Synthesis and thermal reactivity of 3-benzyl-7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide

Walter José Peláez, Teresa M.V.D. Pinho e Melo*
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

A R T I C L E I N F O

Article history:

Received 21 January 2013
Received in revised form 28 February 2013
Accepted 5 March 2013
Available online 13 March 2013

Keywords:

Cycloadditions
Sigmatropic shifts
Dipoles
Azafulvenium methides
Trifluoromethylpyrroles
Flash vacuum pyrolysis
Microwave chemistry
DFT calculations

Abstract

The generation and reactivity of 1-benzyl-5-trifluoromethyl-azafulvenium methide are described. Under microwave induced pyrolysis this intermediate could be trapped by dipolarophiles acting as a 4π as well as 8π dipole. It was observed that with dimethyl acetylenedicarboxylate the 1,3-dipolar cycloadduct was the major product whereas with N-substituted maleimides the major product results from the addition across the 1,7-position. FMO analysis of the cycloadditions corroborated the rationalization of the observed reactivity. Quantum chemical calculations carried out at the DFT level of theory allowed the rationalization of the stereoselectivity observed in the cycloaddition of 1-benzyl-5-trifluoromethylazafulvenium methide with N-substituted maleimides. The study revealed that exo-cycloaddition is the main reaction path for the 1,7-cycloaddition, while the endo-approach is the main mode of reaction leading to 1,3 -cycloadducts. In addition, under flash vacuum pyrolysis or conventional thermolysis, 1-benzyl-5-trifluoromethyl-azafulvenium methide undergoes an allowed suprafacial sigmatropic [1,8]H shift leading to the efficient formation of 2-methyl-1-styryl-3-trifluoromethyl-1 H -pyrrole.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fluorinated compounds play an important role in medicinal chemistry since fluorine substitution in organic molecules often leads to improved metabolic stability, bioavailability, and pro-tein-ligand interactions. ${ }^{1}$ The influence of the CF_{3} group on physiological activity is usually concerned with the increasing lipophilicity, leading to the improvement of in vivo transport characteristics. The high electronegativity of the CF_{3} group results in quite a different electron density distribution and significantly changes the reactivity of the molecules. There are only a few examples of trifluoromethyl-containing pyrroles, ${ }^{2}$ however, some of these compounds have demonstrated important insecticidal action and mitochondrial uncoupling activity. ${ }^{3}$

We have previously demonstrated that 4,5-methoxycarbonylazafulvenium methides $\mathbf{1}$ and 4,5-methoxycarbonyl-diazafulvenium methides $\mathbf{2}$ are versatile building blocks for the synthesis of functionalized pyrroles and pyrazoles (Scheme 1). ${ }^{4,5}$ These extended dipolar systems can, in principle, act as $4 \pi 1,3$-dipoles or as 8π 1,7-dipoles, although the typical reactivity is that expected for 1,7-dipoles. However, we have shown that 5-trifluoromethyl-azafulvenium methide derivatives $\mathbf{3}$ have a different reactivity pattern. In fact, these reactive intermediates participate in cycloaddition

[^0]reactions as 1,3-dipoles and/or 1,7-dipoles, leading to new trifluoromethylpyrrole-annulated systems. ${ }^{4 h}$

Azafulvenium methide 3a, generated from 1H,3H-pyrrolo[1,2-c] thiazole-2,2-dioxide 4 by thermal extrusion of sulfur dioxide, showed site selectivity in the reaction with strong electrondeficient dipolarophiles such as dimethyl acetylenedicarboxylate (DMAD) and N-phenylmaleimide (NPM) leading exclusively to 1,3cycloadducts 5 and 6 , respectively. However, in the cycloaddition of dipole 3a with ethyl 3-phenylpropiolate, 1,7-cycloadduct $\mathbf{8}$ was also formed. Frontier molecular orbital (FMO) analysis of the cycloadditions was in agreement with the observed selectivity. ${ }^{4 h}$

Azafulvenium methides also participate in other pericyclic reactions namely, sigmatropic $[1,8] \mathrm{H}$ shifts and 1,7 -electrocyclizations giving vinylpyrroles. ${ }^{4,6}$ In fact, we demonstrated that trifluoromethyl-azafulvenium methide $\mathbf{3 b}$ is converted efficiently into C-vinylpyrrole 11 under thermolysis via 1,7-electrocyclization followed by a rearrangement. The generation of dipole $\mathbf{3 b}$ in the presence of N-phenylmaleimide gives the corresponding 1,3cycloadduct 12, although the formation of C-vinylpyrrole 11 as a competitive reaction is also observed (Scheme 3). ${ }^{4 \mathrm{~h}}$

Herein, the chemistry of a new 5-trifluoromethyl-azafulvenium methide derivative was studied in order to better understand the chemistry of azafulvenium methides, in particular to know the structural features that allow these intermediates to participate in reactions with dipolarophiles as 1,3 -dipoles and 1,7 -dipoles. It was also our aim to evaluate the scope of this

$1 \mathrm{X}=\mathrm{CR}$ Azafulvenium methide
$2 \mathrm{X}=\mathrm{N}$ Diazafulvenium methide

Scheme 1. Cycloaddition of aza- and diazafulvenium methides.

Scheme 2. Cycloaddition of azafulvenium methide 3a with electron-deficient dipolarophiles. ${ }^{4}$ h
synthetic approach to functionalized trifluoromethylpyrroles, including trifluoromethylpyrrole-annulated derivatives.

2. Results and discussion

2.1. Synthesis of 7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thia-zole-2,2-dioxide

7-Trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide 17, the precursor of the new 1-benzyl-5-trifluoromethyl-azafulvenium

3b 1249%
1141%

Scheme 3. Pericyclic reactions of azafulvenium methide $\mathbf{3 b}$. ${ }^{4 h}$
methide, was prepared following a known general methodology (Scheme 4). ${ }^{4,6}$ The reaction of thiazolidine 13 with 4-ethyloxy-1,1,1-trifluorobut-3-ene-2-one (14) was diastereoselective, giving the expected 1-butenyl-thiazolidine $\mathbf{1 5}$ in 84% yield. Two rotamers were observed in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of this heterocycle recorded at ambient temperature as previously observed for other 1-butenyl-thiazolidine derivatives. ${ }^{4 \mathrm{~h}}$ Cyclization of thiazolidine $\mathbf{1 5}$ in the presence of trifluoroacetic anhydride gave 7-trifluoromethyl$1 H, 3 H$-pyrrolo [1,2-c]thiazole 16 in good yield as single enantiomer ($[\alpha]_{\mathrm{D}}+91.3$). The stereochemistry of $\mathbf{1 6}$ was assigned by comparison with the structure of (R)-3-phenyl-7-trifluoromethyl-1H,3H-pyr-rolo[1,2-c]thiazole ($[\alpha]_{D}+159$), prepared by a similar synthetic methodology, whose absolute configuration was determined by Xray crystallography. ${ }^{4 \mathrm{~h}}$ Catalytic oxidation of thiazolidine $\mathbf{1 6}$ afforded sulfone $\mathbf{1 7}$ in good yield, isolated as a racemic mixture.

