurate mass determinations at the 2 ppm level confirmed the atomic composition of the different NO2-CLA metabolites 

proposed for both human urine and cardiac 15NO2-CLA metabolic products (Fig 3, Table 1). This high resolution MS/MS 

analysis also gave fragmentations that defined these products as 12-NO2-hexadeca-9,11-dienoic acid, 9-NO2-hexadeca-
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9,11-dienoic acid, (Fig 3a, Suppl Fig 1a) 10-NO2-hexadeca-7,9-dienoic acid, 7-NO2-hexadeca-7,9-dienoic acid (dinor 

NO2-CLAs) (Fig 3b, Suppl Fig 1b), 8-NO2-hexadeca-5,7-dienoic acid and 5-NO2-hexadeca-5,7-dienoic acid (tetranor 

NO2-CLAs) c) (Fig 3c, Suppl Fig 1c), for both human urine and rodent heart metabolites (See Table 1 for product ion 

identification). The chromatographic profile of these nitrated fatty acid species correlated between the two sources, 

supporting the notion that NO2-CLA undergoes -oxidation and that these products are present in the urine of healthy 

humans. Whereas the retention times for the different dinor-NO2-CLA isomers were identical, there were differences in 

the relative ion intensities of particular metabolites generated by cardiac perfusion and present in urine (Fig 3b, peaks 1 

and 2). The urine of different subjects presented a strong correlation (R>0.94) between the levels of NO2-CLA and its -

oxidation products (dinor- and tetranor-NO2-CLA) (Fig. 4), supporting that these 16- and 14- carbon nitroalkenes all 

shared NO2-CLA as the precursor. 

Detection and characterization of cysteinyl-nitro-fatty acid conjugates in urine. Sequential addition to GSH, export to the 

extracellular space via MRPs and peptidase-mediated cleavage is a potential in vivo route for the metabolic disposition of 

nitro-fatty acids (15). Cysteine conjugates of NO2-CLA were detected in human urine, affirmed by co-elution with the 

synthetic internal standard Cys-15NO2-CLA (Fig 5a). Positive ion mode analysis of 15N-labeled synthetic and endogenous 

Cys-NO2-CLA (Fig 5c) revealed a characteristic primary neutral loss of HNO2, with secondary losses of CO2, H2O and 

fragmentation of the amino acid side chain (Fig 5b, Suppl Fig 2a, Suppl. Scheme 1). This was further confirmed by 

fragmentation of both endogenous and synthetic Cys-NO2-CLA following the neutral loss of NO2-CLA in the negative ion 

mode (Suppl Fig 2b). 

The presence of 16 and 14 carbon electrophilic NO2-CLA metabolites in urine suggested that these derivatives might also 

form cysteine conjugates. The presence of Cys-dinor-NO2-CLA, Cys-tetranor-NO2-CLA and Cys-hexanor-NO2-CLA in 

human urine was evaluated by MS/MS in the negative and positive ion mode. In the negative ion mode, the fragmentation 

of these addition products is characterized by neutral losses of the nitrated fatty acid and cysteine moiety, albeit the latter 

is less prevalent. Selective reaction monitoring of the neutral loss of the nitroalkene precursor led to the detection of 

addition products containing 16, 14 and 12 carbon long nitro-fatty acids (Suppl Fig 2b). In order to confirm the identity 

of these metabolites, cysteine-conjugated standards were prepared from 15NO2-CLA -oxidation metabolites obtained 

from isolated and perfused rat hearts. The retention times and peak patterns obtained from heart-derived metabolites 

closely matched those obtained from urine samples (Fig 5a). The peak multiplicity observed both in rodent heart and 

human urine samples likely results from the different isomeric configurations that nitroalkenes can adopt upon successive 

cycles of cysteine addition and release. Finally, the atomic composition of all metabolites was confirmed by high 

resolution mass analysis (Suppl Fig 2c). Importantly, fragmentation analysis of cysteine adducts yielded the canonical 

neutral loss of HNO2, a hallmark for nitro-containing fatty acids including nitroalkylated peptides, bisallylic and mono-

unsaturated nitroalkenes and NO2-CLA (Fig 5b inset)(14, 17, 24).  

