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SUMMARY

The numerical performance of a stabilized mixed finite-element formulation based on the pressure-
gradient-projection method (PGP) using equal-order (linear) interpolation is evaluated by solving solid
mechanics problems, such as structural limit load determination and strain localization modelling. All
of them present incompressibility kinematical constraints induced by the constitutive behaviour. This
work is specially devised to obtain critical conclusions about the use of PGP model when the mechanical
response is governed by strain-softening macroscopic mechanisms. In this context, we report some detected
limitations in the present formulation due to the existence of pathological mesh bias dependence once the
strain localization process becomes dominant, and linear kinematics is used. An additional contribution
is the numerical comparative analysis of two different strategies, for solving the complete linear equation
system, addressed to a finite-element parallel code. The numerical results are compared with the standard
Galerkin formulation and with an alternative stabilized mixed finite-element procedure (pressure stabilizing
Petrov–Galerkin scheme). Copyright q 2007 John Wiley & Sons, Ltd.
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298 P. J. SÁNCHEZ, V. E. SONZOGNI AND A. E. HUESPE

1. INTRODUCTION

Simplicial low-order standard displacement-based finite elements present several advantages to
solve practical problems in the context of solid mechanics such as: robustness, easiness for
automatic mesh generation, reduced number of degrees of freedom and minimal final equation
system band width, among others. These features mean better efficiency from a computational
viewpoint. However, it is well known that the numerical response of the standard Galerkin finite
elements, for problems involving isochoric deformations, differs considerably from analytical or
experimental results.

Many different strategies have been developed in the standard models to overcome these limi-
tations. The stabilized mixed finite element methods have shown to be robust approaches to reach
this objective. Initially, they were used in the computational fluid dynamics (CFD) area. The sta-
bilized strategies consist basically of adding mesh-dependent terms to the usual mixed Galerkin
method, which are functions of the residual of the Euler–Lagrange equations. These elementwise
evaluated terms insure consistency and incorporate stability. Similar concepts, for compressible and
incompressible elasticity and plasticity, have been applied to solid mechanics (see, for example,
Wall et al. [1], Klaas et al. [2]).

This study aims at the numerical evaluation of a stabilized mixed finite element procedure
recently introduced [3–7] for incompressible elasticity, perfect von Mises plasticity and, specially,
for localization phenomena induced by material instability. The present formulation of the stabiliza-
tion scheme is similar to that described in these works, and has been implemented by using a linear
triangle (or tetrahedral) finite element in displacement with linear (C0) pressure interpolation.

The main objective of this work is to address some particular aspects of its numerical performance
that complement the conclusions exposed in the above cited references, and more importantly, fur-
nishes additional details about its behaviour in challenging problems of solid mechanics. They are:
(i) comparison of results with respect to other stabilized mixed alternative method; (ii) parametric
study of the stabilization factor that becomes a fundamental ingredient in this model; (iii) stress and
displacement convergence rate analysis; and (iv) mesh bias dependence of the results, particularly
when plasticity with softening is modelled.

The last point becomes a key aspect of finite element modelling if plastic localization analysis
is addressed. In this context, the fact that the linear kinematics of the constant strain triangle
(CST) is not well adapted for capturing the strain localization mechanism, is widely recognized.
Thus, several publications mention the dependence of the solution with the FE mesh bias. Clearly,
this deficient response is not only caused by the isochoric deformation kinematical constraint,
because it also is observed when damage models are used. Possible solutions to this drawback
have been obtained by introducing an enhanced kinematics, for example, embedding a strong
discontinuity mode into the FE [8–11] that can be understood as the inclusion of a new sub-scale
in the displacement field approach. In the present pressure-gradient-projection (PGP) formulation,
the stabilization strategy can also be understood as the addition of a sub-scale in the displacement
field [12]. So, in the paper, we determine if this enrichment is enough for capturing the shear band
mode in an objective way.

As an additional contribution, the present formulation has been implemented in the
‘PETSc-FEM’ general parallel finite element code [13]. Two different solution strategies, to solve
the linear equation system, and a novel preconditioner scheme [14], are compared.

The paper is organized as follows: the next section is devoted to an overview of the continuum
and discrete forms of the stabilized mixed formulations. In Section 3, those aspects related to
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the numerical implementation are exposed, with special mention in parallel programming topics.
Section 4 presents the numerical 2D and 3D solid mechanics tests, particularly using J2 plasticity.
Finally, the conclusions are summarized.

