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Abstract
We first summarize briefly several properties concerning the dynamics of two-dimensional
(2D) turbulence, with an emphasis on the inverse cascade of energy to the largest accessible
scale of the system. In order to study a similar phenomenon in 3D turbulence undergoing
strong solid-body rotation, we test a previously developed large eddy simulation (LES) model
against a high-resolution direct numerical simulation of rotating turbulence on a grid of 30723

points. We then describe new numerical results on the inverse energy cascade in rotating flows
using this LES model and contrast the case of 2D versus 3D forcing, as well as non-helical
forcing (i.e. with weak overall alignment between velocity and vorticity) versus the fully
helical Beltrami case, for both deterministic and random forcing. The different scaling laws
for the inverse energy cascade can be attributed to the dimensionality of the forcing, with
either a k−3

⊥
or a k−5/3

⊥
energy spectrum of slow modes at large scales, k⊥ referring to a

direction perpendicular to that of rotation. We finally invoke the role of shear in the case of a
strongly anisotropic deterministic forcing, using the so-called ABC flow; in that case, a k−5/3

⊥

is again observed for the slow modes, together with a k−1 spectrum for the total energy
associated with enhanced shear at a large scale [92].

PACS numbers: 47.32.Ef, 47.27.−i, 47.27.ek

(Some figures may appear in color only in the online journal)

1. Introduction

The interactions between winds and waves (mostly surface
gravity waves) have an important role in planetary and
oceanic boundary layers with dynamical consequences for
mixing, in particular the upper layer of the ocean, affecting
the momentum, heat and CO2 transport. For example, this
may result in a Southern Ocean mixed layer, which is too
shallow in many climate models [41], thereby affecting the
overall climate evolution [20]. These difficulties with global
models, for both climate dynamics and weather prediction,
can be related to inadequacies in the numerical treatment
of wave breaking, as it manifests itself in overturning
and Kelvin–Helmoltz instabilities, because of insufficient
resolution. This leads in turn to the inaccurate modeling
of nonlinear interactions which take over both at small

scales, with enhanced turbulent mixing, dissipation and
intermittency, i.e. the occurrence of localized extreme events,
and at large scales in the form of inverse cascades.

Non-equilibrium turbulent processes are ubiquitous in
our environment, and they can be tackled in a unified
framework using an array of statistical tools, although
it is expected and observed that temporal evolutions,
scaling laws and physical structures display a variety of
different behaviors. Enhanced dissipation and mixing, as
observed in many instances in geophysical flows such as
oceans (see, e.g. [50]), can be quantified in laboratory
experiments, in numerical simulations and in observations
of geophysical flows. For example, simultaneous data on
small-scale buoyancy, shear and dissipation collected in an
Arctic fjord [39] give us a more accurate understanding of
the interactions between turbulent eddies and waves, with an
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evaluation of eddy diffusivity as a function of the Richardson
number. Such detailed observations can also lead to an
assessment of parameterization models of small-scales eddies
as they appear in current weather and climate codes.

Among such complex flows, two-dimensional (2D) flows
play a special role, be it only because they are more
amenable to numerical simulations at high resolution. The
present renewed interest in 2D turbulence is due to several
factors. On the one hand, the increased power of computers
allows for modeling flows with higher Reynolds numbers and
thus for a more accurate determination of the statistics and
characteristics of such flows. Moreover, the observation in the
atmospheric boundary layer of an energy spectrum with a k−3

law followed at smaller scales by a k−5/3 law [79] has led
to some controversy since the opposite case was believed to
happen (see below): the atmosphere is viewed as quasi-2D
at large scales, as a recent analysis of data with modern
velocimetry techniques shows rather unambiguously [44], and
thus is expected to undergo an inverse cascade of energy to
large scales.

The inverse energy cascade in 2D flows was first observed
numerically [48]. It was later confirmed experimentally
in [99] using an electrically driven flow in a thin layer of
mercury in a square box, and in numerous configurations
after these pioneering papers [13, 101]. There are other
2D systems undergoing inverse cascades when incorporating
more physical phenomena, such as beta-plane turbulence or
multi-layer quasi-geostrophic (QG) flows [67, 106], as well
as when coupling the velocity dynamics to that of magnetic
induction (although in the case of conducting fluids, it is not
the energy that populates the scales larger than the forcing
scale). For very strong rotation (at a fixed Reynolds number)
it is known that 3D flows tend to become 2D and thus to
remain non-singular in the limit of zero viscosity [1]; indeed,
an inverse cascade of energy was observed in [96] for such
flows, and the co-existence of an inverse cascade of energy
to large scales and of a direct cascade of energy (and of
helicity) to small scales was studied in [71, 72] (see [88] for
a recent review), with the eventual recovery of isotropy and
Kolmogorov scaling at small scales [73].