The presence of mercapturate-NO2-CLA conjugates in human urine was evaluated by producing a synthetic standard from 

the reaction of N-acetyl-cysteine with 15NO2-CLA. Mass spectrometric analysis indicated that these compounds fragment 

in the negative ion mode with neutral losses of the conjugated fatty acid. Single reaction monitoring of urine revealed that 

these species were detectable at trace levels not warranting or allowing further characterization. 
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Reversibility of Michael addition by NO2-CLA. LC-MS analysis of cysteine adducts of NO2-CLA in human urine indicates 

that these metabolites are present as a mixture of isomers, suggesting that cysteine addition to nitroalkenes is a reversible 

process under physiological conditions. To test this hypothesis, the stability of Cys-15NO2-CLA was analyzed in a human 

urine matrix and in methanol. When Cys-15NO2-CLA was added to methanol at 37 °C for 2 h there was no formation of 

free [15N]O2-CLA, in agreement with limited reversibility of Michael additions in organic solvents.  In contrast, when 

Cys-15NO2-CLA was added to freshly-obtained urine at 37°C, a chemical equilibrium was established and non-alkylated 
15NO2-CLA was evident (Fig 6a-b). Expanding on this insight, human urine was treated with the thiol-reactive Lewis acid 

HgCl2. The reaction of HgCl2 (10 mM) for 30 min at 37 °C promoted the release of free nitroalkenes, concomitant with 

the complete loss of the cysteine-conjugates. Similar results were obtained with different chain length nitro-fatty acid 

metabolites (Fig 7).  

Equilibrium constant of the NO2-FA reaction with cysteine. To better define the reversibility of thiol addition to reactive 

nitroalkenes, the equilibrium constant for the reaction between cysteine and NO2-OA was determined. Nitro-oleic acid is a 

prototypic nitroalkene for which reaction rates with GSH have been characterized (25) . The formation of Cys-NO2-OA 

was monitored by UV-visible spectroscopy and analyzed by non-linear deconvolution (Fig 8a). NO2-OA was incubated 

with increasing concentrations of cysteine thiolate and the relative concentrations of free and adducted nitroalkene were 

determined by spectral deconvolution (Fig 8b). Finally, a dissociation constant (KD = 7.5 x 10-6 M) was derived by fitting 

fractional lipid binding values obtained at increasing concentration of added thiolate to a one-site hyperbolic binding 

model (Fig 8c). 
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DISCUSSION 

The initiation, propagation and resolution phases of inflammation are regulated in part by enzymatically- and non-

enymatically-derived fatty acid oxidation products. These include isoprostanes (26), neuroprostanes (27), prostaglandins, 

and both oxo- and hydroxyl- derivatives of arachidonic, eicosapentaenoic and docosahexaenoic acids (28). The detection 

of several of these mediators in urine and plasma has enabled their use as clinically-significant and validated markers of 

disease progression, such as the isoprostane products of oxidative and inflammatory reactions (29, 30). This motivates the 

further identification and characterization of redox-derived lipid metabolites in urine that might shed light on the 

physiological and pathophysiological reactions of various oxides of nitrogen. Fatty acid nitroalkene derivatives are 

produced via reactions associated with inflammation, metabolic acidosis, and gastric acidification.  Free and esterified 

nitro-fatty acid derivatives have been detected in human and animal plasma, low density lipoproteins, inflammatory 

mediator-activated macrophages and rodent heart and isolated cardiac mitochondria after ischemia and reperfusion (14, 

17, 31-33).   