2. STABILIZED MIXED FORMULATION IN SOLIDS MECHANICS

Let us consider a solid mechanics problem with the small deformation assumption. We introduce
some notation to define it: � is an open bounded set included in Rn (n is the space dimension)
whose points represent those of a continuum body B in the reference configuration, � is the
boundary of � which can be split in two sub-sets �u and �r where prescribed displacements u and
traction t are imposed.

The uncoupling of the stress tensor r into its spherical (�m = 1
3 tr(r)) and deviatoric part

(S= dev(r)) allows us to write the Cauchy equation, neglecting the inertial forces, as follows:

∇�m + ∇ · S + �b= 0 ∀x∈ � (1)

b being the distributed mass forces and � the material density.
Introducing the constitutive model equations, the dependence of stresses with the (gradient of)

displacements u can be expressed as:

r= r̂(u) = �̂m(∇ · u) I1 + S(u) (2)

where the first term is defined by assuming that the mean stress, �m, only depends on the strain
tensor trace (∇ · u= tr(e)).

A classical widely used mixed variational approach to the mechanical quasi-static problem
(1)–(2) is based on the set of primary variables (p, u), where p(x) is the negative mean stress
(pressure). In this type of formulation, the stress field can be recovered by evaluating:

r=−p I1 + S(u) (3)

where p and u should verify the equation:

p=−�̂m(∇ · u) (4)

which can be considered as a continuum constraint between both proposed primary fields. We
assume a linear relation of �̂m with tr(e), such as:

�̂m(∇ · u) = �∇ · u; ∇ · u= �̂−1
m (−p) = − p

�
(5)

where � is the bulk modulus (→∞ if the material is incompressible).
The variational equations of the mechanical problem (1)–(4) can be put in a classical mixed

continuum format (see [15]): find (p,u) ∈ L2(�) × H1(�), such that

L([p,u]; [q,w]) = −〈p, ∇ · w〉 + 〈S(u), ∇sw〉 − 〈�b;w〉

−
∫

�r
(t · w) d�r +

〈
q,

( p

�
+ ∇ · u

)〉
= 0

∀w∈ H0
1 (�) ∧ ∀q ∈ L2(�) (6)
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〈· , ·〉 being a duality product in �, the space L2(�) includes the square integrable functions in �
and H1(�) includes the functions whose first derivatives are from L2(�). We also call H0

1 (�) the
sub-space of H1(�) whose elements vanish in �u, the Dirichlet boundary of �.

2.1. Discrete stabilized variational form

Let (ph,uh), with ph ∈ Q ⊂ L2(�h) and uh ∈V⊂ H1(�h), be the finite element approaches of
the above mentioned primary fields and V the finite element approach to H1(�h). Equal order of
interpolations for those spaces could be introduced by the addition of stabilization terms Sst. The
discrete form of the problem reads:

L([ph,uh]; [qh,wh]) = −〈ph,∇ · wh〉 + 〈S(uh),∇swh〉 − 〈�b,wh〉

−
∫

�r
(t · wh) d�r +

〈
qh,

(
ph

�
+ ∇ · uh

)〉

+Sst([ph,uh]; [qh,wh]) = 0 ∀wh ∈V0 ∧ ∀qh ∈ Q (7)

Several different terms Sst have been proposed in the context of CFD. The GLS (Galerkin/least
square) procedure [16] is probably the most known one. It has been extended to solid mechanics
applications by Klass et al. [2], who have successfully used linear equal-order interpolations in
large deformation incompressible elastic problems.

The pressure stabilizing Petrov–Galerkin (PSPG) scheme [17], which can be considered as a
particular type of GLS procedure and the orthogonal sub-grid PGP method [12, 18] are shortly
described in the following. The last scheme has been extended to the elastic solid mechanics
context by Chiumenti et al. [3] and used in plasticity by Chiumenti et al. [4] and Cervera et al. [5]
(see also [7]). These works show the plausibility of this approach in problems where alternative
formulations hardly work well.

The above mentioned procedures consider the term Sst as being proportional to a stability
factor � depending on the elastic modulus and the finite element size, and therefore it changes
from element to element.

2.2. PSPG stabilization procedure

The stabilization term Sst of Equation (7) is defined as follows:

SPSPG
st =−

〈
∇qh, �PSPG (∇ · r(ph,uh) + �b)︸ ︷︷ ︸

r:residue of the Cauchy equation

〉
∀qh ∈ Q (8)

where the factor �PSPG is:

�PSPG = �
h2

2�
(9)

� being a positive dimensionless parameter, h the element characteristic size and � the shear
modulus for the elastic problem.
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Figure 1. Pressure gradient projection.

Remark 1
Tezduyar et al. [17] have included in (7) an additional stabilization term for incompressibility
constraint.

