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ABSTRACT. The evolution of preferred crystal-orientation fabrics is strongly sensitive to the initial
fabric and texture. A perturbation in climate can induce variations in fabric and texture in the firn.
Feedbacks between fabric evolution and ice deformation can enhance these variations through time and
depth in an ice sheet. We model the evolution of fabric under vertical uniaxial-compression and pure-
shear regimes typical of ice divides. Using an analytic anisotropic flow law applied to an aggregate of
distinct ice crystals, the model evolves the fabric and includes parameterizations of crystal growth,
polygonization and migration recrystallization. Stress and temperature history drive the fabric
evolution. Using this model, we explore the evolution of a subtle variation in near-surface fabric
using both constant applied stress and a stress–temperature history based on data from Taylor Dome,
East Antarctica. Our model suggests that a subtle variation in fabric caused by climate perturbations will
be preserved through time and depth in an ice sheet. The stress history and polygonization rate primarily
control the magnitude of the preserved climate signal. These results offer the possibility of extracting
information about past climate directly from ice fabrics.

INTRODUCTION
An ice crystal is highly anisotropic in its response to stress.
An ice sheet is made up of an unfathomably large number of
ice crystals oriented in a variety of directions (fabric) and of a
variety of shapes and sizes (texture). Only when crystal
orientations are uniformly distributed in space can the
anisotropic behavior of each individual crystal be ignored –
giving rise to isotropic behavior in response to stress.
However, ice with a preferred orientation of ice crystals
(fabric) will behave anisotropically in response to stress.
Glen (1955) assumed isotropic behavior in his flow law that
has gained wide acceptance in glaciology, as it successfully
explained early field observations. Modern field measure-
ments have shown some discrepancies with flow predicted
by Glen’s flow law, many of which can be attributed to the
fabric in the ice sheet (e.g. Thorsteinsson and others, 1999).

Paleoclimate reconstruction requires an understanding of
flow history in order to relate the depth of the ice
(containing the climate proxy) to its age. Changes in flow
due to microstructure, such as enhanced strain from fabric
or impurity-enhanced ice flow (Paterson, 1991; Faria and
others, 2009), need to be accounted for in the ice-flow
models used in paleoclimate reconstruction. Flow disturb-
ances can also reorder the layers of ice, altering the depth–
age relation. This reordering can happen at any scale, and
microstructural observations provide insights into the
integrity of ice-core stratigraphy such as ice-core line-
scanners (Svensson and others, 2005; Faria and others,
2010), optical and electron microscopy and X-ray diffrac-
tion and tomography (Faria and others, 2010). Further,
microstructural changes often coincide with changes in ice
chemistry. Ice with high numbers of grain boundaries, triple
junctions and micro-inclusions may smear the signal for
entrapped gases and dissolved ions (Faria and others,
2010). Detailed microstructural studies are needed for
paleoclimate reconstruction to ensure the integrity of the

depth–age relation, ice-core strata and the climate proxies.
Microstructure itself, however, has not yet been able to
reconstruct a record of past climate changes (it is not a
climate proxy).

From the detailed microstructure studies that have been
carried out in ice cores for both Antarctic and Greenlandic
ice, it is well accepted that ice often develops a preferred
crystal orientation (e.g. Paterson, 1991; Arnaud and others,
2000; Di Prinzio and others, 2005; Durand and others,
2007; Gow and Meese, 2007). Near ice divides, the pattern
of crystal orientations, or fabric, is commonly a vertically
oriented single-maximum or vertical-girdle fabric. The
strength of the fabric typically increases through the depth
of an ice sheet. The profile of fabric with depth at a
particular site, however, depends on temperature and strain
history. Paterson (1991) showed that Ice Age ice typically
has a smaller crystal size and stronger fabric than Holocene
ice, providing the first hint of a connection between
paleoclimate and microstructure. A recent sonic velocity
profile of Dome C, East Antarctica, has shown transitions in
the fabric that correlate to glacial–interglacial transitions
through the depth of the ice sheet (Gusmeroli and others,
2012). Furthermore, Pettit and others (2011) showed a strong
correlation between d18O, a known climate proxy, and
fabric data, implying fabric records climate information.
Therefore, fabric may become a climate proxy in the future.

The variable growth of snow crystals in the atmosphere is
unlikely to be preserved in the snowpack, even though
snow-crystal growth is highly dependent on the climate in
which it is growing (Kobayashi, 1967). Once deposited, the
crystals break to a small average size (<1mm2; Benson,
1962) with nearly random orientations, such that their size
and orientation do not directly record atmospheric tempera-
ture (Hooke, 2005). After landing, snow crystals begin to
grow and change shape immediately, due to temperature
and vapor-pressure gradients in the firn (Colbeck, 1983), and
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it is here that we expect the climate signal to be imprinted
into the ice (Carns and others, 2010).

In polar regions, vapor deposition is the primary method
of crystal growth in the upper firn. The deposition of vapor
on a crystal face is anisotropic: deposition will favor either
the basal or prism faces of the snow crystal, depending on
the temperature (Nelson and Knight, 1998). This process
causes crystals with the preferred face parallel to the vapor-
pressure gradient to grow more than crystals in a less
favorable orientation. These crystals grow at the expense of
other crystals; as the average size of the crystals increases,
the number of crystals decreases (Colbeck, 1983). This
causes the well-oriented crystals to be more likely to remain,
while poorly oriented crystals disappear. Therefore, vari-
ations in texture and fabric are primarily due to variations in
temperature and vapor-pressure gradient (Carns and others,
2010). Because temperature and vapor-pressure gradients
are a function of accumulation rate, air temperature and
wind strength, this firn crystal evolution process records the
climate signal within the firn column. Observations from firn
cores have shown a preferred orientation of crystals in the
firn layer (Di Prinzio and others, 2005; Fujita and others,
2009, 2012).

Climate variables, including temperature, solar radiation,
winds and accumulation rate, are not the only factors that
control variations of texture and fabric in the firn. The
mechanics of densification may cause crystals to break
apart, and rotate as they are compressed. Because the
underlying physics in this region is poorly understood and
much beyond the scope of this paper, we assume here that
these climate variables affect the initial orientation and size
of the ice crystals due to changes in the firn air temperature,
vapor-pressure gradient and accumulation rate. The magni-
tude and rate of change of these variables during a climate
transition will determine how pronounced the initial fabric
variation is.

The aim of this paper is to determine how well climate
information, as recorded in the initial fabric, may be
preserved throughout the depth of an ice sheet. We model
the evolution of a climate-induced fabric variation below
the firn–ice transition. The fabric is evolved in response to a
stress–time profile in which the stress is either constant or
varies in a similar way to a real ice divide. Specifically, our
model follows a small block of ice as it travels along a
particle path. The block of ice is made up of three layers of
8000 crystals or grains (each grain is considered to be a
single crystal, and the terms could be used interchangeably
throughout this paper; we will use the term crystal because it
is the term most often associated with fabric). The model
does not include the larger-scale feedbacks among ice with
different rheological properties that may alter the stress
history along a particle path. Our goal here is to isolate the
effects of crystal-scale processes on the evolution of fabric
under uniaxial compression and pure shear.

In the following sections, we show which stress–tempera-
ture conditions can lead to a preservation of the fabric
variation through tens of thousands of years and deep in the
ice-sheet divide. First, we provide a brief background on
fabric evolution and the relevant crystal processes. We then
describe our model in detail and introduce a new orien-
tation distribution function (ODF) to describe the orienta-
tions of crystals. In the remaining sections, we describe and
discuss the results of our experiments with both constant
applied stresses and stress–time profiles from an ice divide.

BACKGROUND
The deformation of a single ice crystal in response to stress is
strongly anisotropic. Crystals shear easily along the slip
systems in their basal planes, much like a deck of cards,
while shear on other slip systems is nearly two orders of
magnitude harder (Duval and others, 1983). This leads to
crystals responding to applied stress by elongating in the
direction of the tensile stress and rotating until its basal
planes are perpendicular to the compressive stress (Azuma
and Higashi, 1985; Alley, 1992; Van der Veen and Whillans,
1994). In polycrystalline ice (hereafter referred to as ice), the
orientation of a crystal is defined by the crystallographic axis
(c-axis) that is perpendicular to the basal plane. Ice with a
random orientation of c-axes (uniform over the surface of the
sphere) is considered isotropic, while ice with a preferred
orientation of c-axes is anisotropic. Strongly anisotropic ice
in simple shear can deform up to an order of magnitude
faster than isotropic ice (Azuma, 1994; Castelnau and
others, 1996; Thorsteinsson, 2001). Ice at depth in an ice
sheet tends to have crystals with c-axes aligned vertically
(e.g. Alley, 1992), so its flow is significantly affected by
crystal fabric.

