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The EOF of polymer solutions

The EOF of polymer solutions is analysed in the framework of continuum fluid

mechanics and the standard electrokinetic model. Two key aspects are taken into

consideration: the non-Newtonian character of the fluid and the polymer concentration

near the interface, which greatly modify the fluid viscosity in the region where electro-

osmosis takes place. A satisfactory mathematical model is derived for the electroosmotic

mobility of solutions that present polymer depletion at the wall. The case of solutions

containing polymers that adsorb onto the wall is briefly reviewed, and a preliminary

approach is discussed for the limit of strong polymer adsorption. In order to illustrate the

theoretical discussions, experimental data obtained from aqueous solutions of carbox-

ymethyl cellulose in fused-silica capillaries are presented. Relevant results are observed,

which are appropriately captured by the modelling proposed. The fundamental

phenomena discussed in this work are of interest in microfluidics and electrophoresis.
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1 Introduction

Polymer solutions are widely used in CE, as well as in

microfluidic devices. In these applications, fluids are

transported by applying electric potential differences

between channel ends, namely by EOF. For simple electro-

lyte solutions, the viscosity of which is a constant ZN

(Newton coefficient), the electroosmotic mobility is given by

the well-known Helmholtz–Smoluchowski (HS) equation,

mHS ¼ �ez=ZN ð1Þ

where e is the electric permittivity and z is the electrokinetic

potential [1–3]. Nevertheless, in the case of polymer

solutions, the viscosity of which is a function of the velocity

gradient developed in the microchannel (non-Newtonian

behaviour), the electroosmotic mobility is expected to depend

on the applied electric field [4].

Mathematical models of the EOF of non-Newtonian

fluids are just emerging in the literature: Chakraborty [5]

and Zhao et al. [6] considered the EOF of ‘‘power law’’ (PL)

fluids in slit microchannels; Park and Lee [7, 8] calculated

numerically the electroosmotic velocity of viscoelastic fluids

in a square microchannel. It is relevant to note that all of

these models implicitly assume that fluid properties are

uniform in the whole domain, which in turn requires

uniform polymer concentration throughout the flow field,

including the interfacial region where electrokinetic effects

take place. Nevertheless, such a situation is hardly found in

experiments, as long as polymer solutions are considered. In

fact, due to the unavoidable interaction between macro-

molecules and the channel surface, polymer concentration

is altered in the proximity of channel walls. As a conse-

quence, the solution viscosity changes considerably in the

interfacial region in relation to the bulk fluid. The main

phenomena to be considered are polymer depletion and

polymer adsorption [9]. In the first case, one expects that the

EOF of the polymer solution is equal to that of the pure

solvent, because there are no macromolecules in the inter-

facial region [10, 11]. In the second case, the EOF is strongly

diminished and even suppressed, as the viscosity of the fluid

adjacent to the wall is significantly enhanced [12, 13].

Indeed, as the z-potential is also modified, polymer coating

is the mechanism normally used to control the EOF in

CE [14, 15].

In this context, the present work discusses the theore-

tical interpretation of the EOF of polymer solutions. For this

purpose, the paper is organized as follows. Section 2

presents the governing equations of the fluid dynamic

problem and briefly reviews the behaviour of polymers

at interfaces. Section 3 discusses the mathematical

modelling of the electroosmotic mobility for the cases

of polymer adsorption and depletion. Section 4 describes

the experiments carried out to measure the viscosity

and electroosmotic mobility of a typical macromolecular

solution. Section 5 analyses the modelling proposed in

relation to experimental data and physicochemical char-

acteristics of the system. Section 6 outlines the main

conclusions.
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2 Theory

2.1 General considerations

The EOF is described in the framework of continuum fluid

mechanics. Cylindrical microchannels of radius R and

length L are considered, where the fluid velocity is

established in the axial direction z and varies in the radial

direction r. Temperature is assumed to be uniform

throughout the flow domain, which requires negligible

Joule effect in microchannels. In particular, here we include

a non-Newtonian model for the viscosity of polymer

solutions and take into account the concentration of

polymers in the interfacial region.

Fluids presenting non-Newtonian behaviour necessarily

contain discrete entities in their microstructure. In the

case of polymer solutions, the size of these entities is

characterized by the radius of gyration of macromolecules

Rg, which may be several tenths of nanometres. In order

to satisfy the continuum hypothesis, the present modelling

requires Rg�R, a condition normally attained in

micro-scale channels (typically R410 mm). Further, in

the case of electrically charged polymers, it is assumed

that the possible electrophoretic effect does not influence

the EOF.