Remark 2
Klaas et al. [2] have considered a similar stabilization term without including the body force (�b)
in the r term of Equation (8). It has also been considered that, if dynamical problems are analysed,
the inertial forces should be included in the same term, as it was initially proposed by Tezduyar
et al. [17] in the CFD context.

2.3. PGP stabilization procedure

The stabilization term Sst is defined as follows:

SPGP
st =〈∇qh, �PGP(∇ ph −Ph)〉 ∀qh ∈ Q (10)

where Ph( ∈V) is the L2 projection of ∇ ph on V (see Figure 1):

〈(∇ ph −Ph), gh〉= 0 ∀gh ∈V (11)

We remark that functions in V do not vanish on �h
u, thus, P

h is a vector field in Rn lying in
the same finite element space of uh . Equation (11), which determines the ‘PGP’ field Ph , should
be added to the mixed variational form (7).

The stabilization parameter �PGP can be determined elementwise as a function of the element
characteristic size and the shear modulus:

�PGP = c
h2

2�∗ (12)

where the scalar coefficient c= 4 has been employed by Codina [12] in CFD application problems.
Following Chiumenti et al. [4], we have adopted the secant shear modulus �∗ in the J2 plasticity
problems.

3. NUMERICAL IMPLEMENTATION OF THE PGP STABILIZATION SCHEME

We approach the variational formulation (7) by using the PGP stabilization term (10) with the
projection (11) being included as an additional equation.
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Let a finite element method using equal-order interpolation fields for Q and V (particularly
C0 linear approaches) be considered. The mechanical problem can be rewritten in the following
terms: determine p ∈ Q and u∈V, such that (here we remove the superscript h)

−〈p, ∇ · w〉 + 〈S(u), ∇sw〉 − 〈�b,w〉 =
∫

�r
(t · w) d�r ∀w∈V0 (13)

〈
q,

( p

�
+ ∇ · u

)〉
+ 〈∇q, �PGP(∇ p −P)〉 = 0 ∀q ∈ Q (14)

〈(∇ p −P), g〉 = 0 ∀g∈V (15)

Introducing some of standard matrix notations, the interpolated fields can be expressed as:

u(x, t) =Nu(x)û(t), w(x) =Nu(x)ŵ (16)

p(x, t) =Np(x)p̂(t), q(x)=Np(x)q̂ (17)

P(x, t) =Nu(x)P̂(t), g(x)=Nu(x)ĝ (18)

where Nu and Np are the shape function matrices and the symbol ( ·̂) refers to the interpolation
parameters. Furthermore, let:

∇sNu =B (19)

∇ · Nu = ITB (20)

∇Np =D (21)

where B is the standard strain–displacement matrix and I the vector representation of the second
order identity tensor.

The matrical form of Equations (13)–(15) can be written as:

nel

A
e=1

[∫
�e

BTS(û) d�e
]

− G0p̂= f

−GT
0 û −

[
1

�
Mp + L

]
p̂ + HTP̂= 0 (22)

Hp̂ − MuP̂= 0

A being the standard finite element assembly operator. The sign of equation (22b) has been
changed and (22c) scaled by �PGP to evidence the symmetry of the discrete system. The vector f
is considered as the discrete external force, and the matrices G0, Mp, Mu, L and H are defined
as:

G0 =
nel

A
e=1

[∫
�e

BTINp d�
e
]

(23)
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Mp =
nel

A
e=1

[∫
�e

NT
pNp d�

e
]

(24)

Mu =
nel

A
e=1

[∫
�e

NT
u�PGPNu d�

e
]

(25)

L=
nel

A
e=1

[∫
�e

DT�PGPD d�e
]

(26)

H=
nel

A
e=1

[∫
�e

NT
u�PGPD d�e

]
(27)

where the subscript 0 accounts for the Dirichlet homogeneous boundary condition on the displace-
ment variational space V0.

The algebraic non-linear system of Equations (22), which depends on the pseudo-time (t), can
be solved for every load step by a standard Newton–Raphson procedure. In this case, the high
computational cost, due to the introduction of the new field P, provides a no competitive scheme
if compared with stabilized alternative stategies. Following Codina [12] and Chiumenti et al. [3],
a simplified treatment can be introduced to make it more efficient. Considering that the PGP field
P does not change significantly between the i th and the (i + 1)th load step, it is possible to solve
the alternative equation system:

nel

A
e=1

[∫
�e

BTS(i+1) d�
e
]

− G0p̂(i+1) = f(i+1)

−GT
0 û(i+1) −

[
1

�
Mp + L(i+1)

]
p̂(i+1) = −HT

(i+1)P̂(i)

(28)

where P̂(i) is evaluated, by considering Equation (22c), once the nonlinear solver has converged
for displacement and pressure variables at the i th load step. At the global level, it is possible to
express:

P̂(i) =M−1
u H(i)p̂(i) (29)

Therefore, the right-hand side term of (28b) can be considered as an external force for this
equation, while the evaluation of P̂(i), from Equation (29) at the end of the i th step, requires the
same computational cost as a smoothing of the displacement field.