NO2-CLA isomers are endogenously formed by nitration of the flanking conjugated diene carbons (C9 and C12) of 

(9Z,11E)-octadeca-9,12-dienoic acid. (1).  These nitration products are present in human plasma and herein we report 

their presence is reported in healthy human urine. In addition to parent nitroalkene derivatives, these species are 

accompanied by their -oxidation products and corresponding cysteine adducts. Notably, the cysteine Michael addition 

products of NO2-CLA and related metabolic products exist in equilibrium with the free nitroalkene derivatives (Figs. 7 

and 8).  

The detection and quantification of fatty acid nitroalkenes is complicated by their facile Michael addition reactions and 

metabolism (4, 24). Consequently, the concentrations of fatty acid nitration products in tissues and fluids have been the 

subject of controversy (34). Initial concentrations of free and esterified NO2-FA were initially reported to be in the high 

nM range (14). Subsequent studies support that 9-NO2-OA and 10-NO2-OA are present in the free form in plasma at 

concentrations of  approximately 1 nM (33). In line with this, 9-NO2-CLA and 12-NO2-CLA are the most abundant 

linoleic acid-derived nitrated species that have been detected at present, with plasma concentrations of the free fatty acid 

adduct also approaching 1 nM in healthy human donors  (1).  

The presence of NO2-CLA and its derivatives in human urine samples was confirmed by comparison with corresponding 
15N-labeled standards, as well as by high resolution MS analysis. While the levels of NO2-CLA, dinor-NO2-CLA and 

tetranor-NO2-CLA were similar in human urine (Fig 4), the concentration of hexanor-NO2-CLA was considerably lower. 

This contrasts with the metabolite profile obtained from NO2-CLA-perfused rat hearts, where the levels of dinor-NO2-

CLA were lower than those of NO2-CLA and tetranor-NO2-CLA. This indicates either species-specific differences in 

metabolism or an intrinsic inability of dinor-NO2-CLA to escape the -oxidation cycle in heart tissue. Thus, the 

endogenous formation of dinor-NO2-CLA most likely stems from non-cardiac tissues. Moreover, the isomeric 

composition of dinor-NO2-CLA from rat heart is different from that observed in human urine. The multiplicity of peaks 

detected in cardiac venous outflow may be a result of conjugated diene stereoisomerization after Michael addition to, and 

then release from, nucleophilic targets. 
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The Michael addition of nitroalkenes to GSH has been reported in plasma, tissues and cells in culture (24). These products 

are preferentially formed intracellularly via non-enzymatic conjugation in a compartment where GSH concentrations are 

~6 mM, (15, 35). In this regard, glutathione–S-transferases (GSTA1-1, A4-4, M1a-1a, and P1a-1a) do not participate in 

GSH conjugation of nitrated linoleic and oleic acid (35). Inactive GSH conjugates are then exported to the extracellular 

milieu through MRPs to enter the circulation (15) and processed by hepatic -glutamyl transpeptidases and renal 

dipeptidases to yield cysteine conjugates analogous to those of leukotriene metabolism (36-38). Thus, a comprehensive 

detection of electrophilic lipid metabolites in the urine also encompasses cysteine and mercapturate conjugates, as for 

isothiocyanates (39). Human urine revealed higher levels of nitroalkene-cysteine conjugates, compared with free fatty 

acid or mercapturic acid derivatives. Although mercapturates are typically in greater concentrations than cysteine 

conjugates in urine, this observation is not uncommon, as leukotriene E4 levels are 9-fold greater than those of its N-

acetyl derivatives (40).  

Both free and protein tyrosine, and to a lesser extent tryptophan, are nitrated by the same reactions that yield fatty acid 

nitration products (1, 41). Post-translational protein nitration and the neoepitopes that it generates are viewed as both 

indices and mediators of pathogenic oxidative inflammatory reactions (42).  Notably, tyrosine does not compete with 

