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In this work we rigorously study the fluctuations in FRW models coupled with n neutral scalar
fields, minimally coupled to the gravitational field. We find the exact solutions and the asypmtotic
expansions for the fluctuation around the critical point for an arbitrary potential.

I. INTRODUCTION

Once upon a time to find exact solutions of Einstein equation was one of the most important tasks in General
Relativity: The universes of Einstein, De-Sitter, and Schwarzshild were discovered in this heroic period. Since then
the number of exact solutions has increased but also other urgent problems have appeared and captured the attention
of the general relativity community. Nevertheless the importance of exact solutions always remains the same [1].
Precisely, only when we have an exact solution we have truly mastered the problem since only in this case we have
a mathematical model that we can completely understand. In fact: Einstein solution was our first model for the
universe, Friedmann-Lemäitre -Robertson-Walker solution turns out to be the model for the expanding universe, De-
Sitter solution the model for inflation, Schwarzshild solution the model for stars, Kerr solution de model for rotating
black holes, Vaidya solution allows to study the dynamics of spherical shells, and so forth. Following this line in this
paper we present exact solutions for the fluctuations of a FRW cosmology minimally coupled to a set of scalar fields
with an arbitrary potential, around the equilibrium points of the background.
Using the results of papers [4], [3], [2] we have already made an analytic study of the fluctuation in the simple case

of constant potential [5]. As the background dynamics and the first order fluctuations are represented by strongly
non linear equations [2] the analytic solutions are very difficult, if not impossible, to find and their properties must
be obtained by numerical experiments. In this paper we present the beginning of an alternative view. We consider
that the background is in a singular point of its dynamic which can be stable or unstable and we find the behavior
of the fluctuations around these points. Moreover, since in cosmology the motions of the fields are usually damped
by the H term, the system naturally finishes in one stable point (an atractor) and its asymptotic behavior can be
heuristically foreseen (see section V).
We hope that both new exact solutions, the one of paper [5] and the one presented in this paper would be a solid

base for future researches and may be as useful those quoted at the beginning of this introduction.
The paper is organized as follows:
In section II we introduce our model: fluctuations in a FRW universe with n minimally coupled massless scalar

fields φiwith arbitrary potential V .
In section III we present our exact solutions for the motion around the equilibrium points.
In section IV we study the asymptotic behavior of perturbations around different kind of equilibrium points.
In section V we draw our conclusions. As a first future simple application of the obtained exact solutions we will

try to find some results in the eventual chaotic behavior of the system, in the cases where the non linearity of the
system is increased, e.g. the case of fluctuation around arbitrary (not fixed) solutions. In turn chaos is extremely
important in cosmology as a way to explain the homogeneity and isotropy of the universe [1] and we have already
studied the subject in FRW cosmologies with no fluctuations [6]

II. THE COSMOLOGICAL MODEL.

Our metric is the flat FRW metric:
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ds2 = dt2 − a(t)2 (dx2 + dy2 + dz2). (1)

where t is the proper time and a(t) is the scale factor. The equation corresponding to a gravitational field minimally
coupled to n neutral massless scalar fields φi, , with arbitrary potential V (φ1, ....,φn) are well-known [7], [8]

The background equations, namely the Klein Gordon equations for each field are:

••
φ i +3H

•
φi +

∂ V

∂ φi
= 0, i = 1, 2, ..., n, (2)

where H =
•
a / a is the Hubble function and:

•
H = −3

nX
i=1

•
ψ
2

i ,

and the Hamiltonian constraint is:

H2 =
8π

3m2
pl

(V +
nX
i=1

1

2

•
φ
2

i ) = 0 (3)

The perturbed metric reads:

ds2 = (1− 2Φ) dt2 − a(t)2 (1 + 2Φ) (dx2 + dy2 + dz2), (4)

while the field’s perturbations of φi are symbolized as δφi. Then, the k—Fourier transform of the equations for the
perturbations is given in [2], [3] and [4],

3H
•
Φ
k

+

µ
k2

a2
+ 3H2

¶
Φk = −3λ

2

nX
i=1

(
•
φi δ

•
φi −Φk

•
φ
2

i +
∂ V

∂ φi
δφi) , (5)

•
Φ
k

+H Φk =
3λ

2

nX
i=1

•
φi δφi, (6)

δ
••
φ i +3H δ

•
φi +

nX
j=1

∂2 V

∂ φi ∂ φj
δφj = 4

•
Φ
k •
φi −2

∂ V

∂ φi
Φk − k

2

a2
δφi, i = 1, 2, . . . , n, (7)

where •= d () /and λ = 8π / 3m2
pl.