The state of stress in the central regions of an ice sheet is
dominated by vertical compression combined with hori-
zontal shear that increases in magnitude with depth and
distance from the divide. Under this stress state, the crystals
tend to align with basal planes oriented horizontally, and
their c-axes oriented vertically, as they move deeper in the
ice sheet through time, strengthening the fabric with depth.
The rate at which crystals rotate (how quickly fabric evolves)
depends primarily on strain rate, which is a function of
temperature, impurity content, crystal orientation (Weert-
man, 1973; Budd and Jacka, 1989; Paterson, 1991) and
neighboring crystal interactions (Thorsteinsson, 2002).

The evolution of fabric is significantly affected by three
additional processes: normal crystal (grain) growth, poly-
gonization and migration recrystallization (Alley, 1992). In
solid ice, normal crystal (grain) growth occurs through
migration of crystal boundaries driven by energy differences
across the boundary defined by boundary curvature,
intrinsic properties (e.g. temperature, thickness, diffusivity
of water molecules) and extrinsic material (e.g. impurities,
bubbles). Almost every experimental and theoretical treat-
ment of the intrinsic growth rate of an ice crystal describes
growth rate by a parabolic growth law (Alley and others,
1986). The crystal diameter, D, increases with time as

D2 ¼ K ðt � t0Þ þD0
2, ð1Þ

where K is the crystal-growth factor, t is time, t0 is the time
of the last recrystallization and D0 is the crystal diameter at
time t0. The crystal-growth factor, K , is

K ¼ K0 exp � Q
RT

� �
, ð2Þ

where K0 is a constant that depends on the intrinsic
properties of the crystal boundaries, Q is the thermal
activation energy, R is the gas constant and T is the
temperature. However, extrinsic materials reduce the rate of
boundary migration and can be described by a drag force on
the boundary (Alley and others, 1986). This drag effectively
reduces the crystal-growth factor, K .

Normal crystal growth is active throughout the depth of
an ice sheet. Once the ice starts deforming, crystal-boundary
migration is a function of strain energy and grain-boundary
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energy. In the special case of the crystals on either side of the
boundary having the same strain energy, Eqn (1) will
describe the crystal growth in deforming ice. Even though
the crystals continue growing at depth, a stable crystal size is
typically reached (below a certain depth) because poly-
gonization counteracts crystal growth. Polygonization cre-
ates new crystal boundaries within large ice crystals,
effectively dividing the crystal in two. Large crystals can
become highly strained and experience differential stress,
which is relieved by the organization of dislocations into a
sub-crystal boundary (Alley, 1992). De La Chapelle and
others (1998) determined that the minimum dislocation
density needed to form a sub-crystal boundary is
�p ¼ 5:4� 1010 m�2.

Because polygonization depends upon a minimum
dislocation density being reached, the rate of polygonization
can be indirectly described through the rate of change of the
dislocation density. Dislocation density changes due to two
dominant processes: it increases due to work hardening and
decreases due to absorption of dislocations at the crystal
boundary (Miguel and others, 2001). Therefore, the change
in the dislocation density can be described as

@�

@t
¼ jj _�jj

bD
� ��

K
D2 , ð3Þ

where the first term on the right-hand side describes work
hardening: jj _�jj is the second invariant of the strain-rate
tensor, b is the length of the Burgers vector and D is the
crystal diameter (Montagnat and Duval, 2000). The second
term describes the absorption of dislocations at the crystal
boundaries: � is a constant and K is the crystal-growth
factor.

Through most of the depth of an ice sheet, the rate of
fabric evolution is a balance between crystal growth,
polygonization and crystal rotation. However, migration
recrystallization dominates fabric evolution at high tempera-
tures (typically above approximately –108C; Duval and
Castelnau, 1995). Migration recrystallization occurs when
the stored strain energy (due to dislocations) in a crystal is
greater than the crystal-boundary energy of a new strain-free
crystal. The new strain-free crystal is nucleated and rapidly
grows at the expense of the old crystal (Duval and
Castelnau, 1995). The stored energy due to a dislocation
density, Ed, can be estimated as

Ed ’ ��Gb2 ln
Re

b

� �
, ð4Þ

where G is the shear modulus, � is a constant and Re is the
mean average of the dislocation strain field range (Thor-
steinsson, 2002). The energy associated with crystal bound-
aries, Ec, is

Ec ¼
3�g
D

, ð5Þ

where �g is the energy per area on the boundary (for high-
angle boundaries). When Ed > Ec it is energetically favorable
to nucleate a new crystal, which quickly grows to a diameter
that scales with the effective stress (e.g. Shimizu, 1998). The
crystal that grows rapidly will form in the most energetically
favorable position: about halfway between the compres-
sional and tensional axes, which maximizes the resolved
shear stress on the basal planes causing them to deform
easily (Alley, 1992). For uniaxial compression or pure shear,
for example, this is 458 from the axis of compression. The
grains are initially strain-free, and will have a much lower

strain energy than the surrounding grains, allowing them to
grow. As the new crystals grow preferentially at orientations
favorable for the bulk deformation, the fabric can change
significantly; in uniaxial compression, a strong vertical
fabric will become a weaker small-circle girdle fabric (Budd
and Jacka, 1989).

THE MODEL
Many models have been proposed to incorporate the effect
of fabric into ice-sheet models. Gagliardini and others
(2009) classify the variety of anisotropic polar ice models
into four categories: phenomenological, full-field, homo-
genization and topological models.

Phenomenological models are large-scale ice-flow mod-
els that use a macroscopic formulation of the anisotropy of
ice (e.g. Morland, 2002; Gillet-Chaulet and others, 2005;
Placidi and others, 2010). The primary question these
models answer is how the anisotropy of ice affects the flow
of a glacier or ice sheet. These models are designed for flow
studies; computational efficiency is paramount and the
anisotropy of ice is parameterized and limited to a few
special cases. These models typically represent large areas
(m2 to km2) for each representative sample of ice, and
fabrics are not passed along flowlines. This entire class of
model is unsuitable for our application because we are
interested in the evolution of small-scale (cm2 to m2) subtle
variations in fabrics as they move along their flowlines.

At the other end of the scale lie the full-field models.
These models solve the Stokes equations by decomposing
each crystal into many elements, allowing the stress and
strain-rate heterogeneity to be inferred at the microscopic
scale (e.g. Meyssonnier and Philip, 2000; Lebensohn and
others, 2004). These models are concerned with the
microscopic processes within the ice crystal and at the
boundaries of the ice crystal. They are generally two-
dimensional models and become increasingly computation-
ally difficult as the number of crystals is increased, limiting
their application to a small number of crystals. These models
are unsuitable for our application because the limited
number of crystals does not allow a statistically significant
description of fabric on the scale of an ice sheet.

Homogenization models (also called micro–macro
models) are used to derive the polycrystalline behavior of
the ice from the behavior of single crystals (e.g. Lliboutry,
1993; Castelnau and Duval, 1994; Van der Veen and
Whillans, 1994; Gödert, 2003; Gillet-Chaulet and others,
2006). These models compute the macroscopic (bulk)
behavior by averaging over the microscopic (crystal) be-
havior. Generally these models are primarily focused on the
evolution of fabric and describe the fabric as either a
discrete or continuous orientation distribution. The topo-
logical models (e.g. Azuma, 1994; Thorsteinsson, 2002) are
a sub-class of the homogenization models that include
topological information by taking into account neighbor
influences; a crystal surrounded by ‘hard’ crystals will be
less likely to deform regardless of its orientation. Sarma and
Dawson (1996) showed that nearest-neighbor interactions
are essential to determining the single-crystal strain given a
bulk equivalent strain. Thorsteinsson’s (2002) model is the
only topological model to incorporate crystal growth,
rotation and dynamic recrystallization into the fabric
evolution. Since the recrystallization process significantly
affects the evolution of crystal fabric (Alley, 1992), we use
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the model developed by Thorsteinsson (2001, 2002) to study
the fabric evolution throughout the depth of an ice sheet
near a divide. It is important to note that this model is a
polycrystal model that solves for fabric evolution and
behavior, not a flow model. This model alone will not
capture the deformation–fabric feedbacks due to the
redistribution of stress (as a result of spatial variations in
rheology) within the ice sheet. However, the model could be
integrated into an ice-sheet flow model in order to capture
this feedback.