CLA for nitration and might even promote NO2-CLA generation (1). The consideration of plasma and urinary endogenous 

fatty acid nitroalkenes is relevant beyond a role as biomarkers of oxidative nitration reactions, since these species also 

potently mediate signaling reactions that limit inflammation. Potential mechanisms underlying these actions include a) 

inhibition of neutrophil function and platelet activation (43, 44), b) serving as partial agonists for PPAR (14, 15, 45-47), 

c) inhibition of cytokine expression via inhibition of DNA binding by the p65 unit of NF-κB (48) and d) up-regulation of 

phase 2 gene expression via Keap1/Nrf2-dependent (5, 49, 50) and -independent mechanisms (51). Critical pro-

inflammatory enzymatic activities are also inhibited by fatty acid nitroalkenes, including xanthine oxidoreductase and 

cyclooxygenase-2 (52, 53). These actions result in anti-inflammatory responses in diverse animal models of disease 

including limiting restenosis after vessel injury (54), attenuation of weight gain and loss of insulin sensitivity in murine 

models of metabolic syndrome (6, 55), inhibition of sepsis-induced renal failure (56), prevention of ischemia-reperfusion 

injury (31, 32, 57), reduction of plaque formation in a murine ApoE-/- atherosclerosis model and the reduction of 

chemically-induced inflammatory bowel disease (47).  Notably, all of these clinically-relevant responses are induced by 

steady state plasma concentrations of nitro-fatty acids ranging from 10-25 nM, well within the range of NO2-CLA 

concentrations measured in human urine (9.2 +/- 4.3 nM). The bladder is one the most responsive of all tissues to 

electrophile-induced phase II gene expression. In this regard, 1,2-dithiole-3-thiones (e.g. oltipraz) are conjugated to GSH, 

excreted in the urine and modulate Nrf2 dependent gene expression in the bladder (58). The NO2-CLA and its 

electrophilic -oxidation products in urine might also regulate the expression of heat shock protein expression (5) in 

addition to activating Nrf2-dependent genes, thus significantly modulating inflammatory responses in the bladder.  

The present data reveal that upon nitroalkene generation, a chemical equilibrium between free and Cys-adducted nitro 

fatty acids is promptly established. Depending on the relative on/off rates for nitroalkene addition to GSH and protein 

targets, as well as the rate of MRP-mediated export of GSH conjugates; plasma, urine and tissue levels of free 

nitroalkenes can be efficiently regulated. This dynamic system provides a mechanism for the modulation of nitroalkene 
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signaling in response to changes in tissue inflammatory status. Overall, these observations support that the formation and 

signaling actions of electrophilic nitroalkenes constitutes a physiological mechanism that is manifested in humans under 

healthy conditions. 
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FOOTNOTES  

Abbreviations: HPLC-ESI-MS/MS, high-performance liquid chromatography-electrospray ionization tandem mass 

spectrometry; CID, collision-induced dissociation; HCD, high collision energy dissociation; MRM, multiple reaction 

monitoring; IS, internal standard; BME, -mercaptoethanol; HgCL2, mercury chloride; MRP1, multidrug resistance 

protein 1; 
.
NO, nitric oxide; NO2

-, nitrite; 
.
NO2, nitrogen dioxide; GSH, glutathione; GSH-NO2-FA, glutathione adduct of 

nitro fatty acid; SPE, solid phase extraction; NFkB, nuclear factor kappa B, Keap1, Kelch-like ECH-associated protein 1, 

HSF-1, heat shock factor-1, PPARγ, peroxisome proliferator-activator receptor-γ and HDAC, histone deacetylases; NO2-

FA, nitrated fatty acids; NO2-OA, nitro-oleic acid ; NO2-LA, nitro-linoleic acid; Cys-NO2-CLA, (mixture of 10-Cys-9-

NO2-CLA [(E)-10-S-cysteine-9-nitro-octadec-11-dienoic acid], 12-Cys-9-NO2-CLA [(E)-12-S-cysteine-9-nitro-octadec-9-

dienoic acid], 11-Cys-12-NO2-CLA [(E)-11-S-cysteine-12-nitro-octadec-9-dienoic acid] and 9-Cys-12-NO2-CLA [(E)-9-