III. THE EXACT SOLUTION FOR THE FLUCTUATION.

In this work we will study the behavior of the fluctuations around singular points as in papers [10], [9] when the
Hubble function H is positive since it is the physically more interesting and mathematically more complex case (when
H = 0 the solution are easy to find),
Let φ0 = (φ01,φ

0
2, ...,φ

0
n) and H0 be a singular point of the background dynamics. Then ∂V / ∂φi(φ

0) = 0 and
φi = φ0i is a solution of Eq. (2) and the Einstein conditions impose the condition H

2
0 = λV (φ0) > 0 . So the k− mode

fluctuation equations read:

δ
••
φ
k

i +3H0 δ
•
φ
k

i +
k2

a2
δφki +

nX
j=1

Vij δφj
k = 0, i = 1, 2, . . . , n, (8)

where Vij = ∂ V/∂ φi ∂ φj (φ
0) and

3H0
•
Φ
k

+

µ
k2

a2
+ 3 H2

0

¶
Φk = 0, (9)
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•
Φ
k

+H0Φ
k = 0. (10)

From these equations we see that k2 Φk / a2 = 0 and therefore either k = 0 or Φk = 0. Moreover from the last
equation we obtain that Φ0 = Φ00 e

∓H0 t, and Φk = 0 for k > 0.
Let us now define the symmetric Hessian matrix of potential V : A = (Vij) . It is a symmetric matrix therefore its

eigenvalues are real. Let as further define the diagonal matrix

D = T−1AT (11)

so T is the matrix that diagonalizes A. Let us introduce the ”diagonal” fluctuations δψk such that δφk = Tδψk. If we
T−transform Eq.. (8) we have

δ
••
ψ
k

i +3H 0 δ
•
ψ
k

i +
k2

a2
δψki + λi δψi

k = 0, i = 1, 2, . . . , n, (12)

and since H2
0 = cons tan t because we are in a fixed point it is a = a0 e

± H0 t and therefore the last equation reads

δ
••
ψ
k

i ± 3H0 δ
•
ψ
k

i +

µ
λi +

k2

a20
e∓H0 t

¶
δψi

k = 0, i = 1, 2, . . . , n, (13)

where λi is the i− th eigenvalue of A. So in the particular case k = 0 we have

δ
••
ψ
0

i ± 3H0 δ
•
ψ
0

i +λi δψi
0 = 0, i = 1, 2, . . . , n, (14)

so

δψi
0 = C0i1 e

1
2

³
± 3H0+

√
9H2

0 − 4λi
´
t
+ C0i2 e

1
2

³
± 3H0−

√
9 H2

0− 4λi
´
t
, i = 1, 2, . . . , n, (15)

and if 9H2
0 − 4λi = 0

δψi
0 = (C0i1 + C

0
i2 t) e

∓ 3 H0
2 t, i = 1, 2, . . . , n. (16)

To simplify the notation let us make the change of variables

z = δψi
k, c2 =

k2

a20
, x =

2 c

H0
e∓H0 t, Λ =

4 λi
H2
0

, (17)

so Eq. (13) reads

x2 z00 − 5x z0 + (Λ− x2) z = 0, (18)

where the prime symbolizes the x−derivative. Now we introduce a new variable u = z / x3 obtaining the Bessel
equation

x2 u00 + xu0 + (x2 − ν2)u = 0, (19)

where ν2 = 9− Λ. Then we have found the exact solution that, in the primitive variables, reads:

δψi
k = e∓

3
2 H0 t

∙
cki1 J

1
νi (

2 k

H0 a0
e∓

1
2 H0 t) + cki2 J

2
νi (

2 k

H0 a0
e∓

1
2 H0 t)

¸
, (20)

where k 6= 0, νi =
p
9H2

0 − 4λi / H0. Now using δφk = T δψk, when all the eigenvalues are positive definite (we will
not study the case with negative eigenvalues for simplicity), we arrive to the final solution

δφi
k =

nX
j=1

e∓
3
2 H0 t

∙dckij1 J1νj ( 2 kH0 a0
e∓

1
2 H0 t) + dckij2 J2νj ( 2 kH0 a0

e∓
1
2 H0 t)

¸
, (21)

when νj is different to a positive integer, then J
1
νi = Jνi and J

2
νi = J−νi which are Bessel functions [11] of first kind and

[ckij1,2 are integration constants. In the particular case when νj are positive integers we have J
1
νi = Jνi and J

2
νi = Yνi

where the last function is a Bessel function of the second kind.
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IV. THE ASYMPTOTIC BEHAVIOR OF THE FLUCTUATIONS.