The model uses a representative distribution of N
individual ice crystals to calculate the bulk response of the
ice to stress by averaging over the crystals. The crystals are
arranged on a regular cuboidal grid (Fig. 1), where each
crystal has six nearest neighbors. The crystals, however, are
considered to evolve independently of each other and are
embedded in an ice matrix consisting of small crystals,
which accommodate the crystal-boundary migration and act
as seeds for migration recrystallization (Thorsteinsson,
2002). Because these crystals are small, they do not
contribute significantly to the bulk deformation of the ice.
In the case of nearest-neighbor interactions, the crystals are
only able to feel that there is a hard or soft crystal nearby and
the interaction only affects the crystals’ resolved shear stress
(Eqn (10), below). Each layer in the cuboid can be given a
sub-distribution of crystals with its own fabric, and the
response of each layer to an applied stress can be calculated
through time.

Each crystal in the distribution has an associated orien-
tation given by the co-latitude, �, and azimuth, �, as well as
an associated spherical size of diameter D and dislocation
density �. The model takes in an initial crystal distribution,
stress, and temperature and evolves the crystals through
uniform steps in time or strain; Figure 2 outlines the model
process. First, the model creates an initial crystal distribution
by the method described in the next subsection. The model
then applies a stress to the crystal distribution and calculates
the individual crystal strain rates and velocity gradients using
the analytic flow law developed by Thorsteinsson (2001,
2002). Next, it checks the recrystallization conditions
(outlined below) and then rotates the crystals. After each
time- or strain-step, the model outputs the new distribution

of crystals, the bulk strain and the number and type of
recrystallization events. This new distribution of crystals is
then fed back into the model for the next time-step, along
with the new stress and temperature.

In this model, stress is an input; the stress, therefore, must
be determined outside the model.

Crystal physics
Ice crystals rotate as a result of the velocity gradient
experienced. The velocity gradient is a result of the internal
stresses experienced by the ice sheet, and these stresses lie
somewhere between two end members: uniform stress and
uniform strain rates. Due to the strong crystal anisotropy, the
uniform-stress assumption has been shown to be well
adapted to describing polycrystalline ice (Castelnau and
others, 1996). Therefore, we apply a uniform stress to each
crystal in the distribution. We restrict the deformation of the
crystal to the basal plane; therefore, the crystal only
responds to the components of stress that are in the basal
plane (termed the resolved shear stress; RSS). The Schmidt
tensor, S, describes the orientation of the crystal, ~c, relative
to the slip directions and has the form

SðsÞ ¼ ~b ðsÞ �~c: ð6Þ

where ðsÞ refers to the slip system, ~b ðsÞ is the direction
(Burgers vector) of the slip system and � is the vector direct
(dyadic) product. Then the RSS, � ðsÞ, on a slip system is

� ðsÞ ¼ SðsÞ:�, ð7Þ
where � is the deviatoric stress tensor for the stress applied

Fig. 2. Flow chart of the model. The model is initialized with fabric
data, deviatoric stress and temperature. For each time-step, strain
rates and velocity gradients are calculated, dynamic recrystalliza-
tion processes are applied to the fabric and then the crystals are
rotated to calculate new fabric data. The new fabric data as well as
new stresses and temperatures are fed back into the model to start
the next time-step.

Fig. 1. Left: an example of a polycrystalline cuboid with three
distinct fabric layers; the top layer is white, the middle layer light
gray and the bottom layer dark gray. Each small cube indicates one
crystal and each layer has 4� 4� 4 ¼ 64 crystals. The three-
layered cuboid in our model has 20� 20� 20 ¼ 8000 crystals in
each layer. Right: an illustration of the crystal packing where each
crystal (gray) has six neighboring crystals (white).
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to the fabric and SðsÞ:� ¼ SðsÞkl 	kl summing over repeated
indexes. The magnitude of the RSS, T , can then be
calculated as

T ¼
X
ðsÞ

� ðsÞ~bðsÞ

������
������: ð8Þ

Using the analytic flow law (Thorsteinsson, 2001, 2002)
the velocity gradient of a crystal, Lc, in response to a stress is

Lc ¼ 
A
X
ðsÞ

SðsÞ Ec� ðsÞ
�� ��n�1 Ec� ðsÞ� �

, ð9Þ

where 
 is a constant, A is the flow parameter from Glen’s
flow law (Paterson, 1994, p. 97), Ec is the local softness
parameter due to explicit nearest-neighbor interactions
(NNI) of the ice crystals and n is the exponent in Glen’s
flow law (Glen, 1955). The local softness parameter averages
the magnitude of the RSS over a crystal’s six nearest
neighbors relative to the magnitude of the RSS it is
experiencing, T 0:

Ec ¼ 1
� þ 6�

� þ �
X6
i¼1

T i

T 0

 !
, ð10Þ

where � is the relative contribution of the center crystal, � is
the relative contribution of each neighbor and i ¼ 0 refers to
the center crystal and i ¼ 1, :::, 6 refers to each of the six
nearest neighbors (Fig. 1). Because the RSS can be zero,
there is a specified roof for the maximum value of Ec. Setting
½�, �� to ½1, 0� in Eqn (10) is equivalent to the homogeneous-
stress assumption, where there is no NNI. Changing the
values of ½�, �� modifies the homogeneous-stress (toward the
homogeneous strain) assumption by redistributing the stress
through explicit NNI. Using the values ½6, 1� means the
center crystal contributes as much as all the neighbors
together, and ½1, 1� means the center crystal and all the
neighbors contribute equally.

Finally, the strain rate of a single crystal, _�c, is

_�c ¼ 1
2

Lc þ ðLcÞT
h i

, ð11Þ

where ðÞT indicates the matrix transpose.

Rotating crystals
In each time-step, the crystals are rotated from an orien-
tation, ~c, to a new orientation, ~c 0. If the surrounding ice is
fixed, each crystal rotates as it deforms according to the
standard continuum mechanics rotation rate tensor:

_�p ¼ 1
2

Lc � ðLcÞT
h i

, ð12Þ

where _�p is the rotation rate of a single crystal and Lc is the
velocity gradient of a crystal in response to stress (Eqn (9)). If
the surrounding ice is rotating within the frame of reference,
however, the model calculates a relative crystal rotation rate:

_�� ¼ _�b � _�p, ð13Þ

where _�b is the bulk rotation rate of the modeled ice in
response to stress. The bulk rotation rate is

_�b ¼ 1
2

Lm � Lmð ÞT
h i

þ _�d, ð14Þ

where Lm is the bulk velocity gradient of the modeled ice
(calculating bulk properties is discussed in the next
subection) and _�d is the rotation rate necessary to add to

the modeled bulk rotation rate in order to satisfy the
boundary conditions. For example, irrotational deformations
(e.g. uniaxial compression, pure shear) should have no bulk
rotation of the ice ( _�b ¼ 0), making

_�d ¼ �1
2

Lm � Lmð ÞT
h i

: ð15Þ

Therefore, the new orientation of the crystal is

~c 0 ¼ ðI þ t _��Þ~c, ð16Þ
where t is the time-step.

Bulk properties
The bulk properties are calculated by averaging the single-
crystal properties and will be influenced more by larger
crystals than smaller crystals. We calculate the volume of a
crystal from the its diameter, D, and use its volume fraction,
f , as a statistical weight for the calculation of the bulk
properties (Gagliardini and others, 2004). Any bulk property,
Y , of a single-crystal property, Y c, is then

Y ¼
XN
n¼1

fnY c
n, ð17Þ

where

fn ¼
D3

nPN
m¼1 D3

m

: ð18Þ

Therefore, the modeled bulk velocity gradient is

Lm ¼
XN
n¼1

fnLcn, ð19Þ

where N is the number of crystals in the fabric. Likewise, the
bulk strain rate is

_� ¼
XN
n¼1

fn _�cn: ð20Þ

Crystal processes
The crystals are additionally affected by normal crystal
growth and the recrystallization processes of polygonization
and migration recrystallization. Normal crystal growth is
implemented by growing the diameter of the crystal, D,
according to Eqn (1). Though the ice is deforming, we
assume that the small crystals that surround the modeled ice
crystal have an average strain energy comparable with the
modeled crystal, such that the strain energy does not add to
the grain-boundary migration rate. The dislocation density of
the crystal also grows, according to Eqn (3). The recrystal-
lization processes are outlined below. Once a crystal has
undergone a recrystallization event, it will start to evolve
again according to Eqns (1) and (3).