S-cysteine-12-nitro-octadec-11-dienoic acid]; CLA, octadeca-(9Z,11E)-dienoic acid; NO2-CLA (equimolar mixture of 9-

NO2-CLA [9-nitro-octadeca-9,11-dienoic acid] and 12-NO2-CLA [12-nitro-octadeca-9,11-dienoic acid]); dinor-NO2-CLA 

(equimolar mixture of 7-NO2-CLA [7-nitro-hexadeca-7,9-dienoic acid] and 10-NO2-CLA [7-nitro-hexadeca-7,9-dienoic 

acid];  tetranor-NO2-CLA (equimolar mixture of 5-NO2-CLA [5-nitro-hexadeca-5,7-dienoic acid] and 8-NO2-CLA [8-

nitro-hexadeca-5,7-dienoic acid]; hexanor-NO2-CLA (equimolar mixture of 3-NO2-CLA [3-nitro-hexadeca-3,5-dienoic 

acid] and 6-NO2-CLA [6-nitro-hexadeca-3,5-dienoic acid]. The designations "9-NO2-" and "12-NO2-"CLA are used 

herein to describe position of the nitro group in conjugated dienes and do not refer to IUPAC nomenclature.  
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FIGURE LEGENDS 

Fig 1. CLA nitration products in human urine. The extracted urine sample (black line, MRM 324.2/46) was mixed at 

three different ratios with internal standard (gray line, 100 nM 15NO2-CLA, MRM 325.2/47). (a) 5% of 15NO2-CLA in 

95% of urine, (b) 50% of 15NO2-CLA in 50% of urine (c) 95% of 15NO2-CLA in 5% of urine. Urine-derived NO2-CLA 

displayed retention times between NO2-[
13C18]-LA (d) and NO2-[

13C18]-OA (e). 

Fig 2. Nitrated fatty acids in urine are electrophilic. Human urine extract was analyzed by HPLC ESI-MS/MS in the 

MRM mode to detect NO2-CLA and its -oxidation metabolites. a) Representative chromatogram showing the detection 

of NO2-CLA and its -oxidation products in human urine. NO2-FAs were followed as precursors of m/z 46-. b) Treatment 

with excess BME leads to the complete consumption of NO2-FAs as evidenced by the disappearance of the 46 amu 

precursor peaks from their original retention times. Intrinsic gas phase instability of addition products results in in-source 

fragmentation ( elimination reaction), consistent with the neutral loss of BME during the ionization process. c) Detection 

of the corresponding BME-adducts after neutral loss of 78 amu. d) Chemical structure of 9-NO2-CLA and 12-NO2-CLA 

(upper structures) and the 4 possible isomeric structures (10-BME-9-NO2-CLA, 12-BME-9-NO2-CLA, 11-BME-12-NO2-

CLA and 9-BME-12-NO2-CLA) that are formed upon reaction with BME. 

Fig 3. Confirmation of NO2-CLA -oxidation products in human urine. NO2-FA acids obtained from urine (black 

lines) were compared to the NO2-CLA metabolites obtained from effluent of 15NO2-CLA Langendorff-perfused isolated 

rat hearts (dashed lines).  (a) Comparative chromatographic profile of NO2-CLA (MRM 324.2/46). High resolution 

MSMS data on peaks 1 and 2 indicate 12-NO2-CLA and 9-NO2-CLA respectively. (b) Comparative chromatographic 

profile of NO2-CLA (MRM 296.2/46). Peaks 1 and 2 indicate dinor-10-NO2-CLA and dinor-7-NO2-CLA respectively. (c) 

Comparative chromatographic profile of tetranor-NO2-CLA (MRM 268.1/46). Peaks 1 and 2 indicate tetranor-8-NO2-

CLA and tetranor-5-NO2-CLA respectively.  

Fig 4. Correlation between NO2-CLA levels and its metabolites in healthy human urine.  A strong correlation 

(R>0.94) was observed between the levels of NO2-CLA and its -oxidation products (dinor-NO2-CLAand tetranor NO2-

CLA) in urine samples obtained from healthy volunteers. 