The inverse cascade of energy in 2D turbulence was
postulated by Onsager [38, 83] when studying the interactions
of an ensemble of point vortices and by Kraichnan [55]
using statistical equilibria of a finite number of degrees of
freedom in the ideal (non-dissipative) case. This cascade is
characterized by a transfer of energy with a constant flux, up
to the largest scale accessible to the system; it is attributed
to the dual constraint of total energy and squared vorticity
(enstrophy) conservation for inviscid 2D flows. The review
paper by Kraichnan and Montgomery [59] on 2D turbulence
focused on theoretical issues, including those in the case
of coupling to a magnetic field. It states that the inverse
cascade for 2D fluids should follow an E(k) ∼ k−5/3 spectrum
(similar to the Kolmogorov spectrum in the direct cascade
of energy in three dimensions), together with a k−3 law for
the energy in the direct enstrophy cascade to small scales
[3, 18, 27, 62, 104]. Steeper spectra at a small scale have
been observed [14, 108], in particular in early numerical
simulations at low resolution; sometimes they are related
to the dominance in such computations of strong coherent
vortices.

In physical space, the inverse cascade corresponds to
the formation of large-scale vortices (jets [34] or bars [116]
can also be found). These structures have been observed
for quite a while in numerical simulations [48] and in
the laboratory [99]. They can be viewed as caused by a
negative eddy viscosity arising from small-scale eddies [58],
or as a non-local interaction between a small-scale vortex
embedded in a large-scale strain [28]. However, it has
also been known for a long time that large-scale spectra
can be steeper than k−5/3, especially close to the gravest
allowable mode where the energy condenses. In this case,
long-time energy accumulation at the largest scale is
viewed as providing a source of energy for a downward
cascade to smaller scales through filamentation of the
large-scale vortex. The large-scale flow can, in turn,
decrease the level of turbulence [94], as also found in
the context of plasma flows [10]. When Ekman friction
is present, steeper spectra in inverse cascades can also be
interpreted as caused by a wavenumber-dependent energy
flux arising from the friction, similar to a phenomenon
already documented for magnetohydrodynamic flows in the
quasi-static approximation relevant at low magnetic Reynolds
numbers [109]. Furthermore, it is shown in [24] that the
saturation time of the inverse cascade scales as ν−1 and that
the saturation level of the energy, which depends on both
the force and the dissipation, needs a well-resolved enstrophy
range, due to non-local interactions between small scales and
large scales. It is also worth noting that, in a reduced model of
the rotating Rayleigh–Bénard convection, the authors of [51]
found that a k−3 for the spectrum of the horizontal energy
takes place in an inverse cascade for late times.

These so-called condensates undergo random reversals,
more temporally sparse when large-scale friction is
diminished, the coupling to high-frequency modes providing
the random noise that can trigger the transition from
one large-scale quasi-steady state to another [35]; this
phenomenon is observed in Rayleigh–Bénard convection,
in 2D Navier–Stokes turbulence in boxes with a close
to unity aspect ratio [15], in fluid experiments [66], in
dynamo experiments [4] and in the reversal of the Kuroshio
oceanographic current [89] and of the magnetic field of the
Earth [105].

The turbulence statistics in the inverse cascade is
Gaussian until the formation of the condensate, when the
spectrum steepens [95]: the inverse cascade is known to
be self-similar, with a linear variation with the order of
scaling exponents of structure functions of the velocity field.
However, Smith and Yakhot [95] noted that the condensate
is responsible for intermittency at a large scale, viewed as
a finite-size effect due to the fact that the inverse cascade
of energy has reached the gravest mode, and the boundary
of the system where (Ekman) friction can play a role as
well. Intermittency in an inverse cascade was diagnosed
at high-order statistics in [52] in a soap-film experiment.
A balance between linear friction ∼αu and advection u · ∇u
gives E(k) ∼ k−3 but possibly in the absence of a constant flux
of energy, since friction acts at all scales in the inverse cascade
range. Moreover, removing the large-scale large-intensity
vortices leads to recovery in the inverse range of a k−5/3

law again, linking clearly the change in spectral slope to
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the presence or absence of coherent structures. The origin of
these coherent structures has been studied in the context of
relaxation processes for long times and of entropy principles
(see, e.g. [19, 70, 78, 93] and also [90] for surface QG flows
and the case of a passive tracer in such a 2D turbulence).

2. Inverse cascades

2.1. Forcing and dissipation mechanisms and the lack of
universality in 2D flows

In a series of experiments, it was found that, depending on the
bottom-wall friction, two different regimes could be observed:
for weak forcing, a condensate forms via the merging of
smaller vortices, with a steep ∼k−3 spectrum, whereas for
strong forcing, a k−5/3 cascade is observed with clustering of
vortices at a size comparable to that of the forcing scale [84].
The influence of the large-scale drag on the inverse cascade
and on structure formation was also investigated in [100].
From the numerical standpoint, the analysis of such spectral
laws shows that they depend also on whether or not both
the direct and inverse ranges are properly resolved [34, 91];
as an example, hyperviscosity and a short enstrophy range
inhibit the formation of the large-scale vortex and thus favor a
k−5/3 law. Furthermore, disruption of vortices into filaments
can happen only when the small-scale range (to which
the filaments belong) is sufficiently well resolved, in turn
affecting the steepness of the resulting energy spectrum [107].
There are also some indications that, when the Reynolds
number is increased sufficiently so that an enstrophy cascade
develops, the spectrum of the inverse energy cascade steepens,
a phenomenon again related to the more efficient formation of
large-scale coherent structures [91].