Polygonization
Wemodel polygonization using a proxy for differential stress
on a crystal (Thorsteinsson, 2002). Crystals that have a small
component of shear stress resolved on to the basal plane
(RSS) will likely be experiencing a differential stress from
their neighboring crystals which are deforming. If the ratio of
the magnitude of the RSS, T , to the second invariant of the
applied stress, jj�jj, is less than a given value (T =jj�jj < )
and the dislocation density, �, in the crystal sufficient to form
a sub-crystal wall ( � > �p), then the crystal can polygonize.
When a crystal polygonizes, the orientation is changed by an
angle, ��, in a direction that increases the RSS, the crystal
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size is halved, and the dislocation density is reduced by �p.
Polygonization tends to slow the development of fabric,
because crystals that are oriented very close to the preferred
orientation (small RSS) of the fabric will polygonize prefer-
entially by the selection criteria (weakening the fabric).

Migration recrystallization
We model migration recrystallization by immediately
nucleating a new crystal once the dislocation energy, Ed, is
greater than the boundary energy, Ec (Eqns (4) and (5)). The
old crystal is replaced with the new ‘strain-free’ crystal, with
dislocation density �0 and a diameter that scales with the
effective stress, D � ð	kl	kl=2Þ�2=3. The rapid crystal-bound-
ary migration is assumed to be fast enough to grow to a
diameter D within a single time-step. The ‘strain-free’ crystal
is given the ‘softest’ orientation, or orientation with the
highest RSS, of a random set of orientations in the applied
stress state (Thorsteinsson, 2002). In uniaxial compression,
this is close to the small circle 458 off the compression axis.

Model parameters
Table 1 lists each parameter used, which equation it can be
found in and the relevant reference(s).

GENERATING INITIAL CRYSTAL DISTRIBUTIONS
To generate our initial fabrics, we use a finite number of
crystals randomly selected from an orientation distribution
function (ODF) to represent the ice we are modeling. Each
layer of our cuboid (as shown in Fig. 1) can be given a
unique ODF and thereby a unique fabric. The layers are then
put together to form our initial crystal distribution.

Orientation distribution functions provide a continuous
description of the volume fraction of ice crystals in a certain
orientation. This reduces to the relative number of ice
crystals in an orientation if every crystal has the same
volume. Because thin-section measurements from ice cores
provide only a limited snapshot of the ODF in situ, a general
ODF is needed to describe the variety of fabrics observed in
ice sheets.

It is important to remember that ice crystals are axially
symmetric; they have no inherent ‘up’ or ‘down’ direction.
Therefore, the orientation of a single ice crystal can equally
be described by two unit vectors pointing in opposite
directions, ~c and �~c, corresponding to the two points on

opposite sides of the unit sphere where the axis passes
through. Because of this symmetry, the space of all possible
orientations can be reduced to the upper hemisphere of the
unit circle. Every axis will have one end pass through a point
on the upper hemisphere, while the other end will pass
through a corresponding point (reflected through the origin)
on the lower hemisphere. Thus an ODF that preserves this
axial symmetry can be defined on the upper hemisphere
alone (the unit vector space is restricted to the upper
hemisphere). Defined as such, the ODF, p, must be
normalized, such that the total volume fraction is equal to
1, or

1 ¼ 1
2�

I
S=2

pð~cÞ d~c, ð21Þ

where S=2 is the surface of the upper hemisphere of the unit
sphere, S. Alternately, an ODF, P , could be defined over the
whole unit sphere (the unit vector space is unrestricted) such
that both ends of the axis carry half the probability of finding
a crystal in that orientation (P ð~cÞ ¼ Pð�~cÞ). Again P must be
normalized, such that the total volume fraction is equal to 1,
or

1 ¼ 1
2�

I
S
Pð~cÞ d~c: ð22Þ

It is mathematically equivalent to use either a restricted or
unrestricted distribution and, thus far, every ODF proposed
in the glaciology literature has been a restricted distribution
(Gagliardini and others, 2009).

We use an unrestricted distribution called the Watson
distribution, the simplest well-known axial distribution in
directional statistics (Fisher and others, 1987; Mardia and
Jupp, 2000). The Watson distribution (Watson, 1965) is
defined over the whole unit sphere as

wð~cÞ ¼ a�1k exp �kð~� T~cÞ2
h i

, ð23Þ

where k 2 ½�1,1� is the concentration parameter, ~� is the
principal axis of the distribution and ak is the normalizing
constant. If we set u ¼ ~� T~c, the normalizing constant is

ak ¼ 2
Z 1

0
exp ð�ku2Þ du: ð24Þ

The Watson distribution preserves axial symmetry,
wð~cÞ ¼ wð�~cÞ, and is rotationally symmetric around its
principal axis, ~�. If the principal axis is pointing vertically,

Table 1. Values of the parameters used in the model

Parameter Value Equation Source

Initial crystal diameter, D0 1.5mm (1) Benson (1962)
Crystal-growth constant, K0 8:2� 10�9 m2 s�1 (2) Alley and others (1986); Thorsteinsson (2002)
Thermal activation energy, Q 40KJmol�1 (2) Alley and others (1986); Thorsteinsson (2002)
Dislocation absorption constant, � 1 (3) De La Chapelle and others (1998); Montagnat

and Duval (2000)
Dislocation enegery constant, � 0.35 (4) Mohamed and Bacroix (2000); Thorsteinsson

(2002)
Dislocation strain field range, Re 1=

ffiffiffi
�

p
(4) Mohamed and Bacroix (2000)

Crystal boundary energy, �g 0.065 Jm�2 (5) Ketcham and Hobbs (1969)
Flow law constant, 
 630 (9) Thorsteinsson (2001)
Polygonization ratio,  0.065 Thorsteinsson (2002)
Polygonization orientation change, �� 58 Thorsteinsson (2002)
Initial dislocation density, �0 1010 m�2 De La Chapelle and others (1998)
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~� ¼ ½0, 0, 1�, the Watson distribution can be written as

wð�,�Þ ¼ a�1k exp �k cos2ð�Þ
� 	

, ð25Þ

where � and � are the co-latitude and azimuth angles.
The Watson distribution describes single-maximum fab-

rics when k < 0, equatorial-girdle fabrics when k > 0, and
reduces to the uniform (isotropic) distribution when k ¼ 0.
Fortunately, these are the most common types of fabrics
observed in ice cores (Paterson, 1994). Additionally, if there
is a sample of N observations of axis positions, the Watson
distribution’s concentration parameter and principal axis can
be determined from the eigenvalues and vectors ofPN

n¼1 fn~cn � ~cn, the orientation tensor used to analyze ice-
core thin sections (Woodcock, 1977; Gagliardini and others,
2004). Therefore, we can connect the concentration par-
ameter and the principal axis of the Watson distribution to
an observed fabric (described in the next subsection).

Although unrestricted distributions have not been used
previously in the glaciology literature, the Watson distri-
bution is closely related to the Fisher distribution, the best-
known vectorial (not axial) distribution in the field of
directional statistics (Fisher and others, 1987; Mardia and
Jupp, 2000). Lliboutry (1993) proposed a restricted form of
the Fisher distribution to use as an ODF in glaciology, but
abandoned it due to computational difficulties. Later,
Gagliardini and others (2009) showed that for Dome C, the
restricted Fisher distribution best fit the observed distribution
of crystals, as compared to the other ODFs used in the
glaciology literature, even though it has never been applied
in glaciology. The Fisher distribution, F , is defined as

Fð~cÞ ¼ f �1� exp � ~� T~c

 �� 	

, ð26Þ

where f �1� is a normalizing constant, � 2 ½0,1� is the
concentration parameter, ~� is the principal axis of the distri-
bution and ~c is a crystal orientation (unit) vector (Fisher,
1953). When the principal axis, ~�, is vertical, the density of
the distribution reduces to exp ½� cosð�Þ�, where � is the co-
latitude angle. The Fisher distribution describes single-
maximum fabrics when � > 0, and reduces to the uniform
(isotropic) distribution when � ¼ 0. Unfortunately, the Fisher
distribution cannot describe girdle fabrics and it is not axially
symmetric (Fð~cÞ 6¼ Fð�~cÞ), so must be used in the restricted
unit vector space for ice crystals. Watson (1982) showed that
an axial form of the (unrestricted) Fisher distribution can be
created by replacing � with 2�, thereby creating a bipolar
distribution. By noticing that exp ½cosð2�Þ� / exp ½cos2ð�Þ�
we arrive back at the Watson distribution, which, by
choosing an appropriate k , can be used in place of Lliboutry’s
restricted Fisher distribution, with the added benefit of being
able to describe girdle fabrics.