Scheme 4. Synthesis of 7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide 17.

2.2. Generation and reactivity of 1-benzyl-5-(trifluoromethyl) azafulvenium methide

7-Trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide 17 was subjected to flash vacuum pyrolysis (FVP), microwave induced
pyrolysis (MWIP), and conventional heating to carry out the extrusion of sulfur dioxide leading to the target azafulvenium methide 18 (Scheme 5).

Scheme 5. Generation of azafulvenium methide $\mathbf{1 8}$ by FVP, MWIP, and conventional heating.

FVP or conventional thermolysis of 17 in the absence of dipolarophiles led to the efficient formation of N -styrylpyrrole 19 via an allowed suprafacial sigmatropic [1,8]-H shift in the 8π 1,7-dipolar system of the in situ generated azafulvenium methide $\mathbf{1 8}$ (Scheme 5). Although azafulvenium methide 18 exists in equilibrium of at least two conformers, only conformer 18a bears a hydrogen in the appropriate position to undergo the pericyclic reaction (see below, theoretical calculations).

Under MWIP, azafulvenium methide 18 was also generated and trapped in cycloaddition reactions (Scheme 6). The reaction with DMAD gave a mixture of 1,3- and 1,7-cycloadducts $\mathbf{2 0}$ and 21 in 89:11 ratio, respectively. Under the same microwave induced reaction conditions, dipole 18 reacted with N-phenylmaleimide (NPM) and N-methylmaleimide (NMM) also giving 1,3- and 1,7-cycloadducts. However, the major products resulted from the addition across the 1,7-position, the selectivity opposite to the one observed with DMAD. It is important to note that cycloadducts $\mathbf{2 2}$ and $\mathbf{2 3}$ were obtained in a diastereoselective manner. Attempts to carry out the cycloaddition of azafulvenium methide $\mathbf{1 8}$ with ethyl 3-phenylpropiolate, only led to the formation of 2-methyl-1-styryl-3-trifluoromethyl-1H-pyrrole 19, which was isolated in high yield (90\%).

a $\mathrm{R}=\mathrm{CH}_{3} \mathrm{D}_{\mathrm{H} 4-\mathrm{C} 4-\mathrm{C} 3 \mathrm{a}-\mathrm{H} 3 \mathrm{a}}=17.9^{\circ}$
b $R=P h \quad D_{\text {H4-C4-C3a- }}$ На $=17.4^{\circ}$

a $\mathrm{R}=\mathrm{CH}_{3} \mathrm{D}_{\mathrm{H} 4-\mathrm{C} 4-\mathrm{C} 3 \mathrm{a}-\mathrm{H} 3 \mathrm{a}}=121.2^{\circ}$
b $R=P h \quad D_{H 4-C 4-C 3 a-H 3 a}=121.2^{\circ}$
Fig. 1. Estimated dihedral angles for 3a,4-dihydropyrrolo[3,4-a]pyrrolizine-1,3(2H,8bH)-diones 22.
to establish that the azafulvenium 18 reacts with N-phenyl- and N-methylmaleimide affording only the trans-stereoisomer. Furthermore, the ${ }^{1} \mathrm{H}$ NMR spectrum of a cis/trans mixture of a similar compound, bearing a methyl- instead of the benzylgroup, shows the major cycloadduct with the same coupling pattern and a minor cycloadduct, which was assigned as being the cis-isomer since the coupling between H4 and H3a could be observed.

The structural assignment of compounds $\mathbf{2 3}$ was supported by NOESY spectra. Relative high-intensity cross-peaks between H4 and H9b and connectivity between the methylene group (at C10) and H3a were found, which is in agreement with the estimated distances between hydrogen atoms (Fig. 2), establishing that compounds 23 have trans configuration.

2.3. Theoretical study

Quantum chemical calculations, carried out at the DFT level of theory (B3LYP functional), have been carried out in order to investigate the structure and preferred conformers of 5-trifluoromethyl-azafulvenium methides $\mathbf{3 a}$ and $\mathbf{1 8}$ in the gas phase (Fig. 3, Table S1). Full geometry optimizations were per-

Scheme 6. Reactivity of 5-trifluoromethyl-azafulvenium methide $\mathbf{1 8}$.

The structural assignment of cycloadducts 20-23 was based on one-dimensional NMR spectra (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$) and two-dimensional HMQC, HMBC, and NOESY spectra.

In particular, structures of compounds 22 were established mainly on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra and the estimated dihedral angle between H4 and H3a (Fig. 1). In fact, scalar coupling between these protons could not be detected, allowing us
formed, followed by harmonic frequency calculations, at the same level of theory, which also allowed characterization of the nature of the stationary points. The azafulvenium methide 3a was found to be planar. On the other hand, the results show that 5 -trifluoromethyl-azafulvenium methide $\mathbf{1 8}$ can exist in two different conformers, conformer 18b slightly more stable than conformer 18a having the inward benzyl group ($15.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$).

Fig. 2. Estimated distances between hydrogen atoms for 3a,4,9,9a-tetrahydro-1H-pyrrolo[3,4-f]indolizine-1,3(2H)-diones 23.
dipole have the highest orbital coefficients, indicating that the 1,3cycloaddition should be favored over the 1,7-cycloaddition (Fig. 5). This is in agreement with the selectivity observed experimentally in the cycloaddition of $\mathbf{1 8}$ with DMAD. However, with N-substituted maleimides, the 1,7-cycloadducts became the major products, and no cycloaddition was observed with ethyl 3-phenylpropiolate. Thus, in the case of azafulvenium methide 18, bearing an additional benzyl group at C1, the selectivity can only be explained considering a combination of electronic and steric factors.