2.2 Electric field and ion distributions

Electrokinetic effects depend on the existence of electrostatic

charges in the solid–liquid interface [1, 2]. The interfacial

charge has associated an electric potential cðrÞ that

decreases and vanishes in the fluid due to the screening

produced by counterions and other electrolyte ions in the

solution, which constitute the electrical double layer (EDL).

There is also an externally applied potential VðzÞ in

the flow domain. Therefore, the total electric potential

involves two contributions, Fðr; zÞ ¼ cðrÞ þ VðzÞ, and is

governed by Poisson’s equation, H2Fðr; zÞ ¼ �re=e. Here

re ¼ e
P

k nknk is the electric charge density of the medium,

which is obtained as the summation over all type-k ions with

valence nk and number density nk (e is the elementary

charge). In particular, ion densities are considered to be

uniform along the capillary, hence @2V=@z2 � 0, which

yields two relevant consequences: (i) the axial electric field

E ¼ �@V=@z is uniform and (ii) the EDL potential is

governed by

1

r

@

@r
r
@c
@r

� �
¼ � re

e
ð2Þ

These assumptions are part of the standard electrokinetic

model [1–3] and hold if E � z=l, which is normally the case

in practice. In addition, taking into account that there is

neither radial flux of ions nor flow in the radial direction,

Nernst–Planck equations [1, 2] yield the Boltzmann-type

distributions for the ionic species in the diffuse layer:

nk ¼ nb;k exp½�nkeðc� cbÞ=kBT�, where nb;k and cb are,

respectively, ion densities and electric potential in the bulk,

kB is the Boltzmann constant, and T is the absolute

temperature. Therefore, the thickness of the EDL is given

by the Debye length,

l ¼ ekBT=e2
X

k

n2
knb;k

 !1=2

2.3 Fluid velocity field

The steady-state flow of incompressible fluids in cylindrical

capillaries of large aspect ratios (L/R�1) is governed

by the z-component of the momentum balance equation

[1, 2, 16]:

@p

@z
¼ 1

r

@ðrsrzÞ
@r

þ rgz � re

@V

@z
ð3Þ

In this expression, p is the isotropic pressure, srz is the

shear component of the stress tensor, r is the fluid density,

and gz is the z-component of gravitational acceleration.

Further, the last term on the right-hand side of Eq. (3)

represents the contribution of electric forces due to the

presence of the applied potential V. These forces manifest in

the interfacial region where re is non-null, giving rise

to the EOF, as considered in the standard electrokinetic

model [1–3].

2.4 Viscosity model

In order to asses the velocity profile uzðrÞ of polymer

solutions, a constitutive relationship for the shear stress srz

must be included in Eq. (3). The present modelling involves

steady state, isothermal, fully developed, rectilinear shear

flows, which fulfil the requirements of viscometric flow [16].

Under these conditions, the fluid viscosity Z is defined to be

a function of the shear rate _g ¼ j_grzj, where _grz ¼ @uz=@r is

the fluid velocity gradient. Therefore, by analogy to the

empirical law of Newton (srz ¼ ZN _grz, where ZN is a

constant coefficient), one may introduce srz ¼ Zð_gÞ_grz,

where the function Zð_gÞ describes the non-Newtonian

viscosity of the inelastic fluid [16]. In particular, the PL

model of Oswald-de Waele is expressed as Zð_gÞ ¼ b_ga�1,

where a is the flow behaviour index and b is the consistency

parameter [2, 16]. In fact, this model predicts a PL relation

between Z and _g, and it is normally valid for relatively high

shear rates, as those developed in microchannels. Values of

ao1 indicate shear-thinning behaviour: Z decreases with _g,

the most common response observed in polymeric fluids

such as carboxymethyl cellulose(CMC) and poly-acrylamide

solutions. On the other hand, a41 indicates shear-thicken-

ing behaviour: Z increases with _g. When a5 1, the Newton

law is recovered with b5ZN. Parameters a and b strongly

depend on polymer concentration and temperature [16]. In

shear-thinning solutions, a decreases and b increases with

polymer concentration.
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The shear stress of PL fluids is then given by

srz ¼ b_ga�1 _grz ð4Þ

This constitutive relation is very helpful because it properly

represents practical situations and, at the same time, is

sufficiently simple to allow analytical solutions of the EOF

in capillaries. More sophisticated Zð_gÞ functions demand

numerical calculations to extract uzðrÞ. Nevertheless, it is

worth remarking that the PL model cannot describe time-

dependent responses or viscoelastic phenomena. In this

sense, it should be noted that elastic effects take relevance in

systems that present contractions/expansions, curves, and

mainly, unsteady flows, whereas this modelling is

concerned with steady-state flow in straight microchannels.