Fig 5. Detection of cysteine conjugates of nitro-fatty acids in urine. a) Chromatographic profiles of urinary Cys-NO2-

CLA and its -oxidation metabolites (upper panels) and the products of the reaction of synthetic 15NO2-CLA heart 

metabolites with cysteine (lower panels). b) High resolution MS3 spectral data of urine-derived Cys-NO2-CLA (upper 

panel) and 15NO2-CLA heart metabolites reacted with cysteine (lower panel). Inserts show corresponding MS/MS data 

following the neutral loss of HNO2. All measurements were performed in the positive ion mode. c) Chemical structures of 

the 4 possible positional isomers of Cys-NO2-CLA (12-Cys-9-NO2-CLA, 10-Cys-9-NO2-CLA, 9-Cys-12-NO2-CLA and 

11-Cys-12-NO2-CLA). 

Fig 6. Reversibility of Cys-NO2-CLA Michael adducts in urine. Cys-15NO2-CLA (100 nM) was added to either 

methanol or urine and incubated for 120 min at 37 °C. Whereas no free 15NO2-CLA could be detected in methanol (a), the 

presence of free 15NO2-CLA together with decreased levels of Cys-15NO2-CLA indicated that a new equilibrium was 
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established in the urine sample (b). Cys-15NO2-CLA was measured in the positive ion mode (MRM 448.3/400.2) and free 
15NO2-CLA in the negative ion mode (MRM 325.2/47). 

Fig 7. Equilibrium displacement of addition products in urine. A dynamic equilibrium governs the relative 

concentration of the addition products and the free NO2-FAs in urine. Incubation of urine samples in the presence of 

HgCl2 (10 mM) for 30 min at 37°C, resulted in a marked shift towards the formation of free nitroalkenes (a) and a 

complete loss of the cysteine addition products (b).  

Fig 8. Equilibrium constant determination for NO2-OA reaction with cysteine. (a) Representative spectral changes 

observed upon cumulative additions of cysteine to NO2-OA. (Insert) Reference spectra utilized for spectral deconvolution 

analysis. (b) Dose-dependent changes in free and conjugated NO2-OA concentration upon cysteine addition (expressed as 

the thiolate form). (c) One-site binding plot showing progressive saturation of Cys-NO2-OA formation in the presence of 

increasing doses of cysteinate. Dissociation constants were calculated by non-linear regression assuming a one-site 

specific biding model (R2 0.964).  

 

TABLES 

Table 1 Structures, specific product ions and accurate mass determinations observed for urinary derived NO2-CLA 

isomers and its metabolites in the negative ion mode. 
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Fig. 3 Salvatore et al
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Fig. 4  Salvatore et al
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Fig. 5 Salvatore et al
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Fig. 6 Salvatore et al
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Fig.7 Salvatore et al
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Fig. 8 Salvatore et al
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Table 1 Salvatore et al

NO2-FA Fragment Exp
Fragment 

Theoretical

Fragment 

Composition
Fragment Structure

168.1028 168.103 C9H14N O2
-

210.1133 210.1136 C11H16N O3
-

224.1288 224.1292 C12H18N O3
-

157.0868 157.087 C8H13O3
-

171.1024 171.1027 C9H15O3
-

195.1024 195.1027 C11H15O3
-

213.113 213.1132 C11H17O4
-

140.074 140.0717 C7H10NO2
-

182.0818 182.0823 C9H12NO3
-

196.0975 196.0979 C10H14NO3
-

129.0383 129.0557 C6H9O3
-

143.0710 143.0714 C7H11O3
-

167.0975 167.0714 C9H11O3
-

185.0818 185.0819 C9H13O4
-

112.0403 112.0404 C5H6NO2
-

154.0507 154.0510 C7H8NO3
-

168.0663 168.0666 C8H10NO3
-
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-
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-
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-
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