3.1. Parallel implementation

This formulation has been implemented in the PETSc-FEM code [13]. It is a general purpose multi-
physics finite element program developed at the International Center of Computational Methods in
Engineering (CIMEC) running on a Beowulf cluster. PETSc-FEM makes use of the portable, exten-
sible toolkit for scientific computation (PETSc) library [19–21] for linear algebra operations, MPI
libraries [22] as the communication package and C + + object-oriented philosophy. PETSc-FEM
is a library and a set of applications which can be used to solve the incompressible Navier–Stokes
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equations, the compressible Euler equations, shallow water model, general advective–diffusive
systems, Laplace equation and solid mechanics problems.

The PETSc library allows to treat vectors and matrices in a distributed memory environment.
Therefore, it performs the allocation of data on the nodes of the cluster and allows the user to make
calls to sub-routines for linear algebra, including linear equation system solvers, without dealing
explicitly with parallelism. Mesh partitioning in PETSc-FEM is performed by using METIS [23].

In the solution of the linear equation system and within the parallel implementation context,
iterative techniques should be used, in general, by efficiency considerations. Furthermore, for this
algorithmic stage and as a consequence of the PGP stabilization procedure, the resulting global
system of equations is symmetric but not positive definite, which constraints us to use a limited
number of solution schemes. We make use of two strategies, a global iterative scheme and a
domain decomposition method (DDM):

• The global iterative GMRES scheme (GGMRES) is performed in parallel to solve the full
linear system of equations.

• The DDM has been found to behave better than global iterative methods, specially for large
and bad conditioned problems [14]. It is based on decomposing the whole domain into
sub-domains in such a way that solving the global system may be split into two phases: solv-
ing internal sub-domain unknowns and solving global interface unknowns. The internal un-
knowns may be solved concurrently on each computing node by direct methods (based on LU
strategy (lower and upper block triangular matrix decomposition)). The interface unknowns
make part of a global reduced system which is solved by means of iterative methods (a
GMRES-based scheme could be used in this step). In what follows, this technique will be
denoted as Interface–Iterative/Sub domain-Direct (IISD) method.

Decomposing the domain into non-overlapping sub-domains leads to the interface problem
whose matrix is the Schur complement. The size of the global interface system is much smaller
than that of the global system. In order to improve the computational efficiency, this interface
solver must be preconditioned so as to reduce the condition number of the Schur complement
matrix. We use an interface strip (IS) preconditioner recently developed by Storti et al. [14].

The IS preconditioner requires less memory and computational cost than classical Neumann–
Neumann preconditioner and its variants. In this work, the application of IISD/IS precondi-
tioner has been extended to the solid mechanics context.

Memory requirements for both strategies increase when the solution error tolerance decreases.
The DDM needs more memory resources than the global iterative procedure with coarse toler-
ances. However, when decreasing tolerance, the memory growth rate is higher for the global iterative

Figure 2. Memory (RAM) and processing time requirements (CPU time) for different solvers. DDM/SCMI:
Domain Decomposition Method with Schur Complement Matrix Interface.
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strategy (see Figure 2). Therefore, DDM is more efficient when tight tolerances are required, as
was found in some practical problems [14].

The introduction of the stabilized mixed formulation does not change the structure of the
above-mentioned algorithm for parallelization.

4. NUMERICAL TESTS

The numerical performance of the linear–linear PGP stabilization method is evaluated for 2D and
3D tests and is compared with that shown by the standard Galerkin (STD), the standard P1–P1
mixed formulation without stabilization terms (MSTD) and the PSPG stabilization scheme.

The first test is a convergence study of the (p, u) fields with mesh refinement, when compressible
or incompressible elastic problems are considered. This example also validates the model in terms
of an analytical solution.

Section 4.2 presents a problem involving a large number of unknowns that is computed in parallel
mode. The above mentioned iterative strategies and its numerical performances are compared.

The following Sections 4.3–4.5, are devoted to the solution of plasticity problems. We are
particularly interested in analysing the PGP formulation capability for capturing the limit load,
collapse mechanisms and mesh independence postcritical response. The last property becomes one
of the most important finite element characteristic for obtaining correct slip line representation
arising as a typical phenomenon in failure prediction modelling.

