
 

  
Abstract— A new magnet design for fast-field-cycling nuclear 

magnetic resonance is described. A topic of interest is the 
compensation of the magnetic field homogeneity during the 
generation of the pulsed magnetic field. In contrast with previous 
solutions, the magnet system here discussed can be electronically 
controlled. In Kelvin-type magnets used today, the homogeneity 
of the field is set-up through a current density distribution along 
the air-cored cylinders that compose the magnet coil. A common 
feature of this type of magnets is that the magnetic field value 
and its homogeneity are affected by thermo-mechanical stress 
during the strong current pulses applied to the coil. In the new 
design here presented, the problem can be circumvented through 
a multicoil arrangement driven by individual current sources, 
allowing an automatic correction of the magnetic field drift and 
the homogeneity. 
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I. INTRODUCTION 
URING the last decades the Nuclear Magnetic 
Resonance (NMR) fast-field-cycling (FFC) technique has 

developed to an important technique for scientific use [1]-[3]. 
It has also turned into a new approach in Magnetic Resonance 
Imaging [4]-[8]. One of the crucial parts of any fast-field-
cycling device is the magnet system. It determines the 
characteristics of the whole apparatus and therewith its 
application range. The technical demands on the magnetic 
field generator for a FFC apparatus are strongly correlated 
among themselves, which makes an optimisation of each, at 
the same time, almost impractical. One of these demands is to 
achieve a maximal magnetic flux density from an applied 
electrical power P. Another is to obtain an adequate 
homogeneity BB /Δ  over a desired volume, as well as to 
accomplish fast variation rates of the magnetic flux density 
( dtdB / ). The optimisation problem arises from the fact that 
high magnetic flux densities together with a good 
homogeneous spatial distribution require large coil  
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volumes, a high quantity of windings and therefore high 
inductances. In turn, fast variation rates of the magnetic flux 
density need low inductances, which are achieved by 
minimizing the dimensions of the coil as well as the quantity 
of windings. This is contradictory and can only lead to 
compromises between these requirements. Due to that, air-
core magnets comprised of non- ferromagnetic materials are 
used in fast-field-cycling devices in order to avoid the low 
frequency response and the high hysteresis loops of 
ferromagnetic materials. Moreover other considerations have 
to be taken into account. The resistance of the magnetic 
system is of high importance as well. First, low resistances 
will result in lower power dissipation in the magnetic system, 
thus making it easier to reduce the temperature fluctuations 
and thermo-mechanical stress of the magnet. Second, the 
resistance is also affecting the variation rates of the magnetic 
flux density which makes it an important parameter for fast 
switching times. As mentioned before, the most suitable 
framework for FFC air-cored magnet systems are cylindrical 
coils. But due to their finite length, the spatial field 
distribution of the magnetic flux density B is not homogeneous 
enough for the most FFC applications. There are various 
strategies described in the literature [9]-[12] which optimize 
the requirements of the magnet system. However, the 
optimization method of Schweikert et al. [10] has turned out 
to be the most suitable one for FFC magnet systems so far, 
while successfully translated for commercial use by a field-
cycling system manufacturing company [13]. Besides the 
advantages of the Schweikert-type magnet system, there are 
some problems which might occur during the manufacturing 
process and when the magnet system suffers thermal stress. 
The complexity of the optimization process one has to master 
in order to obtain the non-uniform helix structure of the cut is 
not always straightforward. Another task is the fabrication 
method to cut the non-uniform helix structure(s) into the 
cylinder(s) with a reasonable precision. Due to the non-
uniform helix of the magnet, the power dissipation over the 
magnet geometry under load is non-uniform distributed as 
well. Therefore, the thermal stress in the areas of the magnet 
with high current densities has to be minimized in a way that 
the magnet will not suffer any damages. Fig. 1 shows an 
example of a cylinder of a Schweikert magnet system as well 
as a possible power dissipation distribution of the whole 
geometry under an applied voltage. 
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Figure 1. a.) Example of a cylinder of a Schweikert type magnet system.  
b.) Distribution of the power dissipation over the whole geometry. 