In order to be able to rationalize the stereoselective synthesis of trans-cycloadducts (22 and 23) from the cycloaddition of aza-

Fig. 3. Optimized geometries of 5-trifluoromethyl-azafulvenium methide (3a) and of the two relevant conformers of 1 -benzyl-5-trifluoromethyl-azafulvenium methide (18), at B3LyP($6-31+G(d, p))$ level of theory.

We have previously reported that the frontier molecular orbital (FMO) analysis of the cycloaddition reactions of tri-fluoromethyl-azafulvenium methide 3a indicated that the HOMOdipole - LUMO $_{\text {dipolarophile }}$ is the dominant interaction for strong electron-deficient dipolarophiles such as DMAD and NPM. In the HOMO dipole controlled reaction, the C1 and C3 reactive sites of dipole 3a have the highest orbital coefficients indicating that the 1,3 -cycloaddition should take place exclusively as observed experimentally. For the less-activated dipolarophiles such as ethyl 3-phenylpropiolate, the $\mathrm{LUMO}_{\text {dipole }}-\mathrm{HOMO}_{\text {dipolarophile }}$ interaction must also be considered. The LUMO of the azafulvenium methide 3a is characterized by having the C1 and C7 reactive sites with the highest orbital coefficients, favoring the 1,7 -cycloaddition. This rationalization explains the formation of both 1,3-cycloadduct and 1,7 -cycloadduct in the reaction of azafulvenium methide $\mathbf{3 a}$ with ethyl 3-phenylpropiolate (Scheme 2). ${ }^{4 \mathrm{~h}}$

FMO analysis of the cycloaddition reactions of $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$, summarized in Fig. 4 and Table 1, has been carried out. The values of the HOMO and LUMO energies of azafulvenium methide 3a are lower than the corresponding values obtained for azafulvenium methide 18. Nevertheless, $\mathrm{HOMO}_{\text {dipole }}-\mathrm{LUMO}_{\text {dipolarophile }}$ is still the dominant interaction for strong electron-deficient dipolarophiles. Analyzing the $\mathrm{HOMO}_{\text {dipole }}$ controlled cycloaddition of azafulvenium methide 18, we found that the C 1 and C 3 reactive sites of the
fulvenium methide $\mathbf{1 8}$ with N-substituted maleimides, quantum chemical calculations were carried out at the DFT level of theory (see Supplementary data). The B3LYP functional, selected for this task, has been shown to be an effective method for modeling dipolar cycloadditions. ${ }^{7}$ In this theoretical study transition states resulting from the following reactions were considered: (i) exo-1,7-cycloaddition; (ii) endo-1,7-cycloaddition; (iii) exo-1,3cycloaddition and (iv) endo-1,3-cycloaddition. The activation energies corresponding to these transitions states are reported in Table 2. The optimized geometries of relevant transition structures for the cycloaddition of azafulvenium $\mathbf{1 8 b}$ and maleimides are presented in Fig. 6.

Calculations carried out to estimate the relative stability of the cis- and trans-1,7(1,3)-cycloadducts revealed that the cisderivatives, which were not detected, are around $17 \mathrm{~kJ} \mathrm{~mol}^{-1}$ less stable. On the other hand, calculations also indicate that trans-1,7cycloadducts 23, identified as the major products, are around $8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more stable than the trans-1,3-counterparts 22.

In this analysis of the cycloaddition of azafulvenium methide $\mathbf{1 8}$ with maleimides, the two conformers 18a and 18b were considered. The synthesis of the trans-1,7-cycloadducts 23 could only result from the endo-1,7-cycloaddition of conformer 18a through transition state $\mathrm{TS}_{\text {endo }} 1,7[\mathbf{1 8 a}]$ or from the exo-1,7-cycloaddition of conformer 18b through transition state $\mathrm{TS}_{\text {exo }} 1,7[\mathbf{1 8 b}]$ (Scheme 7).

Fig. 4. Relative energies (eV) for dipoles 3a and $\mathbf{1 8}$ and different dipolarophiles [B3LyP/6-31+G(d,p)].

Table 1
Frontier orbital energies (eV) for $\mathbf{3 a}$ and $\mathbf{1 8}$ and different dipolarophiles at AM1, PM3, HF/6-31G(d), and B3LyP/6-31+G(d,p) theoretical level

	HOMO				LUMO			
	AM1	PM3	HF/6-31G(d)	B3LyP/6-31+G(d,p)	AM1	PM3	HF/6-31G(d)	B3LyP/6-31+G(d,p)
3a	-7.83	-8.19	-6.15	-5.00	-1.24	-1.44	1.40	-2.81
18a	-7.64	-8.02	-6.08	-4.82	-1.19	-1.43	1.65	-2.56
18b	-7.67	-8.07	-6.12	-4.86	-1.18	-1.42	1.59	-2.60
NPM	-11.61	-11.49	-11.52	-6.87	-1.25	-1.22	1.51	-3.10
NMM	-10.51	-10.18	-11.06	-7.81	-1.14	-1.23	1.55	-3.03
DMAD	-11.96	-11.83	-11.72	-8.40	-0.51	-0.36	3.01	-3.30
Ethyl 3-phenyl-propiolate	-9.68	-9.72	-8.94	-7.09	-0.67	-0.66	2.25	-2.20

Fig. 5. Surface of electron density, isosurface of HOMO and LUMO of $\mathbf{1 8 a}, \mathbf{b}$ and calculated MO coefficients (PM3) at the reactive sites C1, C3, and C7 are also presented.