4.1. Convergence analysis

In the first place, an elastic problem with analytical solution, consisting of a plane strain cantilever
beam subjected to a flexure deformation mode, is considered (we take this example from [24]).

Figure 3(a) shows the physical model, the geometry and the external loads. The analytical
displacement field is:

ux (x, y) = Fy

6E I

[
(6L − 3x)x + (2 + �)

(
y2 − 1

4
D2

)]

(a)

(b)

Figure 3. Cantilever flexion test: (a) geometry and (b) numerical model.
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(a) (b)

Figure 4. Compressible case � = 0.25: (a) displacement and (b) pressure.

uy(x, y) = − F

6E I

[
3�y2(L − x) + 1

4
(4 + 5�)D2x + (3L − x)x2

]
(30)

where F is the resultant tangential load, I = D3/12, E = E/(1 − �2) and �= �/(1 − �), with E
and � the Young’s modulus and Poisson’s ratio, respectively.

The traction boundary condition should be imposed in such a way that they be compatible with
the stress field analytical solution. At x = 0, they are:

�x (0, y) = − Fy

I
L

�xy(y) = F

2I

[
1

4
D2 − y2

] (31)

And at x = L , �x = �y = 0 and the shear stress is given by (31b).
Figure 3(b) depicts the kinematical and mechanical boundary conditions for the coarsest mesh

(only the top half part of the beam is modelled). Four element size are considered, all of them
using an aspect ratio of 2.

The convergence analysis is carried out in terms of displacement and pressure error measures
(eu, ep), according to the L2-norm computed as:

‖eu‖L2(�) =‖(uEX − uEF)‖L2(�) =
[∫

�
(uEX − uEF)2 d�

]1/2
(32)

where uEX and uEF represent the exact and numerical displacement solutions respectively.
Two situations are analysed in terms of � coefficient (�= 0.25 and 0.49999). Figures 4 and 5

show the convergence curves of standard (STD), mixed (MSTD) and both mixed stabilized PGP
and PSPG (with c= 1 and �PGP = �PSPG) triangles as a function of the characteristic element size h.

Note that in the compressible situation, the four FE formulations show similar convergence
rates, in displacement and also in pressure. In this case both, the PGP and PSPG, strategies are
clearly unfavourable from the computational point of view. However, in the incompressible regime,
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Figure 5. Incompressible case � = 0.49999: (a) displacement and (b) pressure.

(b)(a)

140
140

100

Figure 6. Elastic block: FE meshes: (a) 56 000 and (b) 90 000 tetrahedral elements.

a convergence rate of approximately 1.7 (for displacement and pressure) is obtained for the PGP
and PSPG elements, similar to that obtained in the compressible regime. This means that the
incompressibility constraint does not affect the convergence rates of the interpolated fields as it
happens with the other formulations.

4.2. Incompressible elasticity

We consider a nearly incompressible elastic block of 140× 140× 100 (unit length in millimetres)
subjected to the following boundary conditions: all displacement are prescribed to zero at the
bottom surface, the top surface is glued to a stiff plate imposing a vertical downward displace-
ments (�y = 7 mm); the lateral faces are free. The mechanical parameters are: Young’s modulus
E = 2 999 800 MPa, Poisson’s ratio � = 0.4999.
Figure 6 shows the discrete models for two unstructured meshes of about 56 000

(Figure 6(a)) and 90 000 (Figure 6(b)) tetrahedral elements. To test the numerical performance
of the parallel implementation, this example has been computed solving simultaneously the fully
coupled system of Equations (22) (entailing approximately 71 000 and 112 000 equations, respec-
tively). This monolithic scheme provides a more challenging test for the iterative solver of the
linear equation system.
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(b)(a)

-0.25

-13.0

Figure 7. Mean stress maps, MSTD formulation: (a) 56 000 and (b) 90 000 elements.

(b)(a)

-0.25

-13.0

Figure 8. Mean stress maps, PGP formulation: (a) 56 000 and (b) 90 000 elements.

Figure 7 shows the mean stress field for both meshes and assuming a negligible level of stabi-
lization (c≈ 0). This situation represents the response of an unstable mixed standard formulation
(MSTD). Severe locking effects can be observed. The mean stress oscillation diminishes drasti-
cally if the stabilization term SPGP

st is activated, as can be seen in Figure 8, where c= 1 has been
considered.

The transition from unstable to stable solution by varying the c parameter can be more clearly
evidenced in Figure 9, where the mean stress distributions along the internal line AB have been
plotted for different values of c.