2.5 Polymers at the interface

Polymer solutions presenting non-Newtonian behaviour

involve macromolecules with relatively high molecular

weight, the size of which are several tenths of nanometres,

whereas the thickness l of the EDL associated with the wall

is normally lower than 10 nm. Therefore, the distribution of

macromolecules at the interface cannot be ignored in

modelling the EOF of polymer solutions. In what follows,

we discuss the limiting situations, always considering

smooth surfaces.

2.5.1 Polymer adsorption

If the interaction between macromolecules and the surface

is attractive, macromolecules adhere to the wall [9, 17–20];

hence the polymer segment concentration f(r) increases

abruptly near the surface (Fig. 1A). This behaviour is

observed for neutral and charged polymers. In particular, a

wide class of macromolecules adsorb onto silica surfaces,

mainly those that are capable of forming hydrogen bonds

with OH-groups exposed at the surface [22]. The extent of

the adsorption depends on the pH of the medium, ionic

strength, polymer concentration, and temperature. In

general, electroosmosis is strongly diminished due to the

fact that polymer concentration in the interfacial region is

much higher than that in the bulk (Fig. 1A), and

consequently the viscosity of the fluid adjacent to the wall

increases significantly [4, 12, 13]. Another crucial aspect is

that polymer coating modifies the magnitude of the

z-potential, and even the sign, depending on the electrical

charge of polymers [3, 14, 15].

2.5.2 Polymer depletion

If the interaction between macromolecules and the surface

is repulsive, the polymer segment concentration decreases

steeply near the surface (Fig. 1B), which yields a depletion

layer adjacent to the wall [9, 17, 18]. In particular, if the

polymer concentration vanishes (fw 5 0 in Fig. 1B), the

fluid in the depletion layer is the solvent of the polymer

solution. The main consequence of this phenomenon is that

the viscosity of the depletion layer is much lower than that

of the bulk, which leads to the apparent hydrodynamic slip

observed in polymer solutions [21, 23], as well as in a variety

of colloidal systems (see [24] for a comprehensive review on

the subject). A second relevant aspect of polymer depletion

is that the z-potential is not altered by the presence of the

polymer, except for the possible changes in the ionic

strength of the medium. In fact, as polymers never touch

φ (r)
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φ b

φw

r R

φ (r)

B

λ

φw

φ b

δ D

Adsorption 

Depletion 

Figure 1. Highly schematic representation of polymers in the
proximity of an interface, showing the occurrence of (A)
adsorption and (B) depletion. In both cases, the curve f(r)
represents the polymer segment concentration, where fb and fw

are the values in the bulk solution and at the wall, respectively
(arbitrary drawings following [9, 18]). The departure of f(r) from
fb occurs at a distance from the wall that corresponds to the
characteristic correlation length in semi-dilute solutions, or the
radius of gyration of macromolecules in dilute solutions [9, 18,
19, 21]. In (A), dH is the hydrodynamic thickness of the adsorbed
layer. In (B), dD is the width of the depletion layer and l is the EDL
thickness (not to scale).
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the wall, in principle, the EDL associated with the channel

surface is not distorted.

3 Modelling the EOF

3.1 Uniform polymer concentration

Firstly we discuss non-Newtonian effects alone. Hence the

virtual situation in which polymer concentration is not

modified near the wall (not shown in Fig. 1) is considered:

fðrÞ ¼ fb; 0 � r � R ð5Þ

Therefore, Eq. (3) is valid in the whole flow domain,

including the region of the EDL. Mathematical derivations

are carried out in Appendix A. The electroosmotic velocity

uðeÞU is given by Eq. (A7), from which the mobility mU ¼
uðeÞU =E results

mU ¼ a � ez
b

� �1=a E

l

� �1=a�1

ð6Þ

This functionality has been obtained by Bello et al. [4] from

scaling relations, although without the exact numerical

factors.

Equation (6) equals Eq. (1) when a5 1 and b5ZN

(Newtonian fluid). In contrast, for arbitrary values of a, Eq.