Some degree of non-universality in the structures and
statistics of the flow has thus been observed due to
several factors: the nature of the forcing term, the friction
(or hypo-viscosity) used at a large scale to prevent an
accumulation of energy on the gravest mode, the eventual
dissipation mechanism at small scales, as well as boundary
conditions and the overall geometry (see, e.g. [17, 25, 37]).
As an example of the latter factor, it was shown analytically
in [25] that a single vortex forms in a square domain, but a
dipole forms for rectangular boxes of sufficient aspect ratio
(greater than ≈1.12). It was also found in [17] that the
correlation time of the forcing function matters in determining
the shape of vortices, although very long time statistics are
needed in order to observe the effect.

The observed correlation between small- and large-scale
dynamics implies non-locality in Fourier space and non-
universality [34], and also implies that both cascade ranges
have to be explicitly incorporated into the flow, with sufficient
resolution at small and large scales. Non-local interactions
seem to be particularly evident when polymers are added
to the flow: they affect the small scales and produce a
drag reduction, but are also known to affect the inverse
cascade of energy at large scale; this was shown using a
shell model [6] and in experiments [53]. Another example of
scale non-locality comes from the recent study in [17], where
the statistics of vortex population was analyzed. However,
it should be noted that a wavelet-based analysis of 2D

turbulence was performed in [40], concluding that enstrophy
transfer is local in configuration space.

In recent years, higher resolutions have been achieved in
2D simulations [7, 11, 17, 107], with up to 32 7682 grid points,
leading to sizable cascades including resolving the dual (direct
and inverse) cascades, and with a choice of forcing scale of
up to roughly 1/1000 the size of the overall computational
box. This has allowed for refined statistics, including a
detailed study on the conformal invariance properties of
the inverse cascade of energy [7]. However, whether a
logarithmic correction to the small-scale spectra as predicted
by Kraichnan [56], ensuring locality of interactions, is present
or not is still open to debate. A moderate-resolution run with
very long time integration (of the order of 1000 turnover
times) and using both linear friction and hyper-viscosity finds
such a correction [85], and this was found in [106] also
in the case of 3D QG turbulence. On the other hand, no
such correction appears in the 2D case at substantially higher
resolutions (but not necessarily at higher Reynolds numbers,
given the choice of forcing wavenumber) or in the absence of
large-scale friction [107] (see also [65]).

2.2. The case of quasi-2D flows

The 2D fluid turbulence is thus being explored and reassessed
today in view of several new results stemming mostly (but
not uniquely) from direct numerical simulations (DNS), with
new findings for systems that are closely related but not
identical to the original 2D-2C (two-dimensional, two velocity
components) case. But how much can one depart from the
standard 2D-2C case and still observe an inverse cascade of
energy? Indeed, the experimental flows discussed above are at
best quasi-2D, so that one can ask whether the finite thickness
of the fluid with which the experiments are carried out, or the
existence and/or roughness of the boundary layer, play a role
in the dynamics of such flows. Flows in nature, such as the
atmosphere and oceans, are also quasi-2D.

This question has been tackled recently using a variety
of approaches. The inverse cascade of energy in quasi-2D
flows is a phenomenon already observed in the framework
of shell models [12, 81]. For example, in [81], adjusting the
parameters in the model allowed for a quasi-2D behavior in
so far as a dual (direct/inverse) cascade was observed, and
in [23], the transition from 3D to 2D behavior was attributed
to a preferred transfer to kz = 0 Fourier modes when rotation
was imposed in the z-direction.

Recent DNS using a 2D (say, horizontal) forcing term in
a 3D box with a varying aspect ratio in the vertical direction
show that, already for an aspect ratio smaller than 1/2, an
inverse cascade of energy begins to develop with a linear
growth of the energy [21] (see also [96]). The growth rate
approaches the injection rate of energy as the aspect ratio
decreases; in fact, it was found in [91] that the strength of
the cascade increases in a monotonic fashion as the Reynolds
number (i.e. the extent of the direct enstrophy cascade) grows.
Similarly, in quasi-2D experimental flows with thick layers
of fluid, it was shown in [113] that a strong planar vortex
suppresses vertical eddies through vertical shear with an
associated time scale that is shorter than the vertical eddy
turn over time (thus enabling it to quench vertical motions),
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and that small-scale and large-scale forcing can combine to
form an inverse energy cascade. A similar reversal of cascade
direction was found in [29] for a passive tracer embedded
in a compressible flow. However, it is not clear whether a
supersonic flow, as encountered for example in the interstellar
medium, will reach such a degree of compressibility since
shocks form and decay rapidly, whereas vortices build on an
eddy turnover time [60].

Finally, the conditions under which turbulence spectra
can be superposed or not when excited at two different scales
and with two different rates, as can occur in the oceans for
example, have been investigated in the context of two direct
cascades [87] in 3D turbulence, and more recently considering
the interactions of direct and inverse cascades in 2D [22].