Figure 10 displays a comparison between the mean stress curves along the AB internal line for
the PSPG and PGP stabilization schemes. It can be observed that both solutions are practically
identical. According to expressions (9) and (12), the stabilization factors that have been used in
this simulation are:

�PSPG = h2

12�
, �PGP = 2h2

�
(33)

Next, we examine the numerical performance of the parallel implementation procedures. Nine nodes
of a PC cluster (P4, 2.4GHz, 1GB RAM DDR 333MHz) were utilized. The comparative analysis
of the computational cost for solving the monolithic system of equations, without uncoupling

Copyright q 2007 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2008; 24:297–320
DOI: 10.1002/cnm



STUDY OF STABILIZED MIXED FINITE ELEMENT 309

0 50 100 150 200
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
5

c=0.001
c=0.01
c=0.1
c=1
c=10

A
B

Figure 9. Mean stress curves along of AB line, PGP formulation.
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Figure 10. Stabilization procedure comparison: PSPG vs PGP.
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Figure 11. Linear solver convergence, test with 90 000 elements.

Table I. Time performance, test with 56 000 elements.

Solver strategy Preconditioner Absolute time (s) Relative time

GGMRES Jacobi 64.85 3.33
IISD Jacobi 19.47 1.00
IISD IS 16.93 0.87

the P field, considers the two strategies mentioned above (Section 3.1):

• The global iterative GMRES scheme (GGMRES), where the iterative process is carried out
in parallel, using the standard Jacobi preconditioner.

• The IISD (based on DDM) technique, where the whole domain is decomposed on nine sub-
domains, each one is allocated on a cluster-processing node, and both preconditioners, the
standard Jacobi and the IS, are compared in the simulations.

Figure 11 depicts, for the 90 000 element test, the required number of iterations to reduce 10
orders of magnitude the relative error of the residual norm. The differences between the IISD and
GGMRES strategies are evident, see also Tables I and II.

In the IISD context, less iterations are needed when using the IS preconditioner with respect
to the Jacobi one, and consequently, less memory is required to store the Krylov space. Less
number of iterations does not imply, by itself, better performance of the algorithm. Nevertheless,
the computing time given in Tables I and II shows that the IS preconditioner behaves better than
the Jacobi, with an improvement of approximately 12%, for these problems. Even when efficient
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Table II. Time performance, test with 90 000 elements.

Solver strategy Preconditioner Absolute time (s) Relative time

GGMRES Jacobi 197.02 3.83
IISD Jacobi 51.49 1.00
IISD IS 45.99 0.89

P

1

0.75 0.750.50

Figure 12. Geometry and boundary condition for 2D plane strain Prandtl test.

implementation of the IS preconditioner is, at the present, under development, it should be remarked
that this procedure shows promising results.

4.3. 2D Prandtl test

The objective of this numerical application, which corresponds to the 2D plane strain version of
the Prandtl’s punch test, is to evaluate the response sensitivity, particularly in the limit load and
the collapse mechanism, with respect to the finite element mesh orientation. The solution is given
by analysing specially designed mesh configurations to challenge the present formulation.

The classical problem consists of a semi-infinite half space vertically loaded by a stiff plate.
We have limited the studied domain to a rectangular zone as shown in Figure 12 (dimensions in
millimetres).

The (non-unique) collapse mechanism and the corresponding (unique) structural limit load, con-
sidering a J2 elastic-perfectly plastic material, has been determined analytically (see, for example,
[25, p. 219]). The limit load solution is �N/�y = (2+	)/

√
3, where �N is the nominal stress under

the punch and �y the material yield stress. In the present test, the punch displacement is constrained
to move without rotation, inducing a unique (symmetric) solution for the collapse mechanism.

Figure 13 shows two finite element discretizations. The first configuration (Figure 13(a)) dis-
plays a (closely) symmetrical distribution of elements and nodes. The second one represents a
biased mesh (Figure 13(b)), specially designed to evidence a directional mesh orientation ‘d’
coinciding, very aproximately, with one of the slip line directions of the collapse mechanisms
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(a) (b)

d

Figure 13. Mesh configurations: (a) symmetrical mesh and (b) biased mesh.
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Figure 14. Mean stress maps: (a) MSTD formulation, symmetrical mesh; (b) MSTD formulation, biased
mesh; (c) PGP formulation, symmetrical mesh; and (d) PGP formulation, biased mesh.

predicted by the analytical solution. Both of them have approximately 1800 triangular elements.
The material properties are: Young’s modulus E = 1.0 MPa, Poisson’s ratio � = 0.499 (observe
the quasi-incompressible elastic response considered here), yield stress �y = 0.01 MPa, perfectly
plastic von Mises constitutive model.