II. DESIGN STRATEGY 
For a novel magnet system design, the idea was to develop 

a new system which is able to compensate changes in the 
magnetic flux density B and in the spatial homogeneity 
distribution BB /Δ during experimental use, which mainly 
occurs due to (small) geometrical changes of the magnet 
system. The reasons for these geometrical changes induced by 
mechanical stress are outlined above. Another source is 
deformations of the system due to long term usage. In order to 
compensate the negative effects of the geometrical changes of 
the magnet at operation, the current density must be adjusted 
or tuned accordingly. Such a correction system should be 
reactive on changes of the magnetic flux density B . It is 
obvious that this is not feasible with a Schweikert-type magnet 
system because once manufactured, the current density 
distribution along the coil(s) is fixed and not adjustable 
anymore. In order to obtain a magnet system with a "free 
tuneable current density distribution", the usage of one coil or 
various coils connected in series would not yield to the desired 
result, thus leading to the conclusion that such a system 
should be composed out of various independent coils. The 
general idea consists of a magnet system of several rings with 
rectangular cross section of the same size (see Fig. 2). These 
rings are collocated together in parallel and coaxial so that 
they form a cylinder with defined gaps between each ring.  In 
order to reach a reasonable magnetic flux density B , by a 
certain applied electrical power P , the system is composed out 
of three cylinders (layers) which are arranged concentrically. 
Both inner layers, as well as the edge parts of the outer layer 
are connected in series and form the set of coils, called the 
main coil. All other  parts (elements) of the outer layer have 
independent current controls. They are responsible for the 
generation of a low-intensity magnetic field which serves for  

             
Figure 2. Magnet system composed out of n rings with a gap g between the 
rings. The dots symbolize the not shown rings between the 2nd and the (n-1)th 
ring.  
the improvement of the homogeneity of the magnetic field 
within a region of interest. Fig. 3 is illustrating the 

arrangement of the three layer magnet system, where the dark 
areas symbolize the parts which are connected in series and 
the brighter areas the elements with an independent current 
control. Each part of the main coil as well as each element 
consists of a number of loops with rectangular cross-section 
(see Fig. 2). 

  
Figure 3. Illustration of the three layer magnet system from the xz-section 
plane. 

III. OPTIMIZATION METHOD 
In order to optimize the homogeneity of the magnetic flux 

density B  in a desired region of interest of the three layer 
magnet (Fig. 3), the system was divided into the main coil 
which generates the main magnetic field mB and into the 
remaining elements which generate the low-intensity magnetic 
field hB  for the improvement of the homogeneity. Now the 
aim is to find the optimum number of elements with an 
appropriated set of currents },,{ 1 NII   for the homogeneity 
improvement whereas the error between the magnetic field 
generated by the three layer magnet system and a desired 
target magnetic field t

zB  should be minimized. The set 
},,{ 11 −NII   corresponds to the currents of the elements and 

NI  to the current of the main coil. In order to find just one and 
not an infinite amount of solutions which lead to the same 
homogeneity, one has to impose more conditions. In this 
work, only one more condition is impossed: the power 
dissipation along the magnet system should be minimal as 
well. In order to determine the set of currents },,{ 1 NII  , the 
functional ),,( 1 NIIU   was used [14]: 
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The first term of the equation, serves to reveal the minimum 
of the difference between the total magnetic field in z-
direction, ( ) ( ) ( )m h

z k z k z kB B B= +r r r , and the desired target field 

( )t
z kB r . The second term stands for the power dissipated along 

the magnet system, where the factor ( )kw r  is a weighting 
function depending on the spatial position and α  is a 
weighting factor for the minimization of the power 
dissipation. Knowing that the magnetic field at the position r  
generated by a steady current is described the Biort-Savart’s 
law, it was formulated with respect to the spatial coordinates 

kr : 
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The summation goes over all elements and the main coil, each 
carrying one of the current nI . The coefficient ( )n kc r  is 
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defined as: 
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Then, the functional in (1) becomes: 
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Note that the summation of the second term only goes to   N-
1. This is due to the fact that the power dissipation 
minimization is only done for the elements and not for the 
main coil. If the main coil is included into the summation, the 
currents of the elements would reach values comparable to 
that of the main coil. This is not desired because it would 
increase the amount of high power sources needed as well as 
it leads to a more complex cooling system of the FFC device. 
The set of currents },,{ 1 NII  which minimizes the functional 
is found by differentiating it with respect to each variable nI . 
In this way, a linear system of equations is obtained, here 
shown in a matrix: 

            EIRA =⋅⋅+ )( α        (4) 
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 By inverting this equation one can find the column vector I  
which contains the current values nI . The coefficients ( )n kc r in 
(2) were calculated numerically in C++, where the integral 
was discretized by replacing it with a summation. 
Geometrically, the discretization was done by dividing each 
loop into a finite number of thin rings. Afterwards these rings 
were divided once again in a finite number of segments of 
lenght dl, where each segment can be approximated by a 
filamentary line as shown in the Fig. 4. Now, if I is the 
current flowing through each loop, a current I / (nr nz) is 
carrying in each segment, where rn  is the number of divisions 
in the radial- and zn  is the number of divisions in the z-
direction. The accuracy of the computed magnetic field rises 
as the number of rn and zn increases, but the time needed for 
the calculation process increases too. Due to that, an 
appropriate number of divisions had to be chosen. 

     
 
Figure 4. Discretization of one loop into a finite number of segments.  
 