Table 2
Transition state energies at B3LyP/6-31+G(d,p) theoretical level, calculated relative to conformer 18b and the corresponding maleimide

1,7 -Cycloaddition	B3LyP/6-31+ $\mathrm{G}(\mathrm{d}, \mathrm{p}) \mathrm{kJ} \mathrm{mol}^{-1}$	1,3 -Cycloaddition	B3LyP/6-31+ $\mathrm{G}(\mathrm{d}, \mathrm{p}) \mathrm{kJ} \mathrm{mol}$
$\mathrm{TS}_{\text {exo }} 1,7[\mathbf{1 8 b}] \mathrm{Me}$	5.14	$\mathrm{TS}_{\text {exo }} 1,3[\mathbf{1 8 a}] \mathrm{Me}$	19.40
$\mathrm{TS}_{\text {endo }} 1,7[\mathbf{1 8} \mathbf{1 8}] \mathrm{Ph}$	24.78	$\mathrm{TS}_{\text {endo }} 1,3[\mathbf{1 8 b}] \mathrm{Ph}$	12.40
$\mathrm{TS}_{\text {endo }} 1,7[\mathbf{1 8 a}] \mathrm{Me}$	25.84	$\mathrm{TS}_{\text {endo }} 1,3[\mathbf{1 8 b}] \mathrm{Me}$	8.93
$\mathrm{TS}_{\text {exo }} 1,7[\mathbf{1 8 b}] \mathrm{Ph}$	3.49	$\mathrm{TS}_{\text {exo }} 1,3[\mathbf{1 8 a}] \mathrm{Ph}$	18.00

barrier, relative to the conformer 18b for this 1,3-cycloaddition. In addition, NBO calculation on the transition states $\mathrm{TS}_{\text {endo }} 1,7[\mathbf{1 8 a}]$ and $\mathrm{TS}_{\text {exo }} 1,7[\mathbf{1 8 b}]$, also showed the same kind of effective energy interactions between the $\mathrm{N}_{5}-\mathrm{C}_{26}$ two-center bond (BD), the $\mathrm{C}_{1}-\mathrm{C}_{37}$ two-center bond (BD), as well as the $\mathrm{N}_{5}-\mathrm{C}_{26}$ two-center antibonding (BD*), all with the π antibonding orbital (π^{*}) of $\mathrm{C}_{40}-\mathrm{C}_{42}$ favoring the formation of $\mathrm{TS}_{\text {endo }} 1,7[\mathbf{1 8 a}]$ by about $9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Fig. 5). Nevertheless, this effective stabilization in the endo-cycloaddition

Fig. 6. Geometries of transition states for the cycloaddition of azafulvenium methide $\mathbf{1 8 b}$ with $\mathrm{NPM}, \mathrm{TS}_{\text {endo }} 1,3$ (a) and $\mathrm{TS}_{\text {exo }} 1,3$ (b), and with $\mathrm{NMM}, \mathrm{TS}_{\text {endo }} 1,7$ (c) and $\mathrm{TS}_{\text {exo }} 1,7$ (d), calculated at $\operatorname{B3LyP}(6-31+G(d, p))$ level of theory.

Calculations showed that the lower energy channel to obtain the main product is through $\mathrm{TS}_{\text {exo }} 1,7[\mathbf{1 8 b}]$, about $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower in energy than $\mathrm{TS}_{\text {endo }} 1,7[18 \mathrm{a}]$ (Fig. 7, Table 2). This result allowed us to conclude that compounds 23 are obtained via exo-1,7cycloaddition of conformer $\mathbf{1 8 b}$.

The possible mechanism pathways regarding the cycloadditions of azafulvenium methides $\mathbf{1 8}$ with maleimides leading to trans-1,3cycloadducts are shown in Scheme 8. The trans-1,3-cycloadducts 22 could be produced only via endo-cycloaddition of conformer 18b through transition state $\mathrm{TS}_{\text {endo }} 1,3[\mathbf{1 8 b}]$ or as the result of the exocycloaddition of conformer 18a through transition state $\mathrm{TS}_{\text {exo }} 1,3$ [18a].

The results of the quantum chemical calculations demonstrate that the stereoselective synthesis of heterocycles $\mathbf{2 2}$ is achieved via endo-1,3-cycloaddition through transition state $\mathrm{TS}_{\text {endo }} 1,3[18 \mathbf{b}]$ (Fig. 7, Table 2).

Calculations on specific NBO donor-acceptor interactions in the transition states $\mathrm{TS}_{\text {endo }} 1,3[\mathbf{1 8 b}]$ and $\mathrm{TS}_{\text {exo }} 1,3[\mathbf{1 8 a}]$, showed that there were effective energy interactions between the $\mathrm{N}_{5}-\mathrm{C}_{26}$ twocenter bond (BD), the C_{4} lone pair of electrons (LP) as well as the $\mathrm{N}_{5}-\mathrm{C}_{26}$ two-center antibonding (BD*), all with the π antibonding orbital (π^{*}) of $\mathrm{C}_{36}-\mathrm{C}_{38}$ favoring the formation of $\mathrm{TS}_{\text {end }} 1,3[\mathbf{1 8 b}]$ by about $13 \mathrm{~kJ} \mathrm{~mol}^{-1}$ according to the results obtained on the energy
was not large enough to compensate the large energy barrier through this reaction path, which means that the steric factors play an important role in this cycloaddition (Fig. 6).

3. Conclusion

The generation and reactivity of 1-benzyl-5-trifluoromethylazafulvenium methide were described. This reactive intermediate undergoes sigmatropic $[1,8] \mathrm{H}$ shift to give the corresponding N styrylpyrrole and participates in cycloaddition reactions with DMAD and N-substituted maleimides to afford trifluoromethyl-pyrrole-annulated derivatives resulting from the addition across the 1,3 - and 1,7 -positions.

The higher selectivity of 5-trifluoromethyl-azafulvenium methide for the formation of 1,3-cycloadducts when compared with 1-benzyl-5-trifluoromethyl-azafulvenium methide, bearing an additional benzyl group at C 1 , indicates that a combination of electronic and steric factors determines the outcome of the cycloaddition. FMO analysis of the cycloadditions corroborated this observation.

Quantum chemical calculations were carried out at the DFT level of theory in order to be able to rationalize the stereoselective synthesis of trans-1,3-cycloadducts and trans-1,7-cycloadducts from the cycloaddition of 1-benzyl-5-trifluoromethyl-

Scheme 7. 1,7-Cycloaddition of azafulvenium methide $\mathbf{1 8}$ with NMM and NPM.

Fig. 7. B3LyP($6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$) energy ($\mathrm{kJ} \mathrm{mol}^{-1}$) calculated relative to conformer 18b and NMM.
azafulvenium methide with N-substituted maleimides. The study revealed that exo-cycloaddition is the main reaction path for the 1,7 -cycloaddition, while the endo-approach is the main mode of reaction leading to 1,3 -cycloadducts.