(6) presents three main features in comparison with the HS

equation: (i) mU depends on the applied electric field,

due to the coupling of electrokinetic and non-Newtonian

phenomena. The effect is illustrated in Fig. 2. (ii) mU

depends on the Debye length. The physical meaning of this

result can be understood by considering that the fluid visc-

osity is a function of the velocity gradient @uz=@r, which

directly depends on the EDL thickness l. This is another

manifestation of the coupling between electrokinetic and

non-Newtonian phenomena. (iii) mU is non-linear with the

surface potential. It must be noted here that z is also related

to l, as both depend on the ionic strength of the medium. In

this sense, Eq. (6) has to be connected to a theoretical

expression giving z in terms of l for the system in consid-

eration [25]. Simplified relations z(l) may be used as

well [26].

3.2 Polymer adsorption

3.2.1 General case

The effects predicted by Eq. (6) are due to the fact that, at a

given polymer concentration, the fluid viscosity depends on

the shear rate. When polymer adsorption takes place, the

viscosity will also change locally due to the variation in

polymer concentration near the surface (Fig. 1A). If one

rationalizes the problem in the context of the PL model, the

first aspect to remark is that parameters a and b are no

longer constant in the vicinity of the wall, as they depend on

polymer concentration [16]. In addition, whether a plane of

shear with the associated z-potential can be defined in the

interfacial region is questionable, as required to apply the

standard electrokinetic model [3].

In fact, the overall consequences of polymer adsorption

on electroosmosis were predicted by Hjertén 40 years ago, as

described in [12]. Nevertheless, to the best of our knowledge,

theoretical descriptions of the EOF taking into account the

viscosity variation near the wall have not been reported to

present, with the exception of the work of Otevřel and

Klepárnı́k [27], who considered Newtonian fluids and made

no inferences on the plane of shear. Many efforts have been

made, however, to describe the surface potential after

analytes adsorption from dilute solutions [28–33]. On the

other hand, models addressed to describe electrokinetic

phenomena in polymer-coated surfaces also involve simple

electrolyte solutions [34–36]. Evidently, modelling the full

problem demands additional investigation. Below we restrict

our analysis to the limit of strong adsorption (fw � fb;

Fig. 1A), where a simplified picture of the interface may be

assumed.

3.2.2 Strong adsorption

Let us consider the situation in which the attractive

interaction energy between polymers and the surface is

higher than the thermal energy kBT [17], so that the adhered

macromolecules form a compact, non-draining, solid-like
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Figure 2. Electroosmotic mobility as a function of the applied
electric field, according to Eq. (6) (uniform polymer concentra-
tion). Solid lines represent polymer solutions with b5 0.01 Pasa

and different flow indexes a. Other parameter values used in
calculations are e5 7.1� 10�10 C2/Nm2, z5�50 mV, l5 10 nm.
The dotted line represents an electrolyte solution with the
viscosity of water (Eq. (1); ZN ¼ 0:001 Pas), which is included for
comparison. In particular, the curve with a5 1 represents a
Newtonian polymer solution with viscosity ten times higher than
that of water.
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layer. Silica surfaces are particularly susceptible to such a

strong polymer adsorption [22]. Robust and stable coatings

are also achieved by using successive multiple ionic layers

[37]. According to [34–36], the non-draining condition

means a relatively large frictional factor for the solvent

inside the polymer layer. According to [27], the solid-like

condition means that the fluid viscosity in the adsorption

layer is much higher than that of the central zone. Under

these conditions, the flow will develop out of the adsorbed

layer, for roR�dH, where dH is the hydrodynamic thickness

of the adsorbed layer. Thus the channel has an effective

radius equal to R�dH (Fig. 1A, dashed line), and the plane

of shear is placed on the new interface, which satisfies

r ¼ R� dH; uz ¼ 0; c ¼ zeff ð7Þ

Obviously the existence of an effective surface potential zeff

onto the adsorbed layer is essential for the development of

EOF. Moreover, zeff should be uniform throughout the

interface [28–33].

If polymer concentration obeys fðrÞ ¼ fb; 0 �
r � R� dH, one may take advantage of the procedure

described in Appendix A, with the new boundary condition.