2.3. Restricted 3D helical flows

In a traditional view of incompressible fluid turbulence, the
invariants of the ideal equations (those in the absence of
dissipation) determine to a large extent the dynamics of the
dissipative case. If the energy invariance of an ideal 3D
flow is well known, such is not necessarily the case for
the other quadratic invariant—helicity—as observed, say, in
the vicinity of tornadoes [32]. Helicity is defined as the
correlation between the velocity u and its curl, the vorticity
ω = ∇ × u, namely H =

∫
u · ω d3x; note that helicity is

not definite positive, which renders the interpretation of its
Fourier dynamics and fluxes more complex (see, e.g. [26]
for a detailed analysis). A helical flow can be viewed
as a superposition of helically (s = ±) polarized waves
[33, 45, 112] written as

u(k) = 6sas(k)hs(k), h±(k) = p̂ × k̂ ± i p̂, p(k) = ẑ × k,

with the hat defining vectors of unit length and z being an
arbitrary direction, conveniently chosen in the rotating case
as the axis of rotation, making the h± functions helically
polarized inertial waves. This helical wave decomposition
has recently been generalized to the case of channel flows,
including with streamwise rotation [115]. Note that there
are four types of basic triadic interactions for wavevectors
k, p, q, defined by the helicity modes (sk, sq , sq), namely
(sk, sq , sq) = (+++), (++−), (+−+) and (+−−), plus four
more exchanging the two (+ and −) polarities [112].

For 3D turbulence in the presence of helicity, only a
dual energy and helicity cascade to small scales has been
found in numerous DNS, with both following a Kolmogorov
k−5/3 law. Loosely speaking, being more of a small-scale
field since it weighs more the small scales than does the
energy, the helicity will undergo a direct cascade to small scale
more readily than the energy does. However, and perhaps
more surprisingly, an inverse cascade of energy (with a direct
cascade of helicity) was observed recently for 3D helical
turbulence when restricting the nonlinear interactions to the
subsets of Fourier modes that have only one-sign (either +
or −) polarity [9]. In the general case, waves of different
signs can interact (see [111, 112]), but since individual triadic
nonlinear interactions conserve the invariants separately, one
can indeed truncate the equations to such subsets of modes.
It is interesting to point out that when dealing with all
interactions (+ and −), the helicity cascade is difficult to study

as its flux may also change signs. Restricting interactions to
same-sign modes does not have such an impediment, and
a direct cascade of helicity can be identified clearly. The
invariance of one-signed helicity in this restricted case leads
to the inverse cascade of energy to large scales which follows
again a k−5/3 spectrum [9].

This result does not contradict the previous numerical
findings using the full set of nonlinear interactions; indeed,
it was shown in [57] that same-sign interactions are
sub-dominant and thus one can recover the traditional direct
cascade of energy for 3D fluid turbulence in the full case. The
recent study in [9] does show, however, that the principles of
statistical mechanics, on the basis of which arguments can be
developed in favor of direct and inverse cascades, are sturdy
and extend also, perhaps in unexpected ways, to (carefully
selected) subsets of modes. Sub-ensembles of modes having
different scaling laws are a known feature of turbulent
flows, such as for example in Rayleigh–Bénard convection
when differentiating between the (0, 0, 2n) modes of the
temperature and all other modes, due to inherent symmetries
of the equations [75]. The gedanken numerical experiment
restricting interactions to the + + + triads also gives credence
to the observation that, when examining the individual energy
transfer in triads, there are numerous interactions transferring
energy to large scales, some of which can be interpreted
as being due to this subset of same-signed helical modal
interactions, and others that obviously correspond to purely
2D triads. Finally, note that a large-scale instability akin to
that in magnetohydrodynamics can develop when the small
scales are both helical and anisotropic [42, 64]

2.4. Decaying versus forced flows

Traditionally, inverse cascades are considered to be the
hallmark of forced turbulence: forcing is viewed as necessary
for observing an inverse cascade, in particular because of
the energy needed to populate the large scales, with a linear
growth of the total energy in time. However, it has recently
been shown, using an ensemble of numerical simulations
computed on grids of up to 40962 points, that a large-scale
k−5/3 spectrum can be observed also in the decaying case at
scales larger than those of the initial conditions, k−1

0 , when
taking the average over long times and over the ensemble [74].
This observed spectrum corresponds to an inverse cascade
with a constant negative flux for the ensemble. The source
of energy for this to happen comes from the fact that,
at sufficiently late times, the energy at k0 has decreased
substantially, part of it being fed to larger scales. Such a
behavior is not necessarily surprising since it is contained
in the nonlinearity of the primitive equations but it has
implications for experimental quasi-2D flows, which are
found to follow in some cases a k−5/3 law even though the
flow is interpreted as being decaying.