4. Experimental section

4.1. General

Microwave reactions were carried out in a microwave reactor CEM Focused Synthesis System Discover S-Class using 10 mL microwave tubes. The reaction temperatures were measured by infrared surface detector during microwave heating. Thiazolidine 13, ${ }^{8}$ 1-butenyl-thiazolidine 15, $1 H, 3 H$-pyrrolo[1,2-c]thiazole 16, and 7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide 17 were prepared by modifying a procedure described in the literature. ${ }^{5}$
${ }^{19} \mathrm{~F}$ NMR spectra were recorded on an instrument operating at $376 \mathrm{MHz} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on an instrument operating at $400 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on an instrument

Scheme 8. 1,3-Cycloaddition of azafulvenium methide 18 with NMM and NPM.
operating at 100 MHz . Chemical shifts are expressed in parts per million (ppm) relative to internal tetramethylsilane (TMS), and coupling constants (J) are in hertz (Hz). Infrared (IR) spectra were recorded on a Fourier transform spectrometer (FTIR). Mass spectra were recorded under electron impact (EI) or electrospray ionization (ESI). High-resolution mass spectra (HRMS) were obtained on an electron impact (EI) or electrospray (ESI) TOF mass spectrometer. Melting points were determined in open glass capillaries and are uncorrected. Thin-layer chromatography (TLC) analyses were performed using precoated silica gel plates. Flash column chromatography was performed with silica gel 60 as the stationary phase.

4.2. (2R,4R)-2-Benzyl-3-[(E)-4,4,4-trifluoro-3-oxobut-1-enyl] thiazolidine-4-carboxylic acid (15)

A solution of 4-ethyloxy-1,1,1-trifluoro-3-buten-2-one (3.24 g, 19.3 mmol) in acetonitrile (10 mL) was added dropwise to a solution of thiazolidine-4-carboxylic acid 13 ($4.73 \mathrm{~g}, 21.2 \mathrm{mmol}$) in acetonitrile $(90 \mathrm{~mL})$ at room temperature. After stirring for 10 min , the solution was heated at $60^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was filtered and the solvent was removed in vacuum. Diethyl ether (120 mL) and water (120 mL) were added and the two layers separated. The aqueous phase was extracted with diethyl ether $(2 \times 120 \mathrm{~mL})$ and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuum. The resulting pale yellow oil was purified by column chromatography [hexane, hexane/ethyl acetate (7:3), then hexane/ethyl acetate (1:1)] to give 15 as a solid (5.60 g, 84\%).
4.2.1. Data for 15. Mp $184-185^{\circ} \mathrm{C}$ (amorphous solid, from hexane/ ethyl acetate). ${ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}): $\delta-74.99 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): two conformers. Major: $\delta 8.15$ (d, $J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.64(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ ($\mathrm{m}, 2 \mathrm{H}$), $3.12(\mathrm{~m}, 2 \mathrm{H})$. Minor: $\delta 8.23$ ($\mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H})$, $5.32(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): two conformers. Major: $\delta 175.7$ $\left(\mathrm{q}, J_{\mathrm{CO}-\mathrm{CF}_{3}}=31.6\right), 171.0,153.4,136.5,129.9,128.3,126.9,117.5$ (q, $J_{\mathrm{CF}_{3}}=292.0$), 90.5, 67.9, 65.5, 38.3, 30.8. Minor: $\delta 175.5$ (q, $J_{\mathrm{CO}-\mathrm{CF}_{3}}=31.6$), 169.0, 152.2, 136.6, 130.0, 128.2, 126.9, 117.4 $\left(\mathrm{q}, J_{\mathrm{CF}_{3}}=291.25\right), 90.1,69.7,63.8,42.8,31.4$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3300-2700 br, 3031, 2933, 1724, 1659, 1558, 1456, 1383, 1283, 1265, 1137, 1100, 787, 699. HRMS (ESI-TOF): calculated $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ $\left[\mathrm{M}^{+}+\mathrm{H}\right]: 346.07072$. Found: 346.07193.

4.3. (R)-3-Benzyl-7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole (16)

To a stirred solution of N -(unsaturated ketone) thiazolidine-4carboxylic 15 ($5.87 \mathrm{~g}, 17.0 \mathrm{mmol}$) under nitrogen in dry dichloromethane (140 mL), trifluoroacetic anhydride ($4.28 \mathrm{~g}, 20.4 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 7 h , the solvent was removed in vacuum. The resulting brown oil was purified by flash chromatography [hexane, hexane/ethyl acetate (9:1)] to give the corresponding (R)-3-benzyl-7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole 16 as a white solid (3.66 g, 76\%).
4.3.1. Data for 16. $\mathrm{Mp} 40-41^{\circ} \mathrm{C}$ (amorphous solid). $[\alpha]_{\mathrm{D}}^{26}+91.3$ (c, 1.1 CHCl_{3}). ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-55.58 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.3,134.6(\mathrm{q}$, $\left.J_{\mathrm{CC}-\mathrm{CF}_{3}}=3.8 \mathrm{~Hz}\right), 129.8,128.6,127.6,124.0\left(\mathrm{q}, J_{\mathrm{CF}_{3}}=265.6 \mathrm{~Hz}\right), 115.1$, $111.3,106.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{CF}_{3}}=36.7 \mathrm{~Hz}\right), 65.0,44.8,27.8$. $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3112$, 3031, 2922, 1587, 1485, 1454, 1437, 1393, 1374, 1258, 1224, 1171, 1103, 1030, 978, 751, 698. MS (EI): 283(M ${ }^{+}$, 5\%), 250(10\%), 236(3\%),

192(100\%), 148(33\%), 135(5\%), 104(7\%), 91(12\%). HRMS (EI-TOF): calculated $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NS}\left[\mathrm{M}^{+}\right]$: 383.0643. Found: 383.0647.