Orientation tensor
The orientation tensor, built from the orientation of each
crystal in a polycrystal, is used to determine the strength of
the fabric in the ice (Woodcock, 1977; Gagliardini and
others, 2004). The orientation tensor is calculated from a
polycrystal of N crystals as

A ¼
XN
n¼1

fn~cn � ~cn, ð27Þ

where fn is the crystal’s volume fraction (Eqn (18)). The
eigenvalues (ei for i ¼ 1, 2, 3) and eigenvectors (~vi) are then
calculated from A. The eigenvalues are said to describe the

spatial strength of the fabric and the eigenvectors form the
best material symmetry basis. Alternately, the eigenvalue, ei,
can be considered the fractional variance of the distribution
along the eigenvector, ~vi. The eigenvalues are arbitrarily
sorted, such that e1 > e2 > e3, and ~v1 gives the direction of
the ‘strongest’ fabric. An axially symmetric single-maximum
distribution will have eigenvalues such that e1 > e2 ¼ e3
and the principal axis will be ~v1; the points will all be
clustered around ~v1 (most of the variance is along ~v1). While
an axially symmetric equatorial-girdle distribution will have
eigenvalues such that e1 ¼ e2 > e3, the points will be
clustered around the equator of a sphere with a pole axis
~v3 (most of the variance is along both ~v1 and ~v2).

If our crystals are considered a random sample of a
Watson distribution, then the eigenvalues and eigenvectors
of the orientation tensor allow us to estimate the concen-
tration parameter, k, of the Watson distribution (Watson,
1965). Fisher and others (1987, p. 176) and Mardia and Jupp
(2000, p. 202) show that the maximum-likelihood estimate
(MLE) of the concentration parameter, k, is the solution of

DðzÞ ¼
R 1
0 u2exp �zu2ð Þ duR 1
0 exp �zu2ð Þ du

, ð28Þ

where u is the same as in Eqn (24); DðzÞ ¼ e1 and z ¼ k for
a bipolar distribution and DðzÞ ¼ e3 and z ¼ �k for an
equatorial-girdle distribution. Both Fisher and others (1987)
and Mardia and Jupp (2000) give methods to reasonably
approximate the solution to Eqn (28). Further, we know the
principal axis of the distributions will be

~� ¼~v1 for a bipolar distribution
~� ¼~v3 for an equatorial-girdle distribution,

�

from the eigenvectors of the orientation tensor. The Watson
distribution can thus be calculated to have a fabric that is
analogous to a thin section’s fabric.

Taking the Watson distribution to be our general ODF has
a few distinct advantages over other proposed ODFs. The
Watson distribution is inherently axial, like our ice crystals,
and it can be generated directly from the observed properties
of a thin section. It describes single-maximum, equatorial-
girdle and isotropic fabrics, the most commonly observed in
ice cores. Further, it is a well-known distribution in direc-
tional statistics (Fisher and others, 1987; Mardia and Jupp,
2000). This allows us to use the statistical tools, such as MLE,
developed in a variety of disciplines, from nuclear magnetic
resonance imaging (Cook and others, 2004) to the movement
of robots (Palmer and Fagg, 2009), and many others. (See
Fisher and others (1987) andMardia and Jupp (2000) for more
information about the statistical tools that have been
developed for this and other spherical distributions.)

We generate the initial fabrics for our model through
random sampling of theWatson distribution (Ulrich, 1984; Li
and Wong, 1993; Wood, 1994). Each crystal is assumed to
have the same crystal size, and therefore the Watson distri-
bution describes the relative fraction of crystals in a particular
orientation. We model the distributions on the fabrics
observed at Taylor Dome, Antarctica (as described below).

CONSTANT-STRESS EXPERIMENTS
In order to determine whether a subtle variation in fabric
could be preserved over time, we model the application of
constant stress on a cuboid that has three 8000-crystal
layers, where the middle layer is initialized with a different
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fabric to the top and bottom layers. The initial fabric for the
top and bottom layers is generated with a concentration
parameter for the Watson distribution of k ¼ �2:0
(e1 ¼ 0:538) while the middle layer has a concentration
parameter of k ¼ �2:4 (e1 ¼ 0:567). These concentration
parameters are chosen to correspond with fabrics at 100m
depth in Taylor Dome (described below). A contoured
Schmidt plot of the fabrics is shown in Figure 3. At each
time-step, a constant temperature, T , and stress, �, is
applied to the fabric. We chose our temperature to be
T ¼ �308C, the approximate average temperature of the
Antarctic ice sheet. This temperature is well below our cut-
off temperature for migration recrystallization, which is
therefore not active in the results presented here. We apply
the stress states of uniaxial compression and pure shear to
our fabric. The deviatoric stress tensor for uniaxial compres-
sion has the form

� ¼
1
2 	 0 0
0 1

2	 0
0 0 �	

0
@

1
A, ð29Þ

and the deviatoric stress tensor for pure shear has the form

� ¼
	 0 0
0 0 0
0 0 �	

0
@

1
A: ð30Þ

We use 	 values 0.1 and 0.4 bar to provide a lower and upper
bound on the characteristic deviatoric stresses typically seen
in ice sheets (Pettit and Waddington, 2003). The model
calculates a strain rate at a time-step, and then the fabric is
evolved for the amount of time required to achieve a strain-
step of 0.001, until a total strain of 0.35 is reached. After 0.35
strain, the time-step necessary for a 0.001 strain-step has
increased by over two orders of magnitude, due to stress
hardening, and preliminary model runs suggest that the
separation in eigenvalues between the layers will drop below
0.01 for most of our experiments. The nearest-neighbor
interaction parameters (Eqn (10)) were varied for different
model runs. Table 2 shows the model set-up for each run.

Results
Figure 4 shows the evolution of the e1 eigenvalues, the
number of polygonization events and the model time for
each strain-step in the uniaxial-compression tests (runs 1–6

in Table 2). A uniaxial-compression stress environment
causes an increase in the fabric strength. For the low-stress
runs (1, 3 and 5) polygonization is not active initially
because the strain rate is too low to generate dislocations
faster than they are being destroyed by recovery processes,
unlike the high-stress runs (2, 4 and 6). As the crystals grow,
however, the absorption of dislocations at crystal boundaries
decreases, triggering polygonization events even as the
strain rates decrease due to work hardening. The effect of
NNI in these experiments is to change the timing and rate of
polygonization. Nearset-neighbor interactions distribute
stress among crystals, such that they no longer all
experience the same effective stress. This modification of
the stress distribution tends to cause polygonization events
to be evenly distributed in time, rather than tightly clustered
at a threshold strain. In each run, when polygonization
becomes active, there is a corresponding reduction in the
rate of evolution (slope of the middle graph).

Figure 5 shows the separation between the eigenvalues,
e1, of the middle and top/bottom layers for runs 1–6. In all
cases, we see the separation of the eigenvalues reduced over
time because, when all other effects are equal, the rotation

Fig. 3. Contoured Schmidt plot of the initial fabrics for both the
constant stress and Taylor Dome experiments where the fabrics are
contoured at levels of 0, 2�, :::, 10�. � is the standard deviation of
the density of crystals from the expected density for isotropic ice
(Kamb, 1959). The top two plots are contour plots of the continuous
Watson distribution (an infinite number of crystals) with concen-
tration parameters k ¼ �2:0 (left) and k ¼ �2:4 (right). Two
random 8000-crystal fabrics were generated from these Watson
distributions, as shown in the bottom two plots. The fabric
generated from the k ¼ �2:0 and k ¼ �2:4 distributions have
eigenvalues of e1 ¼ 0:538 and e1 ¼ 0:567, respectively. The
concentration parameter of k ¼ �2:4 is consistent with a
fabric at 100m depth in Taylor Dome, and the concentration
parameter of k ¼ �2:0 was picked to make a fabric that is slightly
more isotropic.

