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SUMMARY

Primary cilia undergo cell-cycle-dependent assem-
bly and disassembly. Emerging data suggest that
ciliary resorption is a checkpoint for S phase reentry
and that the activation of phospho(T94)Tctex-1 cou-
ples these two events. However, the environmental
cues and molecular mechanisms that trigger these
processes remain unknown. Here, we show that
insulin-like growth-1 (IGF-1) accelerates G1-S pro-
gression by causing cilia to resorb. The mitogenic
signals of IGF-1 are predominantly transduced
through IGF-1 receptor (IGF-1R) on the cilia of fibro-
blasts and epithelial cells. At the base of the cilium,
phosphorylated IGF-1R activates an AGS3-regulated
Gbg signaling pathway that subsequently recruits
phospho(T94)Tctex-1 to the transition zone. Perturb-
ing any component of this pathway in cortical
progenitors induces premature neuronal differentia-
tion at the expense of proliferation. These data
suggest that during corticogenesis, a cilium-trans-
duced, noncanonical IGF-1R-Gbg-phospho(T94)
Tctex-1 signaling pathway promotes the proliferation
of neural progenitors through modulation of ciliary
resorption and G1 length.

INTRODUCTION

Primarycilia arehair-like sensory organelles that appearonG1/G0

cells and are disassembled prior to S phase (Tucker et al., 1979).

Although mutations in almost all identified genes involved in

ciliary assembly have been associated with ciliopathies (Lee

and Gleeson, 2011; Waters and Beales, 2011), relatively little is

known about how cilia are disassembled. Recent studies have

begun to identify proteins that are involved in ciliary resorption.

For example, nuclear distribution gene E homolog 1 (Nde1) nega-

tively regulates ciliary length through its interaction with dynein
D

light chain, LC8 (DYNLL1).Cells depletedofNde1developabnor-

mally long cilia, which leads to a delay in cell-cycle reentry (Kim

et al., 2011). Our previous results showed that yet another dynein

light-chain protein, Tctex-1 (or DNYLT1), is phosphorylated at

Thr94 and recruited to the ciliary transition zone (TZ) prior to S

phase reentry (Li et al., 2011). Suppression of phospho(T94)

Tctex-1 resulted in the inhibition of both serum-induced ciliary

resorption and S phase progression. This reduction in cell-cycle

reentry was not observed in nonciliated cells. Conversely, over-

expression of a phosphomimic mutant of Tctex-1 (i.e., T94E)

accelerated the resorption of cilia and reduced G1 length (Li

et al., 2011). Because phospho(T94)Tctex-1 does not bind to

the dynein motor complex (Chuang et al., 2005), the role of

Tctex-1 in ciliary resorption and cell cycling is dynein-indepen-

dent. These data collectively suggest that ciliary resorption is a

precursor of S phase entry. Furthermore, the time required for a

cilium to resorb is a key determinant of G1 length.

Radial glia (RG), the proliferating progenitors of the developing

neocortex, also have cilia. It has been shown that G1 length caus-

ally influences the fate choice of RG. Shortening G1 accelerates

cell-cycle entry and increases theproliferation rate ofRG,whereas

lengthening G1 drives these cells to differentiate into neurons

(Calegari and Huttner, 2003; Lange et al., 2009; Pilaz et al.,

2009).Thesefindingsmake thedevelopingcortexasuitablemodel

for investigating the physiological relevance of ciliary dynamics to

cell-cycleprogression.Our previous results showed that the ciliary

TZ expression of phospho(T94)Tctex-1 in RG plays an important

role in modulating G1 length and maintaining the proliferating

progenitor population (Li et al., 2011). Inhibiting the expression of

phospho(T94)Tctex-1 causedRG toexit the cell cycle prematurely

and differentiate into neurons. However, the environmental cues

and signal transduction pathways that lead to the expression of

phospho(T94)Tctex-1 in the developing brain are unknown.

Platelet-derived growth factor (PDGF) has been shown to

be able to induce ciliary resorption by itself (Christensen et al.,

2007; Pugacheva et al., 2007; Tucker et al., 1979), but the

mechanism by which PDGF receptor activation causes ciliary

resorption remains unclear. Previous studies have shown that

PDGF-AA-mediated mitogenesis requires functional insulin

growth factor 1 receptor (IGF-1R) (Mason and Goldman, 2002;
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Novosyadlyy et al., 2006). IGF-1, a ligand of IGF-1R, is a potent

mitogen that accelerates G1/S progression (Hodge et al., 2004;

Popken et al., 2004; Ye and D’Ercole, 2006). Although IGF-1R

is conventionally known as a tyrosine kinase receptor (Ullrich

et al., 1985), it also has noncanonical G protein coupled receptor

(GPCR) activity (Dalle et al., 2001; Hallak et al., 2000; Luttrell

et al., 1995). Expression of a scavenger of Gbg subunits,

bARK-ct (Koch et al., 1994), inhibits IGF-1-stimulated mitogene-

sis (Dalle et al., 2001; Luttrell et al., 1995).