Both, the symmetrical and the biased configuration, have been solved using the mixed triangle
with the PGP stabilization procedure (c= 1) and the standard mixed triangle MSTD (c≈ 0). The
mean stress values, at plastic regime, are displayed in Figure 14. Again, the standard mixed
formulation shows a poor performance characterized by a severe oscillation in the mean stress
field, while the PGP formulation gives a smooth solution.

The capturing of the collapse mechanism for both meshes are analysed in Figure 15. It shows
the equivalent plastic strain fields once the plastic flow is fully achieved. In agreement with the
analytical solution, we can observe that for the PGP formulation and the symmetrical mesh, the
failure mechanism is in correspondence with the expected symmetrical slip line pattern (Figure
15(a)). Nevertheless, the PGP formulation with a biased mesh does not present a symmetrical
distribution of this field. This feature is much more marked in the solution obtained by using
the STD triangle with the biased configuration, Figure 15(c). The same behaviour about the
resulting symmetry loss can be observed by analysing the displacement field. Figure 16 shows the
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(b)(a) (c)

Figure 15. Equivalent plastic strain maps: (a) PGP symmetrical mesh; (b) PGP
biased mesh; and (c) STD biased mesh.

(b)(a)

Figure 16. Iso-displacement contour lines: (a) PGP biased mesh in the elastic regime
and (b) PGP biased mesh in the fully plastic regime.

iso-displacement curves for the PGP model with the biased mesh configuration. During the elastic
regime (Figure 16(a)), even considering elastic incompressibility, the displacement field is very
approximately symmetrical. However, once the concentration of the plastic deformations begins,
this feature is lost (Figure 16(b)). A similar study in the STD triangle shows that the symmetry
loss is produced when isochoric deformations are modelled, independently of the plastic flow
presence. We can conclude that this phenomenon, the symmetry loss of results, is caused by the
well-known finite element limitation to capture some type of kinematical constraints. Nevertheless,
these deficiencies are much less marked in the PGP formulation with respect to the STD one. In
any case, some mesh dependence behaviour is observed.

Figure 17 compares the total plate reaction vs the vertical plate displacement curves for both
meshes with different alternatives: the standard Galerkin (STD), the standard mixed (MSTD)
and the stabilized mixed (PGP) formulations. As it is expected, the standard Galerkin element
shows a response without limit load, while the MSTD and PGP formulations, either for symmet-
rical or biased meshes, show a well-defined limit load. A mesh refining and a larger domain
of analysis shall give a more adjusted prediction of the analytical solution. It is observed that
the limit load predictions are in good agreement with the analytical solution for both mesh
configurations.

Table III shows the comparative computational cost, running in one processor, introduced by
the mixed stabilized formulation (PGP) with respect to the standard finite element formulation and
for different parts of the numerical process. The figure of the total CPU cost, in the first column,
compares well with that reported in Reference [5].

We remark that the P field evaluation, when using the procedure described in (28) and (29),
shows a small computational cost in comparison with other part of the algorithm (<5% than that
required by the system solution).
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Figure 17. Load–displacement curve.

Table III. 2D Prandtl test, computing time values (CPU) for the PGP method
relative to the standard STD triangle.

Total Stiffness matrix System solution Internal forces

1.73 1.81 2.61 1.22

4.4. 3D notched cylinder

This example is devoted to study the behaviour of tetrahedral stabilized PGP elements under
severe plastic strain state. It is a cylindrical notched specimen under axial tension by application
of incremental displacements. The geometry proportions and the discrete model (of about 7800
elements), used in the simulation, can be seen in Figure 18 (due to symmetry conditions only
1
8 of the bar is discretized). The following mechanical properties have been assumed: Young’s
modulus E = 3× 103 MPa, Poisson’s ratio � = 0.3, and a J2 perfectly plastic model with yield
stress �y = 50 MPa.

Figure 19 shows the normalized nominal stress (�N/�y) vs normalized imposed displacement
(E�y/(W�y)) curves for two different finite element formulations. The irreducible standard
Galerkin model (STD) fails again to capture a limit load. The PGP stabilized element (with
c≈ 1), instead, exhibits a well-defined limit structural strength. The limit load determination in
this example is equivalent to the limit load problem of the punch test. However, the authors do
not know an analytical solution for it when considering the symmetry of revolution and von Mises
yield criteria.
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Figure 18. 3D notched cylinder problem: (a) geometry and (b) discrete model.
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Figure 19. Load–displacement curve.

Figure 20 depicts the mean stress field, close to the notched zone in correspondence with the last
load step. In this case, two situations in terms of c parameter are considered: by choosing c= 0.04,
the stabilization effect is practically neglected, while c= 4 imposes an important stabilization
effect. Again, the stabilization influence to avoid spurious oscillation modes is noticeable.