4.4. 3-Benzyl-7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thia-zole-2,2-dioxide (17)

A solution of (R)-3-benzyl-7-trifluoromethyl-1H,3H-pyrrolo [1,2-c]thiazole $16(0.567 \mathrm{~g}, 2 \mathrm{mmol})$ in ethyl acetate (3 mL) was charged with $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1 M solution in water, $45 \mu \mathrm{~L}$), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{PO}_{3} \mathrm{H}_{2}$ (1 M solution in water, $45 \mu \mathrm{~L}$), $\mathrm{CH}_{3} \mathrm{~N}\left[\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}\right]_{3} \mathrm{Cl}(1 \mathrm{M}$ solution in methanol, $45 \mu \mathrm{~L}$), and aqueous $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (75 mmol). This mixture was vigorously stirred at $40^{\circ} \mathrm{C}$. After 3 days, a new load of catalysts and $\mathrm{H}_{2} \mathrm{O}_{2}$ was added and stirred again for three more days at $40^{\circ} \mathrm{C}$. The reaction mixture was washed with 10% (w / v) aqueous sodium bisulfite and the aqueous phase was extracted with ethyl acetate. The organic phase was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated off giving a pale yellow oil which was purified by column chromatography [hexane, hexane/ethyl acetate (9:1), hexane/ethyl acetate (8:2)] to give sulfone 17 as a white solid ($0.448 \mathrm{~g}, 71 \%$).
4.4.1. Data for 17. Mp $110-111{ }^{\circ} \mathrm{C}$ (amorphous solid). $[\alpha]_{D}^{26} 0.0$ $\left(c, 1.0 \mathrm{CHCl}_{3}\right) .{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-56.13 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.15\left(\mathrm{dd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59\left(\mathrm{dd}, J_{1}=14.6 \mathrm{~Hz}\right.$, $\left.J_{1}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.04(\mathrm{~d}, J=15.5,1 \mathrm{H}), 4.37(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}$, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.34(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.7$, $129.8,129.2,128.3,123.2\left(\mathrm{q}, \mathrm{JCF}_{3}=266.3 \mathrm{~Hz}\right), 121.4\left(\mathrm{q}, \mathrm{JCC}_{\mathrm{CF}}^{3} 30.9\right)$, 119.1, 111.8 ($\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{CF}_{3}}=37.4 \mathrm{~Hz}$), 75.5, 49.8, 37.3, 135.3, 134.6 $\left(\mathrm{q}, J_{\mathrm{CC}-\mathrm{CF}_{3}}=3.8 \mathrm{~Hz}\right), 129.8,128.6,127.6,124.0\left(\mathrm{q}, J_{\mathrm{CF}_{3}}=265.6 \mathrm{~Hz}\right)$, 115.1, 111.3, $106.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{CF}_{3}}=36.7 \mathrm{~Hz}\right), 65.0,44.8,27.8$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3169, 3093, 3037, 2981, 2963, 2950, 1600, 1484, 1457, 1438, 1400, 1330, 1262, 1175, 1133, 973, 749, 719, 697. MS (EI): 315(M $\left.{ }^{+}, 3 \%\right)$, 251(89\%), 250(80\%), 236(33\%), 232(9\%), 182(9\%), 174(4\%), 167(7\%), 154(3\%), 148(3\%), 113(4\%), 104(100\%), 78(9\%). HRMS (EI-TOF): calculated $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right]$: 315.0541 . Found: 315.0542.

4.5. Synthesis of 2-methyl-1-styryl-3-trifluoromethyl-1Hpyrrole (19)

Flash vacuum pyrolysis. Pyrolysis of the 3-benzyl-7-trifluoro-methyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide (17) (107.2 mg , 0.34 mmol) at $450-475{ }^{\circ} \mathrm{C}$ and 1×10^{-5} to 2×10^{-5} mbar onto a surface cooled at $-196^{\circ} \mathrm{C}$ over a period of 1 h gave a colorless pyrolysate [The rate of volatilization of the starting material was controlled by the use of a pre-oven, which heated the sample at $70-80^{\circ} \mathrm{C}$.]. The pyrolysate was allowed to warm to room temperature and removed from the cold finger with dichloromethane. The solvent was removed in vacuum and the pyrolysate was recrystallized from a mixture of hexane/ethyl acetate to give 2-methyl-1-styryl-3-trifluoromethyl-1H-pyrrole 19, in high yield as a white solid ($76.9 \mathrm{mg}, 90 \%$).

Conventional heating. A suspension of 7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thiazole-2,2-dioxide 17 ($50.5 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 1,2,4trichlorobenzene (1 mL) was heated at reflux under dry nitrogen for 6 h . After cooling to room temperature, the pyrolysate was purified by column chromatography [hexane, hexane/ethyl acetate (9:1)] to give 2-methyl-1-styryl-3-trifluoromethyl-1H-pyrrole 19, which was isolated in high yield as a white solid ($34.2 \mathrm{mg}, 85 \%$).
4.5.1. Data for 1 H -pyrrole 19. $\mathrm{Mp} 76-77{ }^{\circ} \mathrm{C}$ (amorphous solid). ${ }^{19} \mathrm{~F}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-54.93 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.41(\mathrm{~s}, 3 \mathrm{H})$, 6.38 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.1,129.0,128.0,127.4,126.3,124.4\left(\mathrm{q}, J_{\mathrm{CF}_{3}}=266.3 \mathrm{~Hz}\right), 123.5$, $119.5,116.9,113.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{CF}_{3}}=35.4 \mathrm{~Hz}\right), 107.9\left(\mathrm{q}, J_{\mathrm{CC}-\mathrm{CF}_{3}}=2.9 \mathrm{~Hz}\right), 10.5$.

IR ($\mathrm{KBr}^{\mathrm{cm}}{ }^{-1}$): 3115, 3085, 3028, 2981, 2929, 1655, 1587, 1495, 1440, 1268, 1098, 1019, 934, 750, 722, 688. MS (EI): 251(M ${ }^{+}$, 81\%), 250(100\%), 236(22\%), 232(11\%), 181(20\%), 167(15\%), 148(6\%), 104(42\%), 103(10\%), 77(8\%). HRMS (EI-TOF): calculated $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}$ [M^{+}]: 251.0922. Found: 251.0917.