Table 2. Summary of the run set-up of our constant-stress
experiments

Run � NNI ½�; �� 	

bar

1 Uniaxial compression None ½1;0� �0:1
2 �0:4
3 Mild ½6;1� �0:1
4 �0:4
5 Full ½1;1� �0:1
6 �0:4
7 Pure shear None ½1;0� �0:1
8 �0:4
9 Mild ½6;1� �0:1
10 �0:4
11 Full ½1;1� �0:1
12 �0:4
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rate decreases as the fabric strengthens. However, the
separation of eigenvalues reduces slowly enough that the
fabric variation is measurable up to at least 0.30 bulk strain.
This reduction in the eigenvalue separation happens
because each layer’s fabric nears its stress-equilibrium state.
All three layers will ultimately approach the same equi-
librium fabric because they are under the same stress and
temperature, and have the same material properties (e.g.
impurity content). Polygonization events tend to slow down
fabric evolution, which can result in an increase of the
separation if the polygonization events dominate the fabric
evolution, as seen in the no NNI runs (1 and 2) at high bulk
strains. Likewise, in the high-stress NNI runs (2, 4 and 6),
polygonization is very active early in the evolution, due to
the high strain rates. In these runs, polygonization and strain-
induced rotation are close to being balanced, causing the
separation to be maintained to higher bulk strains. The
weaker fabric will have a higher strain rate, causing it to be
slowed down more by the increased number of polygoniza-
tion events. However, in the low-stress runs with mild and
full NNI (3 and 5), the separation at any given bulk strain
will be less than in runs without NNI, because the strain-
induced rotation dominates the polygonization. The weaker
fabric will be able to evolve faster than the stronger fabric,
since it is not being slowed by many polygonization events.

Figure 6 shows the evolution of the e1 eigenvalues,
polygonization events and total strain for the pure-shear tests
(runs 7–12 in Table 2). Similar to uniaxial compression, a
pure-shear environment causes a strengthening of the fabric.
In the low-stress runs (7, 9 and 11), polygonization events
happen at a lower bulk strain, due to larger horizontal strain
rates than in the uniaxial-compression runs. Similarly,
polygonization is much more active for the high-stress
pure-shear runs (8, 10 and 12) than for the uniaxial-
compression runs, resulting in the weakest fabrics after
0.35 strain among any of our experiments.

Figure 7 shows the separation between the eigenvalues,
e1, of the middle and top/bottom layers for the pure-shear
runs (7–12). As in the uniaxial-compression runs, we see the
separation of the eigenvalues decrease over time in all cases,
yet remain measurable to at least 0.30 bulk strain. In the
low-stress runs with NNI (9 and 11), polygonization starts at
lower bulk strains, causing the separation to decrease more
quickly than for the no NNI run (7). Polygonization is very
active in the high-stress runs (8, 10 and 12), causing the
separation to be maintained to a higher bulk strain than in
any other test. Polygonization dominates the fabric evolution
in the no NNI run (8), causing a large increase in the
separation of the eigenvalues, that is more pronounced than
in the uniaxial-compression runs.

Fig. 4. The uniaxial-compression runs, 1–6 (Table 2). The top row shows the low-stress runs and the bottom row the high-stress runs. The left
column shows no nearest-neighbor interaction (½�, �� ¼ ½1, 0�; Eqn (10)), the middle column shows mild nearest-neighbor interaction
(½�, �� ¼ ½6, 1�) and the right column shows full nearest-neighbor interaction (½�, �� ¼ ½1, 1�). For each run, the top plot shows the number of
crystals that recrystallize within each strain-step, as a percentage of the total number of crystals. The middle plot shows the evolution of the
largest eigenvalue, e1, for the middle layer (solid curve) and the top and bottom layer (dashed curve). The bottom plot shows the total model
time at each strain-step.
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TAYLOR DOME EXPERIMENTS
Taylor Dome is a small peripheral dome (20 km�8 km) of
the East Antarctic ice sheet, just inland of the Transantarctic
Mountains, and provides ice to outlet glaciers entering
Taylor Valley and McMurdo Sound. An ice core was drilled
to bedrock on the summit of Taylor Dome (7784704700 S,
15884302600 E) to a depth of 554m in 1994. Near the bed the
ice is >230 ka old; the depth–age profile is shown in
Figure 8 (Steig and others, 1998, 2000). The ‘kink’ in the
depth–age profile is synchronous with the last glacial–
interglacial transition. The Taylor Dome ice core provides a
stratigraphically undisturbed record through the entire last
glacial cycle (Grootes and others, 1994).

Ice samples were cut from the ice core for thin-section
microstructure analysis. Each thin section’s fabric was
determined using an automatic ice fabric analyzer (Wilen,
2000; Hansen and Wilen, 2002; Wilen and others, 2003).
The instrument consists of an optical bench with two
rotating stages containing polarized lenses. A thin section
is mounted in a sample holder on the sample stage, between
the crossed polarizers. A diffused light source illuminates the
sample through one of the polarizers.

The ice fabric analyzer has a digital camera which
measures the extinction angle of each pixel from the sample
as it is rotated. The sample is rotated nine times in nine
different positions. The extinction angle determines the plane
containing the c-axis (up to 908), and the plane intersections
from the nine different positions determine the unique c-axis

direction. Refraction corrections (analogous to Kamb correc-
tions for manual techniques) are included. An NI LabviewTM

routine automatically calculates the angle between the c-axis
and the z-axis (�) and the angle between the projection of
c-axis on the x-y plane and the x-axis (�), for each grain. The
error is <0.58 for both � and �. This corresponds to a
measurement error of less than �0:001 in the eigenvalues of
the thin sections. The fabric profile with depth is shown in
Figure 9. The eigenvalues vary by �0:1 in the top 200m of
Taylor Dome; these variations are two orders of magnitude
greater than the measurement error. Because of the low
density of thin sections, it is not possible to establish whether
these variations are due to climate, statistical fluctuations due
to the number of measured crystals, or other microstructural
processes. However, these variations are on the order of what
we expect from climate variations and, when combined with
a higher-density measurement technique (e.g. sonic logging),
these are the type of variations that may be preserving a
climate signal. Further, the differences in eigenvalues e2 and
e3 suggest a lack of rotational symmetry; this implies Taylor
Dome is not a perfect dome and a combined stress state is
required to model it accurately.

Additionally, Taylor Dome has a very low accumulation
rate and therefore little advection, leading to a nearly linear
temperature profile (Waddington and Morse, 1994). We use
a linear temperature profile where the temperature, T , at the
surface is the mean annual surface air temperature, –438C,
and increases to –268C at the bedrock (Grootes and others,
1994; Morse, 1997). As the temperature never gets above
–268C, migration recrystallization activity is likely negligible
here; it is well below the theoretical temperature for
activation (above approximately –108C; Duval and Castel-
nau, 1995).

Experimental set-up
We use the depth–age (Fig. 8) and depth–temperature
profiles to model an idealized ice-sheet divide with the
characteristics of Taylor Dome. We calculate a depth–stress
profile based on an idealized, symmetric ice divide (as
described by Raymond, 1983), defined by the ice thickness
and the vertical velocity of ice at the surface. We assume
that these profiles are constant through time, so we can use
the model time to interpret a depth from the depth–age
profile and then stress and temperature from their respective
profiles. From these profiles we define a stress–time profile
that drives the fabric evolution.