Once the coefficients ( )n kc r  are computed, the matrix A   
and the vector E from (4) were determined. The solution of 

(4) was achieved using C++ by inverting the matrix A with an 
algorithm based on the Gauss-Jordan elimination method. 

Assuming that the current distribution is symmetric about 
the centre of the magnet system, the number of elements is 
chosen to be odd, since for an even number, the element pair 
about the centre of the magnet system would carry the same 
current and can be therefore replaced by just one element. 
With this assumption, the number of currents which has to be 
determined is reduced to 12/ +N . The following figure 
shows, which current is assigned to each element. 

 

 
Figure 5. Assignment of the currents to each element. 
 

The number of elements was varied from 7 to 19, whereas 
the number of parts, connected in series with the inner layers, 
of the outer layer of the main coil ranged from 0 to 3. The 
number of loops in each element plus in the main coil 
remained constant while varying the whole number of 
elements in the outer layer. For each number of elements 
chosen, the value of the weighting factorα was varied from 
10-18 to 10-7. 

The region of uniformity is formed by all the coordinates kr  
such that: 

           6( ) 10
( )
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where, ( ) ( ) ( )z z zB B BΔ = −r r 0 , ( )zB 0  is the magnetic field 
around the center of the magnet system and υ  (in units of part 
per million or ppm), stands for the degree of the desired 
homogeneity. Therefore, the smaller the value of υ , the more 
homogeneous is the field. 

Because the system posses azimuthal symmetry, it is 
sufficient to study the magnetic field in a plane parallel to the 
axis of the coil, for instance the xz-plane. 

In order to find the optimal parameters of the magnet 
system, the area of the region with a homogeneity of 1ppm in 
the xz-plane was calculated.  

However, as it is desired to keep the current intensity low 
for the elements, on one hand the spatial homogeneity of the 
magnetic field increases with the number of elements, on the 
other hand, the number of elements should be minimized due 
to the fact, that it would increase the number of independent 
power supplies needed for the FFC-device. Therefore, one has 
to search a compromise between the spatial homogeneity of 
the magnetic field, the intensity of the currents of the elements 
and the number of elements. By analyzing these results it was 
found, that the optimal number for the elements was 11 plus 2 
parts at each edge of the outer layer for the formation of the 
main coil. Therefore, the number of currents which had to be 
determined were N=7. The current distribution for the whole 
magnet system, to reach a magnet flux density of TB 4.0=  
about the centre of it, is shown in Fig. 6. Where the grey dots 
symbolize the current intensity of the main coil and the black 
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squares symbolize which current is assigned to each element. 
Fig. 7 shows the calculated areas covering certain 
homogeneities in the xz-plane.   

IV. FINITE ELEMENT METHOD SIMULATION 
The Finite Element Method (FEM) has nowadays a 

widespread employment in the solution of scientific and 
engineering problems. In this work a commercial FEM 
program [15] for the calculation of the magnetic flux density 
was used in order to verify the results obtained from the 
optimization method discussed above. The geometry of the 
magnet system for the simulation was created, enclosed into 
an air sphere and afterwards cut by a symmetry operation by 
using the DesignModeler of the FEM program. For the 
analysis of the magnetic flux density B , the Analysis System 
"Magnetostatic" was chosen. Material parameters were 
adjusted and afterwards the creation of the mesh of the whole  

 

 
Figure 6. Current distribution for each element and the main coil.  
 
geometry was done by using the defaults of the program. The 
same was done with the solver, all parameters were left 
untouched. Fig. 8 shows the mesh of the geometry. Together 
with the currents for each part of the magnet system, obtained 
by the optimization method before, the homogeneity BB /Δ  
was calculated by using the results of the magnetic flux 
density B  from the FEM program for the xz-plane of the 
geometry. Fig. 9 shows the result obtained from the procedure 
mentioned above. The centre of the magnet system is located 
at the coordinates mmx 0= , mmy 0= , mmz 0=  and  the 
corresponding  magnetic flux  density at this point was used as 
the reference for the calculation of BB /Δ .   

 
Figure 7. Calculated Areas with certain homogeneity of the magnetic field 
inside the magnet system. 

 
Figure 8. 3D Mesh of the magnet system cut by symmetry operations (left). 
3D mesh of the magnet system incorporated into the 3D mesh of the 
surrounding air (right). 

     
Figure 9. Map of the magnetic field distribution in ppm for the area of 
10x10mm  
 
Taking into account that the method used to verify the 
assumptions and the results obtained by the optimization 
method, gives approximated solutions, it is to say that the 
results show that it is possible to achieve a reasonable 
homogeneity in a desired volume with the results obtained 
through the optimization method.   
 
Furthermore the simulation has shown that the magnetic flux 
density at the centre of the magnet system with the 
corresponding currents is TB 395.0= . This result is to 
98.75% in agreement with the assumption of the optimization 
process.  