4.6. General procedure for cycloadditions under MWIP conditions

A suspension of 7-trifluoromethyl-1H,3H-pyrrolo[1,2-c]thia-zole-2,2-dioxide 17 ($53.6 \mathrm{mg}, 0.17 \mathrm{mmol}$) and dipolarophile ($1.2-4.0$ equiv) in $1,2,4$-trichlorobenzene (0.5 mL or 1 mL) was irradiated in the microwave reactor at the temperature and for the time indicated in each case. After cooling to room temperature, the mixture was purified by flash chromatography [hexane] to remove 1,2,4-trichlorobenzene followed by elution with hexane/ethyl acetate to obtain the corresponding cycloadducts.
4.6.1. Dimethyl 3-benzyl-5-methyl-6-trifluoromethyl-3H-pyrrolizine-1,2-dicarboxylate (20) and dimethyl 5-benzyl-1-trifluoromethyl-5,8-dihydroindolizine-6,7-dicarboxylate (21). Isolated as an 89:11 mixture (determined by ${ }^{1} \mathrm{H}$ NMR), 44% yield.
4.6.1.1. Data for 20. ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-55.37 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.38\left(\mathrm{dd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}\right.$, 1 H), 3.46 (dd, $J_{1}=14.6 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (s, 3H), 3.84 (s, 3H), $5.26(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.0,162.6,135.6,134.0,131.7,129.9$ (q, $\left.J_{\mathrm{CC}-\mathrm{CF}_{3}}=3.7 \mathrm{~Hz}\right), 129.3,128.5,127.4,123.9\left(\mathrm{q}, J_{\mathrm{CF}}^{3} 20267.0 \mathrm{~Hz}\right), 116.6(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{CF}_{3}}=36.0 \mathrm{~Hz}\right), 102.0\left(\mathrm{q}, J_{\mathrm{CC}-\mathrm{CF}_{3}}=2.9 \mathrm{~Hz}\right), 63.7,52.8,52.3,37.2$, 11.52.
4.6.1.2. Data for 21. ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-55.07 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.08$ (dd, $J_{1}=13.5 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (dd, $\left.J_{1}=13.5 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H})$, $5.34(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}$), 7.17 (m, 3H)., HRMS (ESI-TOF): mixture of compounds 20 and 21: calculated $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}\left[\mathrm{M}^{+}+\mathrm{H}\right]$: 394.12589. Found: 394.12607.
4.6.2. 4-Benzyl-2,6-dimethyl-7-trifluoromethyl-3a,4-dihydropyrrolo [3,4-a]pyrrolizine-1,3(2H,8bH)-dione (22a) and 4-benzyl-2-methyl-8-trifluoromethyl-3a,4,9,9a-tetrahydro-1H-pyrrolo[3,4-f]indolizine-1,3(2H)-dione (23a). Isolated as a 28:72 mixture (determined by ${ }^{1} \mathrm{H}$ NMR), 88% yield.
4.6.2.1. Data for 22a. ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-55.17 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (dd, $J_{1}=14.2 \mathrm{~Hz}$, $\left.J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.12\left(\mathrm{dd}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.07$, 174.30, 134.3, 129.5, 129.0, 127.8, 127.6, $124.0\left(\mathrm{q}, J_{\mathrm{CC}-\mathrm{CF}_{3}}=3.7 \mathrm{~Hz}\right)$, $124.0 \quad\left(\mathrm{q}, \quad J_{\mathrm{CF}_{3}}=266.7 \mathrm{~Hz}\right), \quad 116.2 \quad\left(\mathrm{q}, \quad J_{\mathrm{C}-\mathrm{CF}_{3}}=35.5 \mathrm{~Hz}\right)$, 99.9(q, $\left.J_{\mathrm{CC}-\mathrm{CF}_{3}}=3.7 \mathrm{~Hz}\right), 53.1,25.4,59.1,43.5,41.1,10.8$.
4.6.2.2. Data for 23a. ${ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-54.55 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.98$ (dd, $J_{1}=15.8 \mathrm{~Hz}, J_{1}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $\left.J_{1}=9.2 \mathrm{~Hz}, J_{2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.26$ ($\mathrm{m}, 1 \mathrm{H}$), 3.37 (dd, $J_{1}=13.4 \mathrm{~Hz}$, $\left.J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}\right.$, $\left.J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.31(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.7,175.5,136.2$, 129.6, 129.0, 127.4, 126.4 (q, $J_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=3.67 \mathrm{~Hz}$), $124.1(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=266.8 \mathrm{~Hz}\right), 117.27,111.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=36.4 \mathrm{~Hz}\right), 105.9$ $\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=2.9 \mathrm{~Hz}\right), 56.2,42.5,39.4,34.5,25.1,22.2$.

HRMS (ESI-TOF): mixture of compounds 22a and 23a: calculated $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]: 363.13254$. Found: 363.13149.
4.6.3. 4-Benzyl-6-methyl-2-phenyl-7-trifluoromethyl-3a,4-dihy-dropyrrolo[3,4-a]pyrrolizine-1,3(2H,8bH)-dione (22b) and 4-benzyl-2-phenyl-8-trifluoromethyl-3a,4,9,9a-tetrahydro-1H-pyrrolo[3,4-f] indolizine-1,3(2H)-dione (23b). Isolated as a 24:76 mixture (determined by ${ }^{1} \mathrm{H}$ NMR), 77% yield.
4.6.3.1. Data for 22b. Mp $135-136{ }^{\circ} \mathrm{C}$ (amorphous solid). ${ }^{19} \mathrm{~F}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-55.21 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39$ ($\mathrm{s}, 3 \mathrm{H}$), 3.10 (dd, $J_{1}=14.3 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (dd, $\left.J_{1}=14.3 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52(\mathrm{~d}, J=7.49 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}$, $J=7.49 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17 (d, $J=7.37 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,176.2,134.3,131.4,129.5,129.3$, 129.1, 129.0, 128.1, 127.9, 126.3, 124.3 ($q, J_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=3.6 \mathrm{~Hz}$), 124.0 $\left(\mathrm{q}, J_{\mathrm{CF}_{3}}=267.0 \mathrm{~Hz}\right), 116.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{CF}_{3}}=36.1 \mathrm{~Hz}\right), 100.6(\mathrm{q}$, $J_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=2.9 \mathrm{~Hz}$), 43.6, 53.3, 59.3, 41.0, 10.9. MS (EI): 424(M ${ }^{+}$, $13 \%)$, $333(12 \%), 187(7 \%), 186(100 \%), 173(2 \%), 166(7 \%), 117(8 \%)$, 91(8\%). HRMS (EI-TOF): calculated $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \quad\left[\mathrm{M}^{+}\right]$: 424.1398. Found: 424.1399.
4.6.3.2. Data for 23b. Mp 94-95 ${ }^{\circ} \mathrm{C}$ (amorphous solid). ${ }^{19} \mathrm{~F}$ ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-54.42 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.00$ (dd, $J_{1}=15.5 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.31\left(\mathrm{dd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39$ $(\mathrm{m}, 1 \mathrm{H}), 3.46\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.83 (dd, $\left.J_{1}=13.0 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.37(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.8,174.6,136.2,131.4,129.7,129.4$, $129.1(\mathrm{x} 2), 127.5,126.5,126.4$ (q, $J_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=3.67 \mathrm{~Hz}$), 124.1 (q, $J_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=266.6 \mathrm{~Hz}$), 117.3, 111.6 (q, $J_{\mathrm{c}-\mathrm{C}-\mathrm{CF}_{3}}=36.4 \mathrm{~Hz}$), 106.0 $\left(\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{CF}_{3}}=2.9 \mathrm{~Hz}\right), 56.4,42.7,39.9,34.3,23.0 . \mathrm{MS}(\mathrm{EI}): 424\left(\mathrm{M}^{+}\right.$, 43%), 333(18\%), 187(8\%), 186(100\%), 174(5\%), 166(9\%), 117(23\%), 91(9\%). HRMS (EI-TOF): calculated $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 424.1398$. Found: 424.1399.