Tctex-1 is synonymous with Activator of G protein Signaling 2

(AGS2), which was first isolated as a GPCR-independent acti-

vator of G protein signaling through a functional screen in yeast

(Takesono et al., 1999). Activator of G protein Signaling 3 (AGS3),

another protein involved in noncanonical Gbg signaling, was iso-

lated in the same screen (Takesono et al., 1999). Tctex-1 binds

directly to the Gb subunit of heterotrimeric G proteins; Gbg com-

petes with dynein intermediate chain for Tctex-1 binding in order

to regulate the availability of dynein-free Tctex-1 (Sachdev et al.,

2007; Takesono et al., 1999). AGS3, on the other hand, binds to

Gai. The GoLoco/G protein regulatory (GPR) motifs of AGS3

stabilize theGDP-bound form of Gai, preventing its reassociation

with Gbg (Ghosh et al., 2003; Oner et al., 2010; Peterson

et al., 2000). Similar to Tctex-1 silencing (Li et al., 2011), the inhi-

bition of Gbg activation (via bARK-ct overexpression or AGS3

silencing) pushes cortical progenitors out of division and into

differentiation mode (Sanada and Tsai, 2005).

In the present study, we identify and characterize a pathway in

which IGF-1 transmits signals through the primary cilium in order

to mediate ciliary resorption and cell-cycle entry. This pathway

involves the activations of IGF-1R, noncanonical Gbg signaling,

and phospho(T94)Tctex-1 at the base of the cilium.

RESULTS

IGF-1 Induces Ciliary Resorption via the Activation
of IGF-1R
Previous studies have confirmed that certain nontransformed

cell types (i.e., human retinal pigment epithelial cells [RPE-1],

3T3, and mouse embryonic fibroblasts [MEF]) can be starved

to induce quiescence and the formation of cilia. Subsequent

readdition of serum triggers biphasic ciliary resorption, which

peaks at 2 hr and 24 hr following stimulation (Li et al., 2011;

Tucker et al., 1979). The first wave of cilium shortening occurs

at mid/late G1 phase preceding S phase entry, whereas the sec-

ond wave occurs at the G2/M transition (Tucker et al., 1979). We

first tested whether or not IGF-1 stimulation is able to induce the

resorption of cilia in RPE-1 cells. IGF-1 (10 nM) induced ciliary

resorption to roughly the same degree as PDGF-AA (50 ng/ml)

(Figure 1A), whereas lower concentrations of IGF-1 (1–5 nM)

were found to be insufficient (data not shown).

We used three independent methods to verify that IGF-1

mediates ciliary resorption specifically through IGF-1R. First,

we demonstrated that IGF-1-induced ciliary resorption was

effectively blocked by an IGF-1R neutralizing antibody (Ab), but

not by a control (antihemagglutinin) Ab (Figure 1B). Next, we per-

formed ciliary assembly/disassembly assays in cells transfected

with constructs encoding small hairpin RNA (shRNA) against

IGF-1R and GFP (IGF-1R-sh/GFP), or a construct encoding

GFP only (vector control). Fractions of total GFP+ cells exhibiting
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cilia were scored at 0 hr, 2 hr, and 24 hr following IGF-1 stimula-

tion (Figure 1C). IGF-1R silencing did not affect the formation of

cilia, but significantly inhibited IGF-1-induced resorption of cilia

(Figures 1D and 1E). This inhibition was consistently observed

in cells transfected with three independent, validated IGF-1R-

sh constructs (i.e., confirmed by quantitative RT-PCR (qRT-

PCR) to reduce endogenous IGF-1R expression by �50%),

ruling out the possibility of off-target effects (Figure 1E).

Shortly following IGF-1 stimulation, activated IGF-1R (phos-

phorylated at Tyr1131/1135/1136) (Kato et al., 1994) signals

became increasingly enriched at the ciliary transition zone (TZ),

located between the g-tubulin (g-Tub)-labeled basal body and

acetylated-a-tubulin (Ac-Tub)-labeled ciliary axoneme (Fig-

ure 1F). Phospho-IGF-1R became prominent at the base of the

cilium 2 hr after IGF-1 treatment, a time point that correlates

with the first wave of ciliary resorption.

Using an anti-(pan)IGF-1R Ab, we found that IGF-1R localized

to both the cell surface (Figure 1G, arrowheads) and primary

cilium (Figure 1G, arrows) of almost all RPE-1 cells at various

time points before and after IGF-1 stimulation. IGF-1R signals

on the cell surface, which often appeared as clusters, were not

particularly enriched near the base of the cilium (Figure 1G,

arrowheads). The treatment of cells with dynasore blocked

dynamin-mediated clathrin-dependent endocytosis (Macia

et al., 2006), but did not affect the IGF-1-stimulated appearance

of phospho-IGF-1R at the base of cilium (Figure S1 available

online). Hence, phospho-IGF-1R at the base of the cilium is not

likely to be derived from the translocation of surface IGF-1R

via ligand-activated endocytosis. On the other hand, IGF-1R

on the ciliary membrane exhibited an uneven spatial distribution

pattern, suggesting that these receptors undergo dynamic bidi-

rectional transport (Figure 1G, arrows).