The deviatoric stress components, 	ij , of a dome-type
(circularly symmetric) ice divide are

� ¼
1
2 	 0 0
0 1

2	 0
0 0 �	

0
@

1
A, ð31Þ

	 ¼ 2A�1=n 2
jvsj
h

� �1=n

1� d
h

� �1=n vs
jvsj

, ð32Þ

where A is the flow parameter from Glen’s flow law (Glen,
1955), n is the exponent in Glen’s flow law, vs is the vertical
component of the ice velocity at the surface, h is the ice
thickness and d is the depth. We interpret A from the values
given by Paterson (1994, p. 97) based on the ice tempera-
ture, and vs from the top of the depth–age profile (the
average accumulation rate over the century preceding
1994). Likewise, deviatoric stress components, 	ij, of a

Fig. 5. Separation of the largest eigenvalue, e1, between the top
layer and middle layer for the uniaxial-compression runs, 1–6. The
top plot shows the low-stress runs, 1, 3 and 5. The bottom plot
shows the high-stress runs, 2, 4 and 6. The solid curves indicate
runs 7 and 8 with no nearest-neighbor interaction (½�, �� ¼ ½1, 0�;
Eqn (10)), the dashed curves indicate runs 9 and 10 with mild
nearest-neighbor interaction (½�, �� ¼ ½6, 1�) and the dotted curves
indicate runs 11 and 12 with full nearest-neighbor interaction
(½�, �� ¼ ½1, 1�).
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ridge-type ice divide are

� ¼
	 0 0
0 0 0
0 0 �	

0
@

1
A, ð33Þ

where 	 is the same as in Eqn (32).
In reality, Taylor Dome is likely experiencing a higher

stress than our idealized model because it assumes a flat bed.
It also does not have constant depth–age, depth–temperature
and depth–stress profiles. Because our model does not solve
for ice flow, the assumptions in our idealized model do not
account for possible strain enhancements, such as impurity-
enhanced ice flow (Paterson, 1991; Faria and others, 2009),
or the feedback between layers with different rheological
properties, such as the feedback that can lead to concen-
trated shearing on layers with crystals oriented to be soft in
shear (Budd and Jacka, 1989; Durand and others, 2007; Pettit
and others, 2007). In general, layers that are rheologically
harder in the direction of the dominant stress component will
deform more slowly and the fabric will evolve more slowly if
surrounded by softer layers; in our model, each layer evolves
independently. Therefore, we expect our modeled fabric
evolution to be slower and more uniformly distributed
between layers than within Taylor Dome.

We calculated a depth–stress profile for both dome-like
and ridge-like symmetry, as shown in Figure 10. Taylor
Dome falls somewhere between these two end members,
but, based on geometry, it is closer to a dome-like symmetry.

Similar to our constant-stress experiments, we modeled
the evolution of a cuboid with three fabric layers of
8000 crystals. We start the model at a depth just below
the pore close-off depth at 100m, and run the model to a
depth 547.2m through both the ridge-like and dome-like
stress profiles. The time-step was 100 years and the modeled
depth range corresponds to 210 ka of evolution. For all three
layers, we use an initial uniform crystal size, D0, of 1.5mm,
which is consistent with the average crystal size observed at
100m depth in Taylor Dome, and agrees with the crystal-
growth factor, K , (Eqn (1)) using an initial crystal size of
1mm (Benson, 1962). For the middle layer, we generated the
initial fabric, based on a concentration parameter for the
Watson distribution of k ¼ �2:4 (e1 ¼ 0:567). The concen-
tration parameter was estimated at 100m depth from a
linear interpretation of the thin-section eigenvalues
(e1 ¼ 0:571, e2 ¼ 0:240 and e3 ¼ 0:189; Eqn (27)). Since
the Watson distribution is circularly symmetric, e2 and e3
are set equal to a symmetric distribution with the same
vertical concentration; e2 ¼ e3 ¼ ð1� e1Þ=2. For the top
and bottom layer, we generated fabrics that are slightly less
concentrated; k ¼ �2:0 (e1 ¼ 0:538 and e2 ¼ e3 ¼ 0:231).
The initial fabrics are shown in Figure 3 (these are the same
fabrics as used in the constant-stress experiments). This
fabric is evolved for one time-step, and then used as the
input for the next time-step. The NNI parameters from
Eqn (10) were varied (½�, �� ¼ ½1, 0�, ½6, 1�, ½1, 0�) for different
model runs (Table 3).

Fig. 6. The pure-shear runs, 7–12 (Table 2). See Figure 4 caption for details.
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Results
Figure 11 compares the modeled evolution for the middle
fabric section of the 100m fabrics for a dome-like stress
profile with the measured fabric in Taylor Dome. Likewise,
Figure 12 shows the modeled and measured fabric for a
ridge-like symmetry. The modeled fabric evolves more
slowly than the measured fabric in Taylor Dome because

of our model assumptions: the idealized steady-state stress
profile we are using and the lack of the fabric–deformation
feedback. Nearest-neighbor interactions further slow the
evolution of the fabric, because they modify the crystal
strain rates (Eqn (10)). This can be seen in the Schmidt plots

Fig. 8. Depth–age profile for Taylor Dome, East Antarctica. (Steig
and others, 1998, 2000)

Fig. 9. Fabric profile with depth for Taylor Dome. The fabrics were
analyzed on an automatic ice fabric analyzer from thin sections of
the Taylor Dome ice core. Circles correspond to eigenvalues e1,
squares correspond to eigenvalues e2 and diamonds to eigenvalues
e3. Measurement errors are less than �0:001 for the eigenvalues;
the error bars are smaller than the data markers in the figure.

Fig. 10. Depth–stress profile for Taylor Dome. The top plot shows a
dome-like stress profile and the bottom plot a ridge-like profile. The
solid curves correspond to 	33, the dotted curves correspond to 	22

and the dashed curves correspond to 	11.

Fig. 7. Separation of the largest eigenvalue, e1, between the top
layer and middle layer for the pure-shear runs, 7–12. The top plot
shows the low-stress runs, 7, 9 and 11. The bottom plot shows the
high-stress runs, 8, 10 and 12. The solid curves indicate runs 7 and
8 with no nearest-neighbor interaction (½�, �� ¼ ½1, 0�; Eqn (10)), the
dashed curves indicate runs 9 and 10 with mild nearest-neighbor
interaction (½�, �� ¼ ½6, 1�) and the dotted curves indicate runs 11
and 12 with full nearest-neighbor interaction (½�, �� ¼ ½1, 1�).
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of the evolved fabrics for each of these cases, which are
shown in Figure 13. After the same total strain, the fabric
with no NNI has more crystals concentrated towards vertical
than the fabric with full NNI (Fig. 14).

Figure 15 shows the separation between the largest
eigenvalues, e1, of the middle and top/bottom layers in the
dome-like and ridge-like stress tests (runs 13–15 and 16–18,
respectively; Table 3) and the number of polygonization
events. As in the constant-stress experiments, we see the
separation of the eigenvalues decreases over time in all
cases, but they remain measurable for 210 ka. In both the
dome-like and ridge-like cases, NNI causes the separation to
decrease and polygonization starts at lower bulk strains than
in the no NNI runs. In the ridge-like runs (16–18) the fabric
is adjusting from the circularly symmetric distribution to an
elliptical distribution expected from pure shear (Paterson,
1994). This causes some crystals to have a very high strain
rate, causing polygonization to be much more dominant
than in the dome-like runs (13–15).

DISCUSSION
In all our experiments, a variation in fabric, such as that
created by a fluctuation in climate, is preserved until the
fabric equilibrates to the stress state. For uniaxial compres-
sion and pure shear, there is a ‘window of opportunity’, in
which the separation of eigenvalues is sufficient to preserve
the climate signal because the weaker fabric takes more time
to equilibrate. The minimum separation required to measure
a fabric anomaly depends on the measurement technique.

For a constant applied stress, the length of time this
window is open depends on the magnitude of the initial
fabric variation, the initial strength of the weaker fabric, the
magnitude of the applied stress (which controls the strain rate
and, therefore, the rate of polygonization) and the strength of
the nearest-neighbor interactions. If the fabric variation is
small to begin with, it may become immeasurable before

either fabric reaches equilibrium. If the fabric variation is
sufficiently large, the weaker initial fabric controls the time
the window is open because the window closes as this
weaker fabric reaches equilibrium with the local stress state
(the stronger fabric reaches equilibrium before the weaker
fabric). Higher stress leads to higher strain rates and faster
rotation of the crystals. Therefore, the fabric will equilibrate
and the window will close more quickly in time.

Polygonization plays a major role in the evolution of
fabric. Each additional polygonization event rotates a crystal
away from the principal stress direction, therefore acting to
slow down the strengthening of the fabric. Polygonization
events, however, do not occur uniformly in time, because
each event requires a threshold dislocation density. At high
strain rates (resulting from high stress in our experiments),
polygonization events occur often throughout the deform-
ation process. But at the low strain rates we studied, our
model predicts a negligible number of polygonization
events until 0.20 or 0.30 strain. When neighboring crystals
interact, however, polygonization events occur earlier in the
deformation process.