V. DYNAMIC BEHAVIOR 
Since the magnet flux density of the magnet system depends 
directly on the current flowing through it, it is essential to 
analyze the current distribution I of the whole circuit. For 
only one coil, which possesses an inductance L and a 
resistance R , connected with a switchable voltage source V0, 
the time evolution of the current is given by [2]: 

        ( )RtiV
Ldt

tdi ⋅−= )(1)(
0

       (5) 

If the magnet system contains more than one coil and each 
coil is controlled by a different voltage source, the calculus 
gets more complex. Fig. 10 shows the arrangement of the 
different electrical circuits for each coil.  

 

           
Figure 10. Electrical circuits for each coil 

KRUBER  et al.: NEW MAGNET DESIGN FOR FAST-FIELD 255



 

dldR
dA

ρ= ⋅

According to the Kirchhoff's mesh rule it leads to the 
following equation system: 

  

dt
diL

dt
diM

dt
tdiMtiRtV

dt
diM

dt
diL

dt
tdiMtiRtV

dt
diM

dt
diM

dt
tdiLtiRtV

n
nnnnnn

n
n

n
n

−−−−⋅−=

−−−−⋅−=

−−−−⋅−=









2
2

1
1

2
2

2
1

12222

1
2

21
1

1111

)()()(0

)()()(0

)()()(0
 

being Mij the mutual inductance between the different coils. 
This equation system can be rearranged to: 
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or more compact: 
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where L  is the inductance matrix of the whole magnet 
system. Equation 6 has the form to proceed with the solution 
of the differential equations like it is reported in the literature 
[16]. The first step is to compute the fundamental matrix F of 
the homogeneous system, where the solution is cF ⋅)(t . In 
order to obtain the solution of the non-homogeneous system, 
the constant c  is assumed to be a time dependent vector which 
has to be found with the following form: 
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where k  is an arbitrary additive constant. Now substituting 
the vector )(tc  into (6) results in the solution of the dynamic 
behaviour of the magnet system: 
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The constants inside the vector k are found by using any 
initial condition. In order to terminate with the computation 
one has to set the distributions for the voltages 

)(,),(),( 21 tVtVtV n .This is usually done by the experimenter 
and depends on the voltage sources in use. 

VI. MAGNET SYSTEM CHARACTERISTICS 
Once the simulations have shown that a reasonable 

homogeneity in a desired volume as well as sufficient high 
magnetic flux density can be achieved by the magnet system, 
the focus lays on the variation rates of the magnetic field 

dtdB / . Like it was already mentioned, the variation rates 
depend directly on the inductance and the resistance of each 

element of the magnet system. In order to obtain the self- and 
mutual-inductance of each element various approaches were 
used. More precisely, for the self-inductance of one ring the 
approaches of Yu et al. [17] and Babic et al. [18] and for the 
mutual inductance between the rings the one of Kim et al. 
[19]. For the calculation of the resistances of each element the 
well known equation was used:  

      
 
This gives the following expression for a conductor with the 
geometry used in this work: 
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Where ρ  is the specific resistance of the material of the ring, 
x  stands for the width of the ring and 1R and 2R are the inner 
and outer radii of the loop. The resistances for each element 
were calculated by using the dimension of each ring, 
calculating the corresponding resistance (specific resistance of 
copper at KT 15.293= ) and multiplying them by the number 
of rings one part contains. The results for the inner coils (main 
coil) and for one element of the outer coils (element 1 to 11) 
are: Ω= 0339.01R , Ω= 0339.02R , Ω= 0036.017,,3R . The 
resistances of each part together with the inductances (see Fig. 
11) form the matrix L  in (5). Due to the idea, that the inner 
layers and the two elements of both edges, from the outer 
layer, are connected in series, the matrix changes from a 

1717 x to a 1212x  matrix. The parts mentioned above form the 
main coil and the elements 1-11. If the voltages maincoilV  , 

111 VV  are switched instantaneously from V0 to the value 
needed to reach the determined current of each part (see Fig. 
6), each part of the magnet system will have a current 
behaviour calculated by (6) and shown in the Fig. 12. This 
dynamical behaviour of all parts leads to a switching time of 
the whole magnet system, from TB 0)0( =  to TtB final 4.0)( =  
, in mst 20≈ . 
 

 
Figure 11. Numeration of each part. 

VII. CONCLUSION 
It was shown that it is feasible, with the methods 

(optimization method, FEM Simulation) shown in this work, 
to design a magnet system for FFC usage with a novel 
homogeneity control, without violating other requirements 
such as field variation rates dtdB /  as well as maximal 
magnetic flux density B . 

256 IEEE LATIN AMERICA TRANSACTIONS, VOL. 11, NO. 1, FEB. 2013



 

 
Figure 12. Dynamic behaviour of each element (above). Dynamic behaviour 
of the total magnetic flux density around the center of the magnet system.     
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