4.7. Computational study

All calculations were performed with the Gaussian09 program system. ${ }^{9}$ Transition-state theory was used to evaluate the energy of the different channels. The transition states were characterized by the presence of one negative frequency and the internal reactions coordinate (IRC) method was applied to verify that the correct states were connected.

Acknowledgements

Thanks are due to FCT (PEst-C/QUI/UI0313/2011), FEDER, COMPETE, and QREN for financial support. W.J.P. acknowledges the National Scientific and Technical Research Council (CONICET) of Argentina for the Post-Doctoral fellowship and Ana Julieta Pepino for the assistance in the theoretical study.

Supplementary data

${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds and theoretical calculation results. Cartesian coordinates (\AA) obtained from the B3LyP($6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}))$ calculations. Supplementary data associated with this article can be found in the online version, at http:// dx.doi.org/10.1016/j.tet.2013.03.017.

References and notes

1. Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827-856.
2. (a) Muzalevskiy, V. M.; Shastin, A. V.; Balenkova, E. S.; Haufe, G.; Nenajdenko, V. G. Synthesis 2009, 23, 3905-3929; (b) Saijo, R.; Hagimoto, Y.; Kawase, M. Org. Lett. 2010, 12, 4776-4779; (c) Saijo, R.; Kawase, M. Tetrahedron Lett. 2012, 53, 2782-2785.
3. (a) Black, B. C.; Hollingworth, R. M.; Ahammadsahib, K. Y.; Kukel, C. D.; Donovan, S. Pestic. Biochem. Physiol. 1994, 50, 115-128; (b) Zanatta, N.; Schneider, J. M. F. M.; Schneider, P. H.; Wouters, A. D.; Bonacorso, H. G.; Martins, M. A. P.; Essjohann, L. A. J. Org. Chem. 2006, 71, 6996-6998; (c) Dou, G.; Shi, C.; Shi, D. J. Comb. Chem. 2008, 10, 810-813; (d) Uno, H.; Inoue, K.; Inoue, T.; Fumoto, Y.; Ono, N. Synthesis 2001, 2255-2258; (e) Fitzgerald, J. P.; Nanda, H.; Fitzgerald, P.; Yee, G. T. J. Org. Chem. 2000, 65, 2222-2224; (f) Funabiki, K.; Ishihara, T.; Yamanaka, H. J. Fluorine Chem. 1995, 71, 5-7; (g) Zanatta, N.; Wouters, A. D.; Fantinnel, L.; da Silva, F. M.; Barichello, R. Synlett 2009, 755-758; (h) Korotaev, V. Yu; Barkov, A. Yu; Kotovich, I. V.; Sosnovskikh, V. Ya J. Fluorine Chem. 2012, 138, 42-47.
4. (a) Pinho e Melo, T. M. V. D.; Soares, M. I. L.; Rocha Gonsalves, A. M. d'A.; McNab, H. Tetrahedron Lett. 2004, 45, 3889-3893; (b) Pinho e Melo, T. M. V. D.; Soares, M. I. L.; Rocha Gonsalves, A. M. d'A.; Paixão, J. A.; Matos Beja, A.; Ramos Silva, M. J. Org. Chem. 2005, 70, 6629-6638; (c) Pinho e Melo, T. M. V. D.; Soares, M. I. L.; Nunes, C. M. Tetrahedron 2007, 63, 1833-1841; (d) Soares, M. I. L.; Pinho e Melo, T. M. V. D. Tetrahedron Lett. 2008, 49, 4889-4893; (e) Soares, M. I. L.; Lopes, S. M. M.; Cruz, P. F.; Brito, R. M. M.; Pinho e Melo, T. M. V.D. Tetrahedron 2008, 64, 9745-9753; (f) Pereira, N. A. M.; Serra, A. C.; Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2010, 6539-6543; (g) Pereira, N. A. M.; Fonseca, S. M.; Serra, A. C.; Pinho e Melo, T. M. V. D.; Burrows, H. D. Eur. J. Org. Chem. 2011, 3970-3979; (h)Nunes, C. M.; Ramos Silva, M.; Matos Beja, A.; Fausto, R.; Pinho e Melo, T. M. V. D. Tetrahedron Lett. 2010, 51, 411-414.
5. (a) Pinho e Melo, T. M. V. D.; Soares, M. I. L.; Rocha Gonsalves, A. M. d'A. Tetrahedron Lett. 2006, 47, 791-794; (b) Pinho e Melo, T. M. V. D.; Soares, M. I. L.; Nunes, C. M.; Paixão, J. A.; Matos Beja, A.; Ramos Silva, M. J. Org. Chem. 2007, 72, 4406-4415.
6. (a) Druzhinin, S. V.; Balenkova, E. S.; Nenajdenko, V. G. Tetrahedron 2007, 63, 7753-7808; (b) Andrew, R. J.; Mellor, J. M. Tetrahedron 2000, 56, 7267-7272.
7. Ess, H.; Houk, K. N. J. Phys. Chem. A. 2005, 109, 9542-9553.
8. Soloway, H.; Kipnis, F.; Ornfelt, J.; Spoerri, P. E. J. Am. Chem. Soc. 1948, 70, 1667-1668.
9. Frisch, M.J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Ioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01; Gaussian: Wallingford, CT, 2010.

[^0]: * Corresponding author. E-mail address: tmelo@ci.uc.pt (T.M.V.D. Pinho e Melo).