In the relevant case H0 > 0 we can compute the limits when t→∞. In the case k = 0, using the Eqs. (7, 16) when
the eigenvalues are positive δφi

0 → 0 and when the eigenvalues are negative, for some initial conditions it turns out
that δφi

0 → 0 while for other conditions we have δφi
0 → ±∞ . In the case k > 0, we study the limit ς → 0, in the

new variable ς = e−
H0
2 t, which is equivalent to the limits t → ∞. Then as we are interested in the case ς << 1 we

can expand the Bessel functions, when ν is not a positive integer, using the γ functions, as Jν (α ς) =
1
2 α ς / γ (ν+1)

where α = 2 k /(H0 a0). In this case Eq. (21) reads

δφi
k(ς) = ς3

nX
j=1

£
dkij1 ς

νj + dkij2 ς
−νj¤ (22)

where dkij 1,2 are integration constants. When we are considering the case of non integer and positive eigenvalues 3+νj
has a positive real part and therefore limς→0 δφi

k (ς) = 0. In the case, when the eigenvalues are negative, for some
initial conditions we obtain the equal limits. But in general limς→0 δφi

k (ς) = ±∞.
When νj is a positive integer then λj = (9− n2) / 4 where n is an integer n = 0, 1, 2, 3, since we are considering

the positive eigenvalue case. Then J1ν i (ς) = Jν i (ς) and J
2
ν i (ς) = Yν i (ς) which in the case ς << 1 can be expanded,

if ν = 1, 2, 3 as Yν (α ς) = −
¡
1
2 α ς

¢−ν
γ (ν) /π , and if ν = 0 it is Y0 = 2 ln ς /π [11]. Then let us consider the

cases i and iii of the introduction:
i.- If νj 6= 3, namely λj 6= 0, we have limς→0 δφi

k (ς) = 0,since limζ→0 ς
3 Yν j (α ς) = 0

ii- If νj = 3, namely λj = 0, we have limς→0 δφi
k (ς) = const. 6= 0 since limζ→0 ς

3 Y3 (α ς) = − γ(3) ( 12 α)
−3 /π.

When νj is a positive integer and λj are negative we obtaining the same results for very special initial conditions ,
in general limς→0 δφi

k (ς) = ±∞.

V. CONCLUSION.

We have presented the exact solution for the fluctuations around the fixed point of a generic potential of a cosmo-
logical model where the mater energy tensor comes from n scalar fields minimally coupled.
In the cosmological interesting case H > 0 the motions is dumped and we have reached to the following conclusions:
i.- If the eigenvalues of the Hessian of the potential at φ0 = (φ01,φ

0
2, ...,φ

0
n) are positive the limit t → ∞ of the

fluctuations vanish.
ii.- If the eigenvalues of the Hessian of the potential at φ0 = (φ01,φ

0
2, ...,φ

0
n) negative the limit t → ∞ of the

fluctuation will diverge (being the solution only reliable up to the moment when the fluctuations become very big,
in such a way that the linear approximation we are using is not valid anymore), but in some very peculiar initial
conditions the fluctuation can also vanish.
iii.-If all the eigenvalues of the Hessian of the potential at φ0 = (φ01,φ

0
2, ...,φ

0
n) are positive or they vanish we are in

a flat saddle point and the motion can follow the curve defined by the vanishing eigenvalues, so the limit t → ∞ of
the fluctuations along this curve can take a finite not zero value.
We can foresee other similar cases. Our exact computation confirms reasonable heuristics predictions. The only

real gain is that we will past from reasonable conjectures to rigorous theorems. Moreover it is clear that in all these
cases the have not chaos. In fact, it is quite amazing that in such complex models as those presented in this paper
chaos is absent. Nevertheless we can foresee the presence of chaos if we further perturb the model around the solution
corresponding to the vanishing eigenvalues of case iii. This will be our next step in the search of chaos in cosmological
models.
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