IGF-1 Induces Ciliary Resorption and S Phase Entry by
Activating Phospho(T94)Tctex-1 at the Ciliary TZ
The spatial and temporal expression patterns of phospho-IGF-

1R described above are strikingly similar to those of phos-

pho(T94)Tctex-1 (Li et al., 2011). This led us to examine whether

or not the ciliary andmitogenic effects of IGF-1 require the down-

stream activation of phospho(T94)Tctex-1. First, we showed that

IGF-1 alone is sufficient to induce the expression of phos-

pho(T94)Tctex-1 at the base of the cilium (Figures 2A and 2B).

Second, IGF-1R neutralizing Ab, but not control Ab, was able

to suppress the activation of phospho(T94)Tctex-1 at the TZ

(Figures 2C and 2D). Third, we showed that cells transfected

with Tctex-1-sh/GFP were unable to resorb cilia in response to

IGF-1 stimulation (Figure 2E).

At the functional level, we found that the ectopic expression of

T94E alone reduced the minimum concentration of IGF-1 that

was necessary to induce ciliary resorption from 10 nM to 1 nM

(data not shown). Coexpression with T94E, but not T94A (the

nonphosphorylatable mutant form of Tctex-1), was able to

rescue the defects in ciliary resorption caused by reductions in

IGF-1R expression (Figure 2F).

TheMitogenicSignalsProvidedby IGF-1AreTransmitted
through Primary Cilia and Phospho(T94)Tctex-1
Usinga 5-ethynyl-20-deoxyuridine (EdU) incorporationassay (Fig-
ure 3A), we found that Tctex-1 suppression significantly blocked



Figure 1. IGF-1 Triggers Ciliary Resorption

(A) Biphasic ciliary resorption profiles of RPE-1 cells treated with IGF-1 or PDGF-AA.

(B) Serum-starved cells were treated with or without 1 mg/ml of anti-IGF-1R aIR3 Ab or antihemagglutinin (HA) Ab 15 min prior to and during IGF-1 treatment.

(C) A timeline depicting the sequence of events in a typical ciliary assembly/disassembly assay involving gene manipulation.

(D) Representative images of 3T3 cells transfected with IGF-1R-sh/GFP or GFP alone at 0 hr and 24 hr following IGF-1 treatment. Arrows and arrowheads point to

the cilia in GFP+-transfected and GFP�-nontransfected cells, respectively. Scale bar represents 10 mm.

(E) Percentages of GFP+-transfected cells displaying cilia.

(F) Immunolabeling of phospho-IGF-1R (green), Ac-Tub (red), and g-Tub (cyan) in RPE-1 cells immediately after serum deprivation (0 hr), 1 min, and 2 hr after

IGF-1 addition. Arrows point to the ciliary TZ. Scale bar represents 2 mm.

(G) Immunolabeling of (pan)IGF-1R (green), Ac-Tub (red), and g-Tub (cyan) in RPE-1 cells immediately after serum deprivation (0 hr) and 2 hr after IGF-1 addition.

Arrows and arrowheads point to ciliary and plasma membrane localizations of IGF-1R, respectively. Scale bar represents 2 mm. Data are presented as mean ±

SEM (**p < 0.01; *p < 0.05; one-way ANOVA; n = 3 experiments).

See also Figure S1.
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IGF-1-induced S phase entry. This phenotype was effectively

rescued by coexpression with T94E, but not T94A (Figure 3B),

suggesting that IGF-1 triggers S phase entry through a pathway

that involves the downstream activation of phospho(T94)Tctex-1.
D

To assess whether or not IGF-1 transmits its mitogenic signals

through primary cilia, we examined the rates of IGF-1-induced

S phase progression in two IFT mutant cell lines—RPE-1 stable

cell line with Ift20 suppressed (Follit et al., 2006) and Ift88mutant
evelopmental Cell 26, 1–11, August 26, 2013 ª2013 Elsevier Inc. 3



Figure 2. Phospho(T94)Tctex-1 Is a Downstream Effector of IGF-1-Induced Ciliary Resorption

(A and B) Representative images of cells immunolabeled for phospho(T94)Tctex-1, Ac-Tub, and g-Tub in quiescent RPE-1 cells (A; 0 hr) or IGF-1-treated cells

(B; 2 hr). Scale bars represent 2 mm.

(C and D) Representative images of cilia in IGF-1 stimulated RPE-1 cells incubated with control HA Ab (C) or anti-IGF-1R aIR3 Ab (D) and immunolabeled with

indicated Abs.

(E) Percentages of control- and Tctex-1-sh/GFP-transfected 3T3 cells displaying cilia after serum or IGF-1 treatments.

(F) Biphasic ciliary resorption profiles of IGF-1-treated cells that were nontransfected, or transfected with IGF-1R-sh/GFP alone (�) or together with Tctex-1

mutant T94E or T94A. Data are presented as mean ± SEM (**p < 0.01; *p < 0.05; one-way ANOVA; n = 3 experiments).
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MEF cells derived from Ift88D2–3bGalmice (Jia et al., 2009; Murcia

et al., 2000), both of which are unable to form cilia (Jia et al.,

2009; Li et al., 2011; Murcia et al., 2000). Significantly fewer

IFT mutant cells were able to enter S phase in response to

IGF-1 relative to their parental, wild-type counterparts (Figures

3C and 3D). These results suggest that IGF-1-mediated mito-

genic signaling requires the presence of a functional cilium.