2.5. Breakdown of 2D effects and rotating flows

The reverse effect of the selection of 2D modes in
initially quasi-2D flows, or in other words, the three-
dimensionalization of 2D turbulence, has also been observed,
e.g., in freely decaying turbulence [82]. Similarly, forced
turbulence with solid-body rotation �, which behaves in
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a quasi-2D way at large scale, has recently been shown
to recover its 3D properties at small scales [73], provided
that the so-called Zeman scale `� = [ε/�3]1/2 with ε = Ė
(equivalent to the Ozmidov scale for stratified flows) is
resolved (the Zeman and the Ozmidov scales are defined as
the scales at which the turnover time and the wave period are
equal). One may have to distinguish here between decaying
flows, for which the Reynolds and Rossby numbers vary
in time in different ways, and the forced case in which
these two dimensionless parameters can be kept relatively
constant. In the decaying case, the ratio of the Zeman to the
dissipation scale varies with time (the Zeman scale decreasing
as the Rossby number decreases), whereas in the forced case
this ratio does not change substantially and could even be
constrained to retain a constant value. Thus, the fact that
anisotropy is found to be stronger at smaller scales in a
laboratory experiment analyzed recently [61] may be related
to the variation of this ratio of scales and is not necessarily in
contradiction with DNS results of isotropization of the small
scales in the presence of forcing (although non-monotonic
effects in rotating flows cannot be discarded either). Again,
universality should not be assumed too rapidly when several
phenomena with different time scales are in competition, and
more experiments, both numerical and in the laboratory, are
clearly needed.

What remains of these findings in the presence of the
imposed solid-body rotation? Of course, the computational
demand is substantially greater than in 2D, and it will take
time to explore the parameter space thoroughly, but results
are already emerging that stress the role played by the nature
of the forcing (emphasizing or not 2D versus 3D modes)
at large scales [97]. It is in this context that we wish to
address briefly the extent to which sub-grid scale models of
turbulence can be used to further explore the parameter space
in rotating turbulence. To this end, we present here new tests
of a previously developed large eddy simulation (LES) model
of turbulence [2], for which the Zeman scale may or may
not be resolved against a rotating turbulence DNS performed
on a grid of 30723 points, for which the Zeman scale is
well resolved. We then mention recent results on the inverse
cascade of energy in rotating 3D turbulence using this model,
and end the paper with some concluding remarks.

3. Resolving or not the Zeman scale in a model of
rotating turbulence

Let us begin by writing the incompressible Navier–Stokes
equations in a rotating frame of reference:

∂u
∂t

+ ω × u + 2� × u = −∇P + ν∇
2u + F; ∇ · u = 0; (1)

P is the pressure modified by the centrifugal term, obtained by
taking the divergence of equation (1); rotation Ω is imposed
in the vertical (z) direction. The Reynolds number Re =

U0L F/ν with U0 being the rms velocity, L F = 2π/kF the
forcing scale and ν the kinematic viscosity; Ro = U0/(2L F�)

is the Rossby number; F is a forcing term.
Together with energy, helicity is an invariant of the Euler

equations (see [76] for a review) including in the presence
of solid-body rotation. In Fourier space, the relative helicity

is ρ(k) = H(k)/[2k E(k)] with H =
∫

H(k)dk and E =∫
E(k)dk the total energy. A Schwarz inequality implies that

|ρ(k)|6 1, and the helicity is said to be maximal when ρ(k) =

±1. It can be created locally in space through the correlation
of vorticity and shear or pressure gradients [69] and globally
through a combination of stratification and boundaries or
rotation [76]. Fully helical (Beltrami) flows, with aligned
velocity and vorticity everywhere, can be represented by the
so-called ABC flow [31]:

u/u0 = [B cos(k0 y) + C sin(k0z)]x̂ + [C cos(k0z)

+ A sin(k0x)]ŷ + [A cos(k0x) + B sin(k0 y)]ẑ. (2)

Such flows are not attractors of statistical ensembles in
ideal fluids [57] and are not globally stable [86], but,
in helical turbulent flows in the absence of rotation,
full mirror-symmetry (no helicity) recovers slowly with
wavenumber, as 1/k, since both the energy and the helicity
have Kolmogorov k−5/3 spectra. Note that the ABC flow is an
intrinsically 3D flow; it excites only a few modes selected by
its helical symmetry in a given shell (basically along the three
kx , ky and kz axes), with dependence in all three directions,
and has three components of the velocity field. However, the
amount of energy in 2D versus 3D modes remains constant
when one increases k0. On the other hand, for isotropic initial
conditions or forcing, the amount of energy in 2D versus 3D
modes decreases when one increases the wavenumber of the
flow since the energy in the 2D modes grows as k0, while the
energy in 3D modes grows as k2

0 , i.e. as the number of points in
a spherical Fourier shell. When the ABC flow is concentrated
at the large scales, the resulting anisotropy of the flow is not
significant, but for problems of energy decay [103], or for
inverse cascades for which ABC is used as a forcing and is
moved to small scales with forcing wavenumber kF = k0 of
the order of a few tens, the anisotropy becomes measurable
and can affect the resulting dynamics [92].