For the solution with c= 4 and once the fully plastic regimen was achieved, Figure 21 displays
the vertical displacement map and the equivalent plastic strain field in that zones close to the notch.
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Figure 20. Mean stress maps, PGP formulation: (a) c= 0.04 and (b) c= 4.
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Figure 21. Contour fills, c= 4: (a) vertical displacements and (b) equivalent plastic strain.

4.5. Localization problem

A compression test of a prismatic square section block, under plain strain assumption, is analysed.
This numerical example has been previously used by some authors at the beginning of 1990s to
test the ability of finite element formulations for modelling strain localization problems. J2 elasto-
plastic material model with linear softening is adopted. Under this condition and after the material
instability critical condition has been reached, the development of a plastic strain localization zone
is expected (with an inclination of about 45◦). We analyse the capability of the stabilized PGP
triangle to capture this failure mechanism.

Figure 22(a) shows the geometric proportions of the problem (dimensions in millimetres).
A quarter of the block is considered in the numerical simulation (see Figure 22(b)). The
mechanical parameters are: Young’s modulus E = 3× 104 MPa, Poisson’s ratio � = 0.3, yield
stress �y = 36 MPa, softening material modulus H =−1.8× 103 MPa.

The constitutive model has not been regularized with the finite element size. Therefore, the
computed load–displacement curve will change with mesh refinement. However, our interest here
is to show the mesh direction sensibility rather than the mesh size independence. It should be
expected that by using different meshes, with similar element size, the results should be comparable
even if the mesh direction changes.
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Figure 22. Localization problem: (a) physical model and (b) numerical model.
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Figure 23. Meshes used in the simulation: (a) 375 elements; (b) 128 elements; and (c) 128 elements.

Three meshes of PGP stabilized triangles (c= 4) are considered. The first one, mesh (a),
corresponds to a rather arbitrary distribution of 375 elements. The two remaining meshes are
structured arrangements of triangles, either following the failure line direction (mesh (b)), or
orthogonal to it (mesh (c)). Both of them have 128 finite elements (Figure 23).

The performance of the PGP elements in this test can be evaluated by comparing the equivalent
plastic strain field (see Figure 24) and the load–displacement curves (Figure 25(a)) obtained with
the meshes (b) and (c). Solution for mesh (a) is not relevant for the load–displacement curve
comparison because the size of the finite elements is different from that of meshes (b) and (c).
We can observe that both responses (b) and (c) are clearly different. This test shows a similar
response to that observed in Section 4.3, though much more marked in this case due to the
plastic softening. However, we remark that they represent two extreme conditions. Figure 25(b)
demonstrates that even by modifying the stabilization parameter several orders, it is not possible
to correct the pathological effect of mesh bias, which confirms that this drawback is due to the
deficient kinematical behaviour of the linear triangle.
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Figure 24. Equivalent plastic strain maps for meshes of Figure 23.
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Figure 25. Load–displacement curve.

5. CONCLUSIONS

We have evaluated a stabilized mixed finite element formulation with low-order interpolation which
shows good performances for solving small deformation incompressible solid mechanics problems.

If compared with displacement irreducible formulations, the extra computational cost introduced
by the additional degree of freedom per node corresponding to the pressure field should be con-
sidered. However, the good performance displaying the linear triangles, and mainly the tetrahedral
in 3D analysis, makes its use more than acceptable. We remark that the treatment of the vectorial
field P, when using the procedure of Equations (28) and (29), does not introduce an appreciable
computational cost, because it could be treated as an additional postprocessing step.

Its parallel implementation has also shown a good performance using the sub-domain partitioning
method jointly with the Interface–Iterative/Sub domain-Direct technique (IISD) and interface strip
(IS) preconditioning. In addition, the use of the IS preconditioner in the context of plastic solids
mechanics problems can be considered as an original contribution.
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From the numerical analysis performed in the strain localization problems, it is necessary to
mention an important limitation. Using biased meshes, we have observed some mesh dependence
in the plastic localization modelling. We emphasize that this pathological behaviour is insensible to
stabilization parameter variations. Although the stabilization scheme incorporates a new sub-scale
for displacement field (orthogonal to the standard finite-element scale), this strategy is not enough
to enrich the kinematics for capturing, objectively, the characteristic shear band mode with respect
to mesh orientation. In contrast with some conclusion reported in the literature, we understand that
this is an important aspect of the present formulation which deserves an improvement. Following
this idea, the authors have recently proposed the mixed stabilized finite element, here studied,
enriched with an elemental supported embedded strong discontinuity kinematics mode, see [26].
This approach opens a feasible future research line for application to ductile material failure.
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