A Noncanonical Gbg Signaling Pathway Activates
Phospho(T94)Tctex-1 Prior to the Resorption of Cilia
Previous studies have shown that IGF-1 binding leads to an

increase in association between IGF-1R and Gai
GDP, which sus-

tains the intracellular pool of free Gbg (Dalle et al., 2001; Hallak
4 Developmental Cell 26, 1–11, August 26, 2013 ª2013 Elsevier Inc.
et al., 2000; Luttrell et al., 1995). It is possible that this pool of

Gbg is important for generating the dynein-free Tctex-1 that is

necessary for Thr94 phosphorylation (Sachdev et al., 2007).

Because IGF-1R has no reported guanine nucleotide exchange

(GEF) factor activity toward Gai, we surmise that downstream

to the activation of IGF-1R, AGS3 might play a role in stabilizing

Gai
GDP to maintain free Gbg (Takesono et al., 1999). In support of

this model, GFP-IGF-1R, but not GFP alone, coimmunoprecipi-

tated with AGS3 in transfected 293T cells that coexpressed

Gai (Figure 4A). Furthermore, Gb (Figure 4B) and AGS3 (Fig-

ure 4C) were also concentrated at the base of the cilium (closely

apposing the g-Tub-labeled basal body) at both 0 hr and 2 hr

time points in RPE-1 cells.



Figure 3. The Mitogenic Signals of IGF-1

Are Transduced throughCilia and Are Phos-

pho(T94)Tctex-1 Dependent

(A) Timeline depicting the sequence of events in a

typical S phase entry EdU experiment.

(B) Quantification of EdU incorporation in cells

transfected with indicated plasmids. Incorporation

of EdU in GFP control-transfected cells was taken

to be 100%.

(C) Representative images of EdU-labeledWT and

IFT20 KD RPE-1 cells after 16 hr of IGF-1 treat-

ment. Red, EdU; blue, DAPI; arrows, examples of

EdU positive nuclei. Scale bar represents 100 mm.

(D) Quantification of EdU incorporation in indi-

cated cell types. For each cell type, incorporation

of EdU in parental (WT) cells was taken to be

100%. Data are presented as mean ± SEM (***p <

0.001; **p < 0.01; *p < 0.05; one-way ANOVA; n = 3

experiments).

See also Figure S4.
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At the functional level, we performed ciliary assembly/disas-

sembly assays in cells depleted of free Gbg subunits via the

transfection of either bARK-ct/GFP or AGS3-shRNA/GFP.

Compared to GFP-transfected control cells, fewer cells trans-

fected with either construct were able to form cilia following

48 hr of serum starvation (Figure 4D), indicating that Gbg

signaling is important for ciliogenesis. However, the cilia formed

in these cells failed to resorb upon treatment with serum (Fig-

ure 4D). Cotransfection with T94E, but not T94A, was able to

specifically rescue the defects in biphasic ciliary resorption

(but not ciliogenesis) caused by Gbg removal (Figure 4D).

Finally, we observed that the intensity of phospho(T94)Tctex-1

labeling at the ciliary TZ was significantly weaker in cells trans-

fected with bARK-ct/GFP or AGS3-sh/GFP than in neighboring

nontransfected GFP� cells following serum treatment (Figures

4E–4G). Taken together, these data suggest that depleting free

Gbg inhibits the downstream TZ activation of phospho(T94)

Tctex-1 and hence, ciliary resorption.

IGF-1R-Mediated Noncanonical Gbg Signaling
Maintains theProliferatingProgenitor Population during
Corticogenesis
Previously, we proposed that RG receive cues from the ventricle

via primary cilia, allowing for subsequent recruitment of phos-

pho(T94)Tctex-1,which ensures timely ciliary resorption andpro-

liferation (Li et al., 2011) (Figure 5A). A recent study showed that

cerebrospinal fluid (CSF) circulating through the ventricles con-

tains IGF-1R ligands (i.e., IGF-1, IGF-2) (Lehtinen et al., 2011).

Furthermore, immunoEM reveals prominent IGF-2 signal on the

cilia of RG in the developing neocortex (Lehtinen et al., 2011).
Developmental Cell 26, 1–
We set out to determine whether or not

our proposed IGF-1R-Gbg-phospho(T94)

Tctex-1 signaling pathway exhibits the

same functional hierarchy in the devel-

oping brain as that seen in vitro. First,

we found that phospho-IGF-1R was

coenriched with phospho(T94)Tctex-1

near the ciliary TZ region of RG (between
Arl13b-labeled cilia and g-Tub-labeled basal bodies) (Figures 5B

and S2A). No significant phospho-IGF-1R signal was found in

any other region of the cortex (Figure S2B), suggesting that

IGF-1R activation occurs predominantly through cilia in vivo as

well. Furthermore, using antibodies validated for specificity, we

showed that the immunoreactivity of both Gb and AGS3 were

concentrated at the basal body in RG (Figure 5C).