The DNS of forced rotating turbulence used as the
‘ground truth’ to validate the LES results corresponds to a
simulation with 30723 points, with parameters Ro = 0.07 and
Re = 2.7 × 104, chosen such that the Zeman scale is well
resolved (k� ≈ 30). ABC was used as the forcing F to inject
both energy and helicity, and was applied at kF = k0 = 4.
The LES we employ is described in detail in [2]; it has been
tested against a DNS on a grid of 15363 points with forcing
at kF = 7 that has the Zeman scale close to the dissipation
scale. The LES model implements both an eddy viscosity and
an eddy noise, and these two transport coefficients have both
a non-helical and a helical contribution. The eddy viscosity
does not assume a Kolmogorov spectrum but rather fits the
spectrum at a given time with a power law followed by an
exponential decay; the fit is done in the interval [kc/3, kc],
where kc is the cut-off wavenumber. Hence the question arises
as to whether the LES can capture the behavior of the Zeman
scale when this scale lies in the middle of the inertial range.
We thus look at several LES runs computed on grids of 1283

to 5123 points. All flows start from the same initial conditions,
a statistically steady state of a turbulent flow without rotation
and thus have initially Kolmogorov spectra both for the energy
and the helicity.

Figure 1 (top) shows the temporal evolution of the total
kinetic energy and of the energy injection rate for the DNS
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Figure 1. Top: time evolution, for � = 5, of the energy E (left) and its input rate ε (middle left) for the DNS on a grid of 30723 points
(black) and for LES runs (1283, green dash; 2563, red dots; and 5123, blue dash-dot). Right: product of the energy and helicity spectra
compensated for by k10/3 for the same runs and averaged for t ∈ [4.5, 6.5]. Bottom: visualizations of the 30723 DNS run. Left: 2d cut of the
vertical velocity. Perspective rendering of the rms vorticity (middle) and of the helicity (right) at the latest time of computation, with vertical
columns shrouded by small-scale isotropic vortices.

and for the three LES runs which are identical except for
the resolution of the grid used in the LES. For none of these
runs is a global energy increase discernible (except for the
initial phase adjustment to rotation), since the inverse cascade
of energy is barely resolved, with a forcing at kF = 4. The
initial growth, up to t ≈ 4.5, is remarkably similar for all
runs, presumably because this phase is dominated by waves
with little need for parameterization, whereas differences
become discernible afterwards. All LES runs underestimate
the energy, by roughly up to 15%, and overestimate the
helicity (not shown). Neither the injection rate nor the
dissipation differs significantly from run to run, except for
a phase difference in the oscillations, and thus the Zeman
wavenumbers computed for all runs are quite close. These
oscillations linger on over time, a phenomenon likely related
to the excitation of waves when rotation is turned on [72], but
note that all LES runs exhibit a persistent delay with respect
to the DNS. It would be of interest to identify the origin of this
discrepancy.

The phenomenological prediction for turbulence in the
presence of rotation is that E(k) ∼ k−e, H(k) ∼ k−h , with e +
h = 4 at scales where rotation prevails, and E(k) ∼ H(k) ∼

k−5/3 beyond the Zeman scale when isotropy is recovered.
In the light of this, we show k10/3 E(k)H(k) on the right of
figure 1 (top). All spectra are in overall good agreement until
the Zeman wavenumber ≈30, at which there is a break in the
spectra, and they evolve towards a dual Kolmogorov cascade
in the DNS [73]. This break in the spectra is visible for all LES
runs, but clearly too accentuated for the lower resolutions.
The Kolmogorov law for E(k) and H(k) is well recovered,
whereas the steeper spectrum in the DNS is not accurate

except at the highest-resolution LES, although the transition
between the two is well marked in all runs. The fine-tuning
between waves and nonlinear steepening due to advection
may need an even higher resolution in the LES, in part
because the fit to the spectrum catches the Kolmogorov part
but perhaps misses, in the evaluation of transport coefficients,
the large-scale steeper part. Note that the error in the global
energy has to be put in perspective, realizing the enormous
saving in computation time, ≈ (3172/512)4 > 1400 for the
5123 LES (and more so for the lower-resolution LES). Finally,
at the bottom of figure 1 are given visualizations of the 30723

run at the final time of the computation, with a 2D cut of the
vertical component of the velocity (left), and 3D perspective
views of the rms vorticity (middle) and helicity (right). When
compared to a similar imaging for a run for which the Zeman
scale is not resolved, the vertical structures appear more
fuzzy, as small-scale isotropic vortices are wrapped around
the maximally helical columns.