Nearest-neighbor interactions minimize the differences in
strain rates among neighboring crystals. With NNI, a poorly
oriented or hard crystal surrounded by soft crystals will
deform faster than without NNI, advancing when the crystal
polygonizes. Likewise, a soft crystal surrounded by hard
crystals will deform more slowly, delaying when the crystal
polygonizes. However, because this crystal is deforming
less, it will stay in a softer orientation longer, while the
neighboring hard crystals will also move to a softer
orientation through polygonizations (their deformation is
being increased by the softer crystal). The net effect of this is
to increase the overall strain rate of the ice, advance the
timing of polygonizations and increase the overall number

Table 3. Summary of the run set-up of the Taylor Dome experiments

Dome Ridge

Run NNI ½�; �� Run NNI ½�; ��

13 None ½1; 0� 16 None ½1; 0�
14 Mild ½6; 1� 17 Mild ½6; 1�
15 Full ½1; 1� 18 Full ½1; 1�

Fig. 12. Same as Figure 11, but within a glacier based on Taylor
Dome for the ridge-like Taylor runs, 16–18 (Table 3).

Fig. 11. Evolution of fabric within an ice sheet based on Taylor
Dome for the dome-like Taylor runs, 13–15 (Table 3). The three left
plots show the evolution of the three eigenvalues for the middle
fabric layer in Taylor Dome, and the rightmost plot shows the
number of polygonization events within a time-step as a percentage
of the total number of crystals. In the plots, the gray open circles are
thin-section measurements in Taylor Dome, the solid curve
corresponds to no nearest-neighbor interaction (½�, �� ¼ ½1, 0�;
Eqn (10)), the dotted curve indicates mild nearest-neighbor inter-
action (½�, �� ¼ ½6, 1�) and the dashed curve indicates full nearest-
neighbor interaction (½�, �� ¼ ½1, 1�).
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of polygonization events. Since NNI causes the crystals to
bunch up (the hardest crystals get softer and the softest
crystals get harder), the window will close more quickly; the
separation between the fabrics will be reduced.

By finding the time (and therefore strain) at which the
eigenvalues separation is <0.01, we can determine how
long the window stays open. Our model results suggest that
at low stresses, similar to those found at thick cold ice
divides, the window stays open for �2000 ka. At higher
stresses, similar to those found at smaller ice sheets and ice
caps, the window stays open for �10 ka.

When we apply this model to Taylor Dome, we see that
the low stresses and low temperatures result in maintaining
the separation of eigenvalues throughout the depth of the ice
sheet. This suggests that a fabric anomaly created by a
fluctuation in climate may be measurable deep in the ice:
the window stays open. The window stays open even with
full NNI implemented. It is important to note that our fabric
only evolves to �0.30 strain throughout our Taylor Dome
profile, since the idealized stress profile was generated with
an isotropic ice assumption and our fabric experiences stress
hardening as it evolves. Realistically, the fabric would
evolve to �1.0 strain if the fabric–deformation feedback was

included. This may cause the fabric signal to be lost higher
up in the ice sheet, however, the fabric/deformation feed-
back may also cause an initial enhancement of the climate
signal by causing the stronger fabric to evolve much faster
than the weaker fabric. Integrating this model into a flow
model will allow this feedback to be studied.

CONCLUSIONS
Our model for fabric evolution in ice suggests that for
compressive-stress regimes, total strains of at least 0.30 are
necessary to rid fabric of its ‘memory’ of past fabric and
stress states. Near an ice divide, most ice does not reach
0.30 total strain until deep in the ice (deeper for cold or low-
stress divides, and shallower for warm or high-stress
divides). Therefore, we can preserve a fabric anomaly, such
as may be induced in the firn by a fluctuation in climate,
throughout most of the depth of the ice sheet.

The rate of fabric evolution depends on strain rate, and our
model assumes the strain rate is related to stress, based on the
analytic flow law developed by Thorsteinsson (2001, 2002),
which is an extension of Glen’s flow law and uses the typical
softness parameters as reviewed by Paterson (1994, p. 97). As

Fig. 13. Contoured Schmidt plots of the evolved middle layer fabric after 210 000 years for dome-like (top row) and ridge-like (bottom row)
symmetry. The left column shows no nearest-neighbor interaction (½�, �� ¼ ½1, 0�; Eqn (10)), the middle column shows mild nearest-neighbor
interaction (½�, �� ¼ ½6, 1�) and the right column shows full nearest-neighbor interaction (½�, �� ¼ ½1, 1�). The plots are contoured in the same
way as in Figure 3, but the fabrics are now contoured at levels of 0, 20�, :::, 100�.
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discussed by Paterson, many ways have been suggested to
alter the isotropic softness parameter. If we increase the value
of the softness parameter in our model, then the same stress
will result in higher strain rates. While higher strain rates will
rotate the crystals more quickly and increase the rate of fabric
evolution, higher strain rates also induce polygonization
events, which slows bulk fabric evolution and preserves the
fabric anomaly for longer. The net effect of softer ice depends
on the balance of these two processes.

If different layers have different isotropic rheologies (e.g.
due to differences in impurities), then the complex feed-
backs between stress and strain rates may cause the softer
ice to have a higher strain rate. This high strain rate will lead
to faster fabric evolution unless it triggers polygonization
events, which slows down fabric evolution. The fabric
evolution will be determined by the balance of these two
processes. Furthermore, impurities tend to impede crystal
growth, which increases the likelihood of a polygonization
event (as Eqn (3) shows, the rate of polygonization is
inversely proportional to crystal size).

Differences in rheologies between layers may also be
generated by the fabric itself, because, in compression,
crystals tend to rotate to a ‘hard’ orientation. The stronger
the fabric, the harder the ice in compression. In our model
results, this is what causes the decrease in strain rate as the
fabric strengthens, slowing the rate of fabric evolution.

Finally, our model assumes cold ice (–308C), where
migration recrystallization is likely negligible. At higher
temperatures, when migration recrystallization is known
to be active, new, strain-free crystals grow quickly,

polygonization events decrease and fabric weakens because
the new crystals grow in a ‘soft’ orientation. The effects of
migration recrystallization on fabric evolution or the ability
to preserve a fabric anomaly is not fully understood. Data
from the EPICA Dome C borehole suggest that fabric
variability maintains its correlation with climate variability,
despite active migration recrystallization (Gusmeroli and
others, 2012). Kipfstuhl and others (2009) have shown that
migration recrystallization may be active at much lower
temperatures and strain rates.

Because a real ice divide is rarely in steady state, often
migrating its position laterally, ice rarely experiences only a
pure compressive stress state (uniaxial or pure shear). Along
its particle path, an ice particle will experience a combin-
ation of compressive and simple-shear regimes that varies
throughout the depth. Our results suggest what is possible
for pure compressive regimes. When simple shear is
included, the results may be significantly different. Our
goal in this paper was to isolate the compressive regimes,
and further work is required to detail the effect of simple
shear on a fabric variation.

We can, however, speculate on the response to simple
shear of a fabric variation, similar to the one we have studied
here, because many of the same principles apply. The
primary difference between compressive and simple-shear
states of stress is that fabric in simple shear tends to rotate
into a ‘soft’ orientation, with respect to the applied stress,
rather than into a ‘hard’ orientation, as happens with

Fig. 15. The top plots show the separation of the largest eigenvalue,
e1, between the top and middle fabric layers for the dome-like
Taylor runs, 13–15 (Table 3), as well as the total number of
polygonization events within a time-step, as a percentage of the
total number of crystals. Likewise, the bottom plots show the ridge-
like Taylor runs, 16–18. In the plots, the solid curves correspond to
no nearest-neighbor interaction (½�, �� ¼ ½1, 0�; Eqn (10)), the dotted
curves indicate mild nearest-neighbor interaction (½�, �� ¼ ½6, 1�)
and the dashed curves indicate full nearest-neighbor interaction
(½�, �� ¼ ½1, 1�).

Fig. 14. The top plot shows the cumulative strain undergone by the
modeled fabrics as a function of the largest eigenvalue, e1, for the
dome-like Taylor runs, 13–15 (Table 3) Likewise, the bottom plots
show the ridge-like Taylor runs, 16–18. In the plots, the solid curves
correspond to no nearest-neighbor interaction (½�, �� ¼ ½1, 0�;
Eqn (10)), the dotted curves indicate mild nearest-neighbor inter-
action (½�, �� ¼ ½6, 1�) and the dashed curves indicate full nearest-
neighbor interaction (½�, �� ¼ ½1, 1�).
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compressive regimes. This difference results in ice with
strong fabrics having higher strain rates than ice with weaker
fabrics under the same applied stress. Because fabric