The majority of RG division occurs at the ventricular zone (VZ)

(Figure S2C). Postmitotic neuronal progenies migrate away

from the VZ, halt temporarily at the intermediate zone (IZ),

and get incorporated into laminated cortical plates according

to their birthdates (Figure S2C). We performed knockdown

and rescue experiments in E13.5 mouse cortices via in utero

electroporation (IUE). Approximately 40 hr posttransfection,

the majority of RG transfected with GFP alone produced

daughter RG, characterized by the expression of brain lipid-

binding protein (BLBP) (Figure 5D) and the possession of nuclei

distributed between the VZ and IZ (Figure S2D). Similar to

Tctex-1 silencing (Figure S2D) (Li et al., 2011), suppression of

Gbg (via the expression of either bARK-ct or AGS3) caused

RG to differentiate into Tuj1+ neurons (Figure 5D) that migrated

to the IZ (Figures S2E and S2F). Consistently, significantly fewer

cells transfected with bARK-ct-IRES-GFP or AGS3-shRNA-

IRES-GFP were mitotic (i.e., phosphohistone-3 [PH3]-positive)

compared to cells transfected with control vectors (Figures

5E, S2E, and S2F).

RG transfected with IGF-1R-shRNA/GFP behaved almost

identically to RG in which Tctex-1 or Gbg signaling was sup-

pressed. RG with IGF-1R suppressed exhibited significantly

lower mitotic indices (Figure 5F) due to their premature exit
11, August 26, 2013 ª2013 Elsevier Inc. 5



Figure 4. Gbg Signaling Mediates Ciliary Resorption via the Recruitment of Phospho(T94)Tctex-1 to the Ciliary TZ

(A) Immunoblots of total cell lysates (TCL) or GFP Ab immunoprecipitates of 293T cells transfected with indicated plasmids and then stimulated with IGF-1.

(B and C) Immunolabeling of g-Tub (cyan), Ac-Tub (red), and Gb (green in B) or AGS3 (green in C) in RPE-1 cells postserum treatment. Scale bars represent 5 mm

(low power panel of C); 2 mm (high power panel of C).

(D) Biphasic ciliary resorption profiles of 3T3 cells transfected with indicated plasmids. Fractions of GFP+ transfected cells displaying cilia at indicated time points

following serum addition are shown.

(E) The relative (Rel.) intensity of phospho(T94)Tctex-1 immunolabeling at the ciliary TZ of transfected cells is shown. The immunofluorescence intensity of

phospho(T94)Tctex-1 in control nontransfected cells was taken to be 100%.

(F and G) Cells were transfected with bARK-ct/GFP (E) or AGS3-sh/GFP (F), then immunolabeled with phospho(T94)Tctex-1 (red) and g-Tub (cyan). Columns 1

and 2 are enlarged views of boxed regions 1 and 2, respectively. Scale bar represents 2 mm (G). Data are presented as mean ± SEM (***p < 0.001; **p < 0.01; *p <

0.05; one-way ANOVA; n = 3 experiments).
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from the cell cycle (Figures S3A and S3C). These cells adopted

neuronal fates and migrated to the IZ (Figure S3B).

Remarkably, coexpression of T94E, but not T94A, effectively

rescued the majority of phenotypic deviations (e.g., neuron/

progenitor ratio, mitotic index) caused by bARK-ct expression

(Figures 5D, 5E, and S2E), AGS3 silencing (Figures 5D, 5E, and

S2F), or IGF-1R silencing (Figures 5F and S3A–S3C). Finally,

we found that the cells with Gbg or IGF-1R suppressed (that still

had their processes contacting the ventricle surface) exhibited

significantly weaker phospho(T94)Tctex-1 signals relative to

neighboring nontransfected cells (Figures 5G, 5H, and S2G).

DISCUSSION

Our data support a model in which IGF-1 promotes cell-cycle

entry by mediating ciliary resorption through a noncanonical

Gbg signaling axis. Figure 6 depicts our proposed stepwise pro-

cess based on data from our previous and current studies: (1)

upon ligand binding, ciliary IGF-1R translocates to the base of

the cilium; (2) here, AGS3 binds and stabilizes Gai-GDP bound

to activated IGF-1R in order to sustain the release of Gbg; (3)

Gbg competes with dynein intermediate chain for Tctex-1 bind-
6 Developmental Cell 26, 1–11, August 26, 2013 ª2013 Elsevier Inc.
ing, generating a pool of dynein-independent Tctex-1; and (4)

Tctex-1 is phosphorylated at Thr94 and recruited to the ciliary

TZ, where it induces the first wave of ciliary resorption and

primes cells to reenter S phase.

Cilia-Dependent versus Cilia-Independent Control
of Cell Proliferation
Emerging data suggest that in cycling cells, ciliary disassembly

acts as a ‘‘checkpoint’’ to monitor G1/S progression (Kim et al.,

2011; Li et al., 2011). Here, we show that in nontransformed

epithelial and fibroblast cells, IGF-1 transmits its proliferative sig-

nals primarily through the cilium by modulating its disassembly,

which in turn, times the G1/S transition of the cell. Compromising

the formation of cilia in IFT mutant cells eliminates their ability to

proliferate in response to IGF-1. This suggests that IGF-1R asso-

ciated with the ciliary membrane represents the major sensor of

IGF-1 in wild-type cells.