In view of these results, as with those given in [2] for
tests of the same LES but against a DNS at lower resolution
and not resolving the Zeman scale, we can conclude that
the LES model can reproduce well the dynamics of the
anisotropic large scales even in complex flows with different
scaling behaviors at different scales. Using this LES, we
now show in figure 2 the energy spectrum at different times
for a run with Re ≈ 6.2 × 104 and Ro = 0.014, forced at
kF = 7 on a grid of 1923 points; the initial conditions are
those of a fully developed turbulent flow without rotation. As
time evolves, the small-scale range becomes steeper, and the
inverse cascade builds up progressively towards scales larger
than the forcing scale. At the final time, the energy has reached
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Figure 2. Left: temporal evolution (from dark blue, through green, red, black, mauve to cyan) of the energy spectrum for a run with
Re ≈ 6.2 × 104, Ro = 0.014. One sees that the effect of rotation is to populate the large scales at the expense of the small scales which are
depleted. Energy (solid black) and helicity (red dashed) spectral fluxes at the end of the computation for two runs with (middle) high and
(right) moderate (four times smaller) Re, but with otherwise comparable Rossby numbers and numerical resolutions. Constancy of the flux
of energy and helicity to the small scales only occurs at the higher Reynolds number.

the largest available scale (no large-scale friction is used).
The energy and helicity fluxes are also shown for the same
run in figure 2, the latter normalized by the forcing scale. We
observe, as already mentioned in [72, 73], a dominance of the
helicity flux to small scales, and of the energy flux of opposite
sign to large scales, the helicity flux being negligible for
scales larger than L F . Lastly, on the right in figure 2 are these
fluxes for a run with the same Rossby number but a Reynolds
number four times smaller, in which case the constancy of the
fluxes is not as well realized.

4. The inverse cascade of energy in rotating
turbulence

When solid-body rotation is imposed on the flow, the
interactions between inertial waves and nonlinear eddies
lead to a slowing down of the energy transfer to small
scales and to a steeper spectrum that can be modeled using
a simple phenomenological argument which incorporates
the interactions between eddies and waves [5, 36, 117].
Furthermore, when helical forcing is used, another scaling
law arises because of the dominance of the helicity cascade
to small scales [72, 73, 88]. Moreover, the direct cascade
of energy is found to be scale invariant, and in fact
conformal invariant [102], a stronger local property involving
transformations that preserve angles, and this again connects
the 2D turbulence problem with other quasi-2D flows.

The inverse energy cascade to scales larger than the
forcing scale in rotating turbulence has been studied using
numerical simulations with hyper viscosity in [96], where it
was shown that it coexists with the direct cascade of energy.
It was also found that most of the energy resides in the
2D modes, i.e. those with kz = 0 [97]. A further exploration
using the so-called reduced models at moderate Rossby
number ∼10−1 showed that only the models that include near
resonances reproduce well the (moderately resolved) DNS
flows [98]. (See [47, 54] for the statistical mechanics case.)

New computations of the inverse cascade of energy in 3D
rotating flows, for both non-helical and helical forcing, and
for 2D versus 3D forcing, are being conducted at present [92];
they use the spectral LES tested in the preceding section,
at resolutions of 2563 grid points, and some DNS are in
the planning stage as well. These investigations lead to the

conclusion that the way the forcing occurs, putting more or
less weight on 2D modes (i.e. forcing in the horizontal plane)
versus fully 3D modes, is the main parameter of the problem
and breaks the universality, as already found in [98] when only
a subset of the triadic interactions as considered.

Given a random isotropic forcing function fRND(k)

centered in a narrow band around kF and with a certain
relative helicity, one can prescribe in simulations the amount
of 2D versus 3D forcing by defining a new forcing:

fANI(k, kF ) =

(
1 −

kz

kF

)β

fRND(k, kF ),

with the parameter β controlling how much energy is injected
in 2D modes, β = 0 corresponding to isotropic forcing. One
can then study the scaling of the energy in 2D and 3D modes
by decomposing E into its 3D component, E3D, with kz 6= 0,
and its 2D components for u⊥ (of energy E⊥) and uz (of
energy Ew), both with kz = 0, i.e. for the subset of modes
with no variation in the direction of the rotation, with E2D =

E⊥ + Ew.
Figure 3 shows the evolution of the 2D energy spectrum

for a random flow with β = 1 (i.e. for slightly anisotropic
forcing) and with kF = 40. It grows with time at large scale
and dominates the 3D component at all times except in the
onset phase; it has almost reached the gravest mode at the
final time, following a k−3

⊥
law. This result is also found

for several other runs, except when the forcing is strongly
anisotropic (e.g. for the ABC forcing or for a random forcing
with β = 3). In the latter cases, a k−5/3

⊥
is obtained in the

inverse cascade of 2D energy [92]. In figure 3 (middle), we
show the relative helicity for a helical run as a function of
wavenumber. It is maximal (by construction) at the forcing
wavenumber and appears to decrease slowly in the direct
cascade and sharply in the inverse cascade of energy: helicity
does not efficiently follow the energy to large scales, as was
already clear when plotting the fluxes of helicity and energy
(see figure 2 and [72]). This is also noticeable when examining
the spectrum of 2D helicity given on the right in figure 3
for several times as well during the inverse cascade phase
for the energy; in these units, the spectrum is flat, indicating
that no cascade to large scale is taking place for the helicity,
corroborating the observation made when looking at the flux
of helicity.
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We finally note that the dynamics resulting from an ABC
forcing behaves in a unique way: the 2D modes still follow
a ∼k−5/3

⊥
spectrum; however, in this case alone, the isotropic

energy spectrum in the inverse cascade range follows a k−1

law, due to strong anisotropy in the forcing and with a strong
influence of shear at large scales [92].