In fact, by using Eq. (7) instead of Eq. (A3), calculations

reproduce Eq. (6) with zeff instead of z. This simple result is

reasonable for the ideal interface conjectured above. It

should be noted that the mobility does not depend

on dH, which is in agreement with the results reported in

[37]: given a compact coating, the magnitude of the

EOF is defined by the resulting surface potential,

and does not vary appreciably with the thickness of the

adsorbed layer. However, concerning zeff , it is known

that determining the electrokinetic potential of polymer

covered surfaces is full of difficulties, and the physical

interpretation of measured values is sometimes ambiguous

(for detailed discussions on the subject see [3] and refer-

ences therein).

3.3 Polymer depletion

This section deals with systems in which polymer concen-

tration decreases near the wall, as shown in Fig. 1B. In order

to describe the EOF, firstly we approximate fðrÞ by a step-

like function (Fig. 1B, dashed lines) as follows:

fðrÞ ¼
fb; 0 � r � R� dD

fw; R� dDor � R

(
ð8Þ

Then we split the flow domain in two parts: the bulk fluid

and the depletion layer, respectively. It is supposed that the

fluid obeys the PL model in both regions, but with different

parameter values. The parameters of the bulk polymer

solution are those assessed by rheometry (a and b, as

before), whereas those in the depletion layer (aD and bD) are

in principle unknown. Nevertheless, one may infer that aD

4a and bDob, taking into consideration the fact that both

the shear-thinning degree and viscosity level of polymer

solutions decrease with polymer concentration [16].

The plane of shear is assumed to be placed on the wall

(see also Section 2.5.2). We further consider that the EDL

potential is completely screened in the depletion layer,

taking into account that, for the ionic concentrations

normally used in practice, l is rather lower than dD, which is

on the order of the radius of gyration of macromolecules.

The mathematical problem is formulated and solved in

Appendix B. The electroosmotic velocity uðeÞD is given by

Eq. (B7), from which the mobility mD ¼ uðeÞD =E results

mD ¼ aD � ez
bD

� �1=aD E

l

� �1=aD�1

ð9Þ

It is observed that mD depends on the fluid characteristics of

the depletion layer alone, i.e. electroosmosis is unrelated to

the bulk fluid. Further, mD is independent of the thickness

dD, a result valid for pure EOF (no pressure gradients), and

thin EDL (l� dD).

In the case of strong depletion, the polymer segment

concentration vanishes at the wall, that is, fw 5 0 in Eq. (8)

(see also Fig. 1B). Consequently, the depletion layer is filled

with the solvent of the polymer solution, which is normally a

Newtonian fluid. Therefore the electroosmotic mobility is

simply obtained by substituting aD ¼ 1 and bD ¼ ZN into

Eq. (9), which yields Eq. (1). Then the EOF is described by

the linear HS equation, regardless of the non-Newtonian

character of the bulk polymer solution. In fact, the inter-

esting feature of strong depletion is that the EOF is not

coupled to non-Newtonian effects, because electroosmosis is

confined to the region of pure solvent adjacent to the wall.

The electrokinetic flow of colloidal systems that exhibit

wall depletion has been thoroughly studied in a previous

work [11].

4 Materials and methods

In order to illustrate the theoretical predictions, this work

includes experiments carried out with aqueous solutions of

CMC, which is a natural polymer widely employed in

industrial applications such as food and pharmaceutics.

More specifically, it is used in CE as a chiral selector [38].

The physicochemical characteristics of the polymer [39] as

well as its ability to adsorb on hydrophilic surfaces [40] are

known. The rheological properties of aqueous solutions of

CMC are also available [41]. In what follows, we present the

materials and methods used in our research.

4.1 BGE and polymer solutions

Distilled water was used for preparing all the solutions.

Sodium diacid phosphate 15 mM solution was used as the

buffer, pH 7, hereafter called the BGE. Urea 5 M was added

to some solutions. High-viscosity-grade CMC (sodium salt,

item 6331 from Anedra S.A., Argentina) was used. Aqueous

solutions of CMC were prepared as follows. First the CMC

powder was subjected to hydration in the BGE for 15 min.

Electrophoresis 2009, 30, 921–929 General 925
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Then the hydrated powder was dissolved in a volume of

buffer near that required to reach 1% w/v. Magnetic stirring

was applied for 1 h at room temperature. The pH was

adjusted to 7 and the final volume was reached. Finally CMC

solutions were filtered through a 0.45-mm nylon membrane

(Sartorius, Germany) and degassed in an ultrasonic bath

before use.