Our findings support the theory that cilia are important organ-

elles that transmit mitogenic signals required for cell division

(reviewed by Christensen et al., 2007). This leads us to question

why IGF-1 induces cell-cycle entry by preferentially activating

IGF-1Rs on cilia over those on the cell surface. We speculate



Figure 5. Noncanonical IGF-1R-Gbg Signaling Pathway Regulates the Recruitment of Phospho(T94)Tctex-1 and Cell Fate Choice of RG

(A–C) Schematic diagram of RG in the developing neocortex. Each RG has a single primary cilium, which projects from its apical endfeet and extends into the

ventricles, contacting CSF. Immunolabeling of boxed area is shown in (B) and (C). (B) Enlarged views of ventricle surfaces that are triple labeled with phospho(T94)

Tctex-1 (red) or phospho-IGF-1R (red) together with Arl13b (green) and g-Tub (cyan). (C) Left: enlarged views of the ventricle surfaces immunolabeled with Gb

(red), or AGS3 (red) together with Arl13b (green) and g-Tub (cyan). Right: Gb and AGS3 Abs each recognized a single band of expected size in mouse embryonic

brain lysates on immunoblots. Scale bars represent 5 mm.

(D) Percentage of total transfected GFP+ cells that were neurons (Tuj1+) or RG (BLBP+).

(E) Mitotic indices of GFP+ cells transfected with indicated plasmids. More than 400 cells in four independent animals were scored.

(F) Mitotic indices are presented as fractions of GFP+/PH3+ out of total GFP+ cells. More than 600 GFP+ cells were scored in three independent experiments.

(G) Quantification of the relative (Rel.) intensity of phospho(T94)Tctex-1 of cells transfected with indicated plasmids. The intensity in vector control-transfected

cells was taken to be 100%.

(H) Representative images of ventricle surfaces containing IGF-1R-sh/GFP transfected cells. Arrowheads and arrows point to GFP+ transfected cells and GFP�

nontransfected cells. Scale bar represents 5 mm. Data are presented as mean ± SEM (**p < 0.01; *p < 0.05; one-way ANOVA).

See also Figures S2 and S3.
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Figure 6. Working Model

(A) Sequential diagram of our proposed signaling

pathway. Activated IGF-1R binds to the Ga sub-

unit of the heterotrimeric G protein complex. AGS3

binds and stabilizes GDP-bound Ga. Free Gbg

triggers the release of Tctex-1 from the dynein

complex, enabling subsequent phosphorylation of

Tctex-1.

(B) Spatial diagram of our working model. BB,

basal body.
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that the close proximity of ciliary resorption effectors (Li et al.,

2011; unpublished data) to centrosomal proteins that are

required for S phase entry and that localize to the base of the

cilium (Doxsey et al., 2005) is necessary to ensure the temporal

coupling of these two cellular events.

Although nonciliated IFT mutant cells lose their ability to

respond to IGF-1 (Figures 3C and 3D), it is interesting to note

that thesemutant cells retain their capacity to enter the cell cycle

in response to serum (Figure S4), which contains numerous other

growth factors. In fact, these cells entered S phase at a �2-fold

higher rate relative to their wild-type, ciliated counterparts (Fig-

ure S4). These results suggest that although IFT mutant cells

have lost their ability to sense IGF-1, they respond with higher

sensitivity to alternative, serum-derived extracellular cues

through signaling pathways that are normally less active in

wild-type, ciliated cells. This finding might help to address why

cilia have opposing effects on cell growth, depending on the

context (Han et al., 2009; Wong et al., 2009).

Finally, many types of cancerous/transformed cells lack cilia

(Han et al., 2009; Seeley et al., 2009; Wong et al., 2009; Yuan

et al., 2010), but express elevated levels of IGF-1R and its effec-

tors, including insulin receptor substrate and Ras/PI3K/Akt

signaling components (Chang et al., 2002; Schubbert et al.,

2007; Shimizu et al., 2004). These cells must respond to IGF-1

via cilia-independent signaling pathways transduced by IGF-

1Rs on the cell surfaces. In support of this hypothesis, IGF-1 is

known to have distinct effects on the growth of normal and

transformed cells (Baserga et al., 2003).

Regulation of Ciliary Resorption Is Important
for Maintaining Neural Progenitor Population
The cerebral cortex is formed via the coordination between

lateral expansion of neural progenitors and their differentiation.

During early cortical development, the majority of RG divide to

produce identical daughters that expand the mitotic progenitor

population, whereas late progenitors tend to adopt neuronal

fates. A better understanding of the mechanisms that underlie

the switch between self-renewal and neuronal differentiation in

RG is essential for elucidating the factors that control brain

size (Bond and Woods, 2006). Recent data suggest that CSF-

borne IGF-1R ligands are an important source of proliferative

cues sensed by receptors on the cilia of RG. Here, a hierarchical

signaling cascade involving AGS3 and Gbg recruits phos-

pho(T94)Tctex-1 to the ciliary TZ in order to control the timing
8 Developmental Cell 26, 1–11, August 26, 2013 ª2013 Elsevier Inc.
of ciliary resorption and hence, S phase

reentry. The expression of IGF-1R ligands

in CSF is temporally dynamic, peaking
during times of neurogenesis (Lehtinen et al., 2011). This likely

represents a mechanism for regulating progenitor population

according to stage of development.