5. Conclusions

In this paper, after reviewing recent results on 2D turbulence,
we tested a previously developed sub-grid scale model against
a large DNS of rotating turbulence performed on a grid of
30723 points. We showed, in particular, that the transition
from a large-scale anisotropic to a small-scale isotropic
inertial range is well reproduced in the sub-grid scale model,
granted that the LES is sufficiently resolved.

We then used the model to confirm that for rotating
turbulence, the inverse cascade of energy has two different
scaling according to how anisotropic the forcing is [92], with
shear moreover playing an important role in the strongly
anisotropic case of the ABC flow, which is also fully helical.
In that case, the presence of large-scale shear leads to a k−1

scaling for the total energy, while the slow modes still follow
a k−5/3

⊥
law.

A k−1 spectrum was also found in 2D fluid turbulence
in the inverse cascade when decomposing the flow into its
coherent part and the remainder of the flow, for the latter
component; this took place both in the decay case [8] and in
the forced case [30]. Such a shallow spectrum was attributed
to the large-scale structure advecting passively an incoherent
noise. It has also been advocated that the Fourier energy
spectrum of the inverse cascade can in fact be shallow, namely
again E(k) ∼ k−1, on the basis of nonlinear interactions
with the stochastic small-scale vortices [80]; similarly, using
Clebsch variables and using a weak turbulence closure
procedure that, when dealing with four-wave interactions,
leads to two different steady-state solutions [114], again a k−1

spectrum may emerge.
It remains to be seen whether other strongly anisotropic

flows behave in a similar fashion; this could be examined,
for example, by taking a higher value of the parameter β in
the random forcing function introduced into the preceding
section. Indeed, it appears that, depending on the extent
of anisotropy in the external forcing function, shear may

be introduced in to the flow, thereby altering the nature of
the energy exchange between scales. In this context, it is
worth noting that helicity and strong shear can be coupled,
as observed in the atmosphere, for example, in the context
of tornado and hurricane dynamics in the vicinity of deep
convective cells [64, 77]. The presence of helicity in such
large-scale systems can be attributed to the combined effects
of stratification and rotation, as first modeled in [46] using
geostrophic balance; this is linked to thermal winds, i.e.
to vertically sheared horizontal velocities due to horizontal
temperature gradients, as recently confirmed by a parametric
numerical study [68].

The non-uniqueness of the scaling in the inverse cascade
of rotating turbulence, for both the 2D and the 3D spectra,
clearly needs further investigation. Quasi-2D flows show a
richness of behavior and the detailed properties of the inverse
cascade to large scales can vary according to the flow setup
considered. It is likely that such a diversity will be unraveled
as well for 3D flows in the presence of rotation, as already
shown in [98] using a model that preserves a subset of triadic
interactions. The lack of universality of the inverse cascade
discussed here is well known (for a recent investigation
see [16]). It can be put in the more general context of
breaking of symmetries, leading to non-universality; it has
also been demonstrated numerically for inverse cascades in
other physical systems, such as for the nonlinear Schrödinger
(Gross–Pitaevsky) model of nonlinear optics or superfluid
turbulence or for non-random forcing exciting a particular
instability mode [110].

Turbulent flows in the presence of stratification display
vertical dispersion, which cannot be simply modeled by a
random walk due to both the structures present in the flow and
to wave propagation and their interactions [63]; such waves
also undergo enhanced dissipation, as studied experimentally
for example in the context of tidal flows over sloped and
corrugated oceanic floors [49]. Similarly, of particular interest
is the well-documented capacity of such turbulent flows in
geophysics and astrophysics, as well as in engineering, to
enable chemical reactions through altering the contact rates,
as in combustion or in the production of ozone in the lower
troposphere because of pollution. In the context of gravity
and inertial waves due to both rotation and stratification
in geophysics, concepts of statistical mechanics of ideal
(non-dissipative) flows can be quite useful in understanding
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the overall behavior of such flows in the 2D case, on a plane
or on the sphere, for the so-called beta-plane turbulence, or
in the geostrophic or baroclinic cases (see, e.g. the review
in [47]). This leads to wave coupling and breaking and to shear
instabilities, sometimes in isolated, intermittent but powerful
events, and this results in extended Fourier spectra of the
basic variables and therefore in enhanced dissipation and
mixing. The energy and the seeds required for these events
to occur may come from the wave fields that are perturbed or
from winds and interactions with topography and bathymetry.
However, a detailed understanding of, say, the interior of
the ocean and how mixing occurs in such conditions still
eludes us [20, 50], and yet such an understanding is a central
element of advanced modeling of these flows, on both the
short (meteorological) and the long (climatological) term. For
example, mixing in coastal currents plays a role in the global
oceanic circulation, in particular in meso-scale variability, due
to their high level of instability and their ability to create
fronts [43] and alter the patchiness of phyto-plankton and
that of other tracers. It is a combination of methodologies
(observations, experiments, numerical simulations, modeling
and theory) that will enable us to progress significantly not
only in a given field but also by comparing and contrasting
different flows in different environments.
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