4.2 Physicochemical characteristics

CMC is a long-chain polysaccharide that is negatively

charged at pH 7 [39]. The average molecular mass of CMC

may be estimated from viscosity data in the low shear rate

regime, by using a well-defined relationship reported in [41].

Considering that the viscosity of 1% CMC solutions was

0.37 Pas at _g ¼ 1 s�1, the average molecular mass of our

samples is around 500 kg/mol. Following [39], this value

corresponds to a radius of gyration of approximately 150 nm

(naturally, these samples are expected to be rather

polydisperse in size). The Debye length of BGE is

lE3.5 nm, whereas that of CMC solutions is around

1 nm, or less, because of sodium ions from CMC molecules.

4.3 Rheological measurements

The viscosity function Zð_gÞ of CMC solutions was deter-

mined on a stress-controlled rheometer (Haake RheoStress

RS80, Haake Instrument, Paramus, NJ, USA), by using a

cone-plate cell with the following characteristics: cone

radius, 3 cm; cone angle, 11; sample volume, 1 mL. The

viscosity Z was measured at different shear rates _g between

1 and 1000 s�1, while the temperature was kept constant at

251C. Experimental runs were repeated three times.

4.4 EOF measurement

The electroosmotic mobility of different solutions was

determined on a CE instrument (Agilent Technologies,

Waldbronn, Germany), by using uncoated fused-silica

capillary tubes (Microsolv, USA) with the following char-

acteristics: total length L 5 38 cm, effective length

Leff 5 29.5 cm, inner diameter 2R 5 75 mm. The capillary,

when new, was washed successively with filtered 1 M

sodium hydroxide solution, with 0.1 M sodium hydroxide

solution, with Milli-Q water (Millipore, USA) and with BGE,

for 10 min each one. At the beginning of the working day,

the capillary was washed with sodium hydroxide 0.1 M

solution, Milli-Q water and finally with BGE for 10 min.

Between runs, the capillary was washed with BGE for 3 min.

The cartridge was thermostated at 251C. Detection wave-

length was fixed at 245 nm. EOF velocity was measured by

employing acetone as a neutral marker, which was injected

by pressure (30 mbar, 10 s). In each run, the migration time

tm of the marker to the detector was recorded. Then the

experimental mobility was calculated as mexp ¼ Leff =ðtmEÞ,
where E ¼ DV=L, being DV the electric potential difference

applied between capillary ends. The maximum DV used was

10 kV in order to avoid Joule heating in the capillary.

Experimental runs were repeated five times.

5 Results and discussion

Figure 3 presents a typical viscosity curve of CMC solutions

obtained by cone-plate rheometry. Viscosity values are around

two orders of magnitude higher than that of the BGE

(0.001 Pas), and a strong shear-thinning behaviour is

observed. In particular, CMC solutions present a PL region

for _g4200 s�1, approximately. This behaviour is described by

the straight line in Fig. 3, the slope of which is a�1, and the

intercepts at _g ¼ 1 s�1 is b (parameter values are reported in

the figure). The whole curve of experimental data, including

the region of low shear rates, is well described by Carreau

model [41]. Nevertheless, this work is concerned with the

EOF, which involves the high shear rate region, where CMC

solutions evidently behave as PL fluids.

Figure 4 presents typical results of the electroosmotic

mobility of CMC solutions in fused-silica capillaries. First, it is

appropriate to mention that the dotted line is the prediction of

Eq. (1), which represents the mobility of the BGE (triangles),

while the solid line is the prediction of Eq. (6) with parameters

a and b obtained by rheometry. It is observed that experi-

mental data of the CMC solution (Fig. 4, diamonds) fall in an

intermediate position, with mobility values about 20% lower

than those of the BGE. This behaviour coincides with results

reported by Bello et al. [4] from aqueous solutions of methyl

Figure 3. Viscosity as a function of shear rate for 1% CMC
solutions (pH 7; 251C). Symbols are experimental data obtained
by rheometry. The line is the prediction of the PL model
(Zð_gÞ ¼ b_ga�1) with the parameter values indicated into the
graphic, which are valid for _g4200 s�1.
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cellulose in fused-silica capillaries. At this step of the analysis,

one may conclude that CMC solutions neither present

uniform polymer concentration in the interfacial region, as

required to follow the prediction of Eq. (6), nor exhibit strong

depletion, as required to follow the prediction of Eq. (1).

It is also observed in Fig. 4 that mobility data of the

CMC solution follow a PL relation, with a relatively low

degree of shear-thinning. According to the theoretical

discussions given in Section 3.3.1, this result suggests the

occurrence of polymer depletion. In fact, a straightforward

fitting with Eq. (9) (dashed line) yields aD 5 0.93, which is

notably higher than the value of a obtained by rheometry

(Fig. 3). If one further considers that zE�60 mV and

lE1 nm, then bDE0.0026 Pa sa, which is much lower than

b obtained by rheometry (Fig. 3).

When urea is added to the CMC solution, the resulting

EOF (Fig. 4, squares) is equivalent to that of the BGE. This

remarkable result indicates that strong depletion of polymers

takes place now. Indeed, it is known that urea inhibits the

formation of hydrogen bonds between CMC molecules and

the silica surface, which is the main mechanism for CMC

adsorption [22, 40]. Therefore, the weak concentration of

polymers in the depletion layer (without urea) could be due to

certain degree of CMC adsorption. Experimental data of BGE

with urea are included in Fig. 4 to show that urea does not

alter appreciably neither the viscosity nor the surface potential.
From a physicochemical point of view, we may argue

that a polymer concentration profile similar to that depicted

in Fig. 1B, with fw�fb, is highly possible in the

system without urea: CMC molecules are negatively charged

at pH 7, as well as the capillary surface; thus depletion occurs

due to electrostatic repulsion. Nevertheless, even in this

unfavourable situation, CMC is able to adsorb onto hydro-

philic surfaces by forming hydrogen bonds [22, 40], which

gives fw40. Under the circumstances, the fluid in the

interfacial region results more viscous than the BGE, but less

viscous and less shear-thinning than the bulk solution. Then

Eq. (9) applies satisfactorily, taking into account that dD

(	150 nm) is rather higher than l (	1 nm). Finally, the effect

of urea consists in shifting fw-0, leading to a fully depleted

layer with Newtonian viscosity, which is interpreted by Eq. (1).

6 Concluding remarks

In this work we analyse the EOF of polymer solutions taking

into consideration two main aspects: the non-Newtonian

character of the fluid and the polymer concentration profile

near the interface where electroosmosis takes place. The

EOF of solutions with uniform polymer concentration is

analysed first in order to discuss the non-linear effects

associated with the non-Newtonian viscosity.

A satisfactory mathematical model is derived for the EOF

of solutions that present polymer depletion at the wall. In the

limit of strong depletion, which is common in colloids, the

electroosmotic velocity is linear and given by HS equation.

The case of solutions containing adsorbing polymers is

also reviewed, and a simple approach is suggested for the

limit of strong polymer adsorption. Further efforts are

required to model the general problem, and a comprehen-

sive experimental program is needed for the purposes. This

topic will be considered in future works.

The experiments carried out here illustrate the main

concern expressed in our theoretical discussion: the viscosity

function obtained by rheometry (bulk property) should not

be used to quantify the EOF (interfacial phenomena) with-

out any further consideration. In particular, for CMC solu-

tions, one observes that both polymer depletion and a

certain degree of specific adsorption contribute to define the

electroosmotic mobility.

One may finally remark that the concepts discussed

throughout this work are of interest in microfluidics, as well

as in several electrophoretic techniques.
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8. Appendix A

EOF of PL fluids with uniform polymer
concentration

Following the constraints given in Section 3.1, the

electroosmotic velocity of PL fluids is derived from

Eq. (3), after including @ðp� rgzzÞ=@z ¼ 0 (no pressure

gradients), E ¼ �@V=@z, srz from Eq. (4), and re from

Eq. (2). That is,

0 ¼ b
r

@

@r
r
@uz

@r

����
����
a�1 @uz

@r

 !
� e

r

@

@r
r
@c
@r

� �
E ðA1Þ

The boundary conditions required to attain uzðrÞ from

Eq. (A1) are written as follows:

r ¼ 0; @uz=@r ¼ 0; @c=@r ¼ 0 ðA2Þ

r ¼ R; uz ¼ 0; c ¼ z ðA3Þ
The first condition is a consequence of the symmetry of the

flow in the cylindrical geometry. The second condition

expresses the no-slip of the fluid at the wall, where cðRÞ is

identified as the electrokinetic z-potential [3]. Integrating

Eq. (A1) and using Eq. (A2) yield

�uzðrÞ ¼
eE
b

� �1=a Z
� @c
@r

� �1=a

dr þ C ðA4Þ

where C is an integration constant to be determined with

Eq. (A3). The remaining integral cannot be worked out

straightforwardly for arbitrary functions cðrÞ and exponents

1/a. To proceed further, here we introduce an explicit

function cðrÞ that appropriately represents the EDL potential.
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It is evident that such a function should be obtained by

solving Eq. (2) in the flow domain of cylindrical channels,

which yields an expression in terms of modified

Bessel functions [42] (see [5, 6] for slit microchannels).

For the sake of simplicity, here we consider l� R, which is

usual in practice, provided fluids with moderate ionic

concentrations in micro-scale channels are considered.

This condition implies both a roughly flat EDL and that

EDL potentials from opposite sides of the channel do not

interfere each other. Therefore, for relatively low surface

potentials (|z|o50 mV), the Debye–Hückel approximation

yields [1, 2]

cðrÞ ¼ z exp½�ðR� rÞ=l� ðA5Þ
Finally, substituting Eq. (A5) into Eq. (A4), performing the

integration, and then using Eq. (A3), leads to the following

expression:

uzðrÞ ¼ � ezE

b

� �1=a a

l1=a�1
1� exp �ðR� rÞ

al

� �� �
ðA6Þ

which gives the fluid velocity profile in the capillary. The

electroosmotic velocity uðeÞ is defined as the cross-sectional

area average of uzðrÞ. Because l� R, the exponential term

vanishes at short distances beyond the EDL region, and the

fluid velocity is uniform throughout the flow domain (except

in the close vicinity of the interface). Hence the electro-

osmotic velocity for PL solutions with uniform polymer

concentration is given by

uðeÞU ¼ � ezE
b

� �1=a a

l1=a�1
ðA7Þ

It should be noted that the numerical value in the bracket of

Eq. (A7) must be positive: the EOF is established in the

positive z-direction of the capillary for either negatively

charged surfaces under positive electric field, or positively

charged surfaces under negative electric field.

9. Appendix B

EOF of PL fluids with polymer depletion at
the wall

On the base of the arguments given in Section 3.3, the flow

domain is divided in two regions: the bulk fluid and the

depletion layer (further details on this formulation are given

in [11]). Thus, Eq. (3) is expressed as follows, after including

@ðp� rgzzÞ=@z ¼ 0 (no pressure gradients), E ¼ �@V=@z,

srz from Eq. (4), and re from Eq. (2),

0 ¼ b
r

@

@r
r
@uz

@r

����
����
a�1 @uz

@r

 !
; 0 � r � ðR� dDÞ ðB1Þ

0 ¼ bD

r

@

@r
r
@uz

@r

����
����
aD�1 @uz

@r

 !
� e

r

@

@r
r
@c
@r

� �
E

ðR� dDÞ � r � R

ðB2Þ

There are no electrical forces on the bulk fluid (reE0 in

Eq. (B1)) because the EDL potential is assumed to

vanish in the depletion layer, which requires l� dD. The

parameters of the PL model in the depletion layer (Eq. (B2))

are different from those in the bulk. In addition, boundary

conditions are

r ¼ 0; srz ¼ 0 ðB3Þ

r ¼ R� dD; sðbulkÞ
rz ¼ sðdeplÞ

rz ; uðbulkÞ
z

¼ uðdeplÞ
z ; @c=@r ¼ c ¼ 0 ðB4Þ

r ¼ R; uz ¼ 0; c ¼ z ðB5Þ

Equation (B3) is due to the symmetry of the cylindrical

geometry. Equation (B4) establishes the matching of

shear stresses and fluid velocities at the surface con-

necting both regions. Equation (B5) is the no-slip con-

dition at the wall, where cðRÞ is assumed to be the

z-potential.

Integrating Eqs. (B1) and (B2), using boundary

conditions (B3)–(B5), and including cðrÞ from Eq. (A5),

leads to the following expression of the electroosmotic

velocity:

uzðrÞ ¼ � ezE

bD

� �1=aD aD

l1=aD�1
1� exp �ðR� rÞ

al

� �� �
ðB6Þ

It is observed that the EOF is completely defined in the

depletion layer, and the central region is simply transported

as a plug. Of course, this is valid for l� dD. Finally, the

electroosmotic velocity for polymer solutions with depletion

at the wall is

uðeÞD ¼ � ezE

bD

� �1=aD aD

l1=aD�1
ðB7Þ

where aD are bD are the parameters of the PL model char-

acterizing the viscosity of the depletion layer (not the bulk

solution).
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