Although it remains a technical challenge to quantitatively

evaluate the ciliary disassembly of RG in situ, we have shown

in the past that inhibiting the expression of proteins known to

mediate ciliary resorption (e.g., AurA, HDAC6) (Li et al., 2011)

unanimously blocks the S phase re-entry of RG. Furthermore,

mouse and human genetics studies have shown that mutations

in genes encoding proteins involved in ciliary resorption (e.g.,

Nde1, Inositol-1,4,5-trisphosphate 5-phosphatase) are associ-

ated with microcephaly (Bakircioglu et al., 2011; Bielas et al.,

2009; Jacoby et al., 2009). Microcephaly and mental retardation

have also been reported in patients with mutations in Igf1 or

Igf1R (Walenkamp et al., 2005; Walenkamp and Wit, 2006).

Last, the human Tctex-1 (TCTEL1) gene has been mapped to a

chromosomal region that is deleted in a subset of patients with

mental retardation (Watanabe et al., 1996). Taken together,

these findings suggest that the regulation of ciliary dynamics in

RG plays an important role in determining the population of

proliferating progenitors and hence, the overall size of the brain.

Perspectives
IGF-1R signaling is highly conserved across species and is

responsible for a diverse set of physiological roles including life-

span, growth, and metabolism. Interestingly, it has been shown

that lifespan regulation of Caenorhabditis elegans depends on

both the IGF-1R homolog DAF-2 and sensory cilia (Apfeld and

Kenyon, 1999). Additionally, cilium-dependent IGF-1R signaling

is required to induce the differentiation of preadipocytes (Zhu

et al., 2009). Collectively, these and our present studies lead

us to speculate that cilia-associated IGF-1R signaling mediates

a large and diverse repertoire of cellular functions, some of which

have yet to be identified.

EXPERIMENTAL PROCEDURES

Reagents

Primary Abs used were: IGF-1R neutralizing mouse Ab aIR3 (Kull et al., 1983)

(EMDMillipore); hemagglutinin Ab (Abcam), IGF-1Rb subunit rabbit Ab (for im-

munostaining; Santa Cruz, SC713), phospho-IGF-1R Ab (Tyr1131/1135/1136;

Abcam), Ac-Tub mouse IgG2b (Sigma), AGS3 Ab (gift of Joe Blumer) (Blumer

et al., 2002), Gb rabbit Abs (clone T20; Santa Cruz and gift of Tom Sakmar),

Arl13b rabbit Ab (gift from Kathryn Anderson) (Caspary et al., 2007), BLBP rab-

bit Ab (gift from Nathaniel Heintz) (Feng et al., 1994), BrdU rat Ab (Harlan),
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dynein intermediate chain mouse Ab (EMD Millipore), GFP rabbit Ab (Invitro-

gen), GFP chicken Ab (Abcam), GFP mouse Ab (EMD Millipore), g-Tub mouse

Ab (clone GTU-88, IgG1; Sigma), Ki67 rabbit Ab (Novocastra), Nestin mouse

Ab (clone 401, Developmental Studies Hybridoma Bank), P-H3 rabbit Ab

(EMD Millipore), antiphospho(T94)Tctex-1 rabbit Ab (Li et al., 2011), and Tuj1

mouse Ab (Covance). Alexa-conjugated streptavidin or secondary Abs (anti-

mouse, anti-rabbit, anti-rat, anti-IgG2b) were purchased from Invitrogen; bio-

tinylated anti-IgG1 and Cy5-conjugated streptavidin were purchased from

Jackson Laboratory (used as 1:200). In this study, negative controls involved

omission of the primary Ab or use of Ab that had been preabsorbed with anti-

gen. Colabeling of Ac-Tub (mouse IgG2b) and g-Tub (mouse IgG1) in this study

involved using isotype-specific mouse IgGs.

All plasmids used for overexpression experiments in cultures were under the

CMV promoter. The expression constructs used in IUE were cloned into pCAG

vector (gift of Dr. C. Cepko). All knockdown constructs were in pU6 vector (gift

of Dr. Y. Shi) (Xia et al., 2003). Plasmid encoding human or mouse Tctex-1-sh,

control-sh, WT, T94E, or T94A (in pCAG-IRES-GFP) have been described (Li

et al., 2011). bARK-ct (gift from R.J. Lefkowitz) (Koch et al., 1994), AGS3 (gift

from J. Blumer) (Blumer et al., 2003), GFP-(human)IGF-1R (gift from Drs. Le

Roith and Santigo Quiroga) (Buckley et al., 2002), AGS3-sh (gift from

Dr. L.-H. Tsai) (Sanada and Tsai, 2005), and IGF-1R-sh-IRES-GFP were also

used. IGF-1R shRNA 3 was used for the majority of our experiments. The

targeting sequencing of IGF-1R is 50-GGGAATGGGTCGTGGACAGAT.

Cell Culture, Transfection, Cilium Assembly/Disassembly Assay,

EdU Incorporation Index, and Coimmunoprecipitation

IFT20 KD-RPE-1 (Follit et al., 2006) was a gift from G. Pazour (University of

Massachusetts Medical School). Wild-type MEF and Ift88 mutant MEF

(Ift88D2–3bGal ) cells were gifts from A. Liu (Pennsylvania State University) (Jia

et al., 2009). All cells were transfected using nucleofection (Amaxa); cells

receiving more than one plasmid were routinely immunolabeled to confirm

high (>90%) double or triple transfection efficiency. Standard methods were

used for immunoprecipitation and immunoblotting. Immunoblots were quanti-

fied using the Odyssey Infrared system (LI-COR). A cilium assembly/disas-

sembly assay was performed exactly as previously described (Pugacheva

et al., 2007). Briefly, 18 hr posttransfected or nontransfected cells were starved

in serum-free medium for 48 hr to induce cilium formation (and gene expres-

sion). Assay medium containing either 10% serum, 10 nM IGF-1 (Sigma), or

50 ng/ml PDGF-AA (EMD Millipore) was then added to the cells to induce

ciliary resorption. Cells were harvested at various time points for immunolab-

eling. In neutralization experiments, Abs (1 mg/ml) were added to cells at the

time of growth factor addition and replenished once 12 hr postserum addition.

To quantify EdU incorporation, experiments were carried out in synchro-

nized cells. Posttransfected cells (18 hr) were growth-arrested by a 48 hr

serum-starvation period. Cells were then cultured in regular medium for 12–

16 hr and pulse-labeled with 1 hr EdU (10 mM) followed by a 7–11 hr chase.

These cells were subsequently stained using a CLICK-it reaction following

manufacturer’s instructions (Invitrogen). Coimmunoprecipitation was carried

out in 293T cells that were transfected with indicated plasmids, serum starved,

and then treated with IGF-1 for 12 hr. Harvested cell lysates were subjected to

immunoprecipitation using anti-GFP antibody coupled on Protein G Dyna-

beads (Invitrogen). Immunoblots of immunoprecipitates were quantified using

the Odyssey Infrared system.

IUE, Immunohistochemistry of Mouse Brain Slices, and Quantitative

Analyses

IUE procedures were performed on E13.5 CD1 mouse brains as described (Li

et al., 2011). At specific time points, electroporated brains were harvested,

fixed with 4% paraformaldehyde overnight at 4�C, embedded in low melting

agarose, and sectioned by vibratome. Sectioned brain slices were sub-

sequently subjected to immunostaining using standard protocols. For the

colabeling of phospho(T94)Tctex-1 and phospho-IGF-1R, sections were first

incubated with Ab against phospho(T94)Tctex-1, followed by excess bio-

tinylated goat anti-rabbit Ab. The sections were then paraformaldehyde fixed,

incubated with anti-phospho-IGF-1R Ab and g-Tub Abs, and detected using

Alexa488-conjugated anti-rabbit, Cy5-conjugated anti-mouse Abs, and

Alexa568 conjugated streptavidin. Analysis of the immunostained sections

was carried out on a Leica TCS SP2 spectral confocal system. All the quanti-
D

fication studies were carried out in transfected cells localized within the dorso-

lateral neocortex to avoid possible variation within particular brain regions. At

least three independent brains were analyzed for each DNA construct. In order

to improve observer objectivity, image capture and analysis were done at

separate times in a double-blind fashion. To score images, the GFP channel

was first judged independently, followed by judgments of the other markers.

For Ki67 and BrdU nuclear labeling, small punctae or signals that were not

compliant with the DAPI nuclear labeling were ignored. All animal manipula-

tions were performed in accordance with the guidelines for animal experi-

ments established by the Institutional Animal Care and Use Committees of

Weill Medical College of Cornell University.

Mitotic Index, Cell-Cycle Exit, and Cell-Cycling Analyses in Brain

Slices

The mitotic index of treated brain slices was determined by the ratios of GFP

and PH3 double-positive cells to total GFP+ transfected cells in the VZ/sub-

ventricular zone. Cell-cycle analysis was performed as described (Li et al.,

2011). Briefly, pregnant mice were injected with BrdU (50 mg/kg body weight)

24 hr after IUE, and fetal brains were harvested 24 hr after BrdU treatment.

Brain slices were then immunolabeled for GFP, BrdU, and Ki67. The cell-cycle

exit index of GFP-transfected cells was determined as the ratio of GFP-labeled

cells that exited the cell cycle (GFP+, BrdU+, and Ki67�) to total GFP-labeled

cells with BrdU incorporation (GFP+ and BrdU+).

Statistical Analyses

Statistical analyses were performedwith GraphPad software (GraphPad Prism

v4.0, GraphPad Software). Data are presented as the mean ± SEM from at

least three representative independent experiments. T test was used for the

comparison of two groups. ANOVA was applied for the comparisons in which

only one independent variable was being analyzed. The Dunnett’s test (as a

post hoc test) was used to compare data samples versus control. Statistical

significance was defined as p < 0.05, 0.01, or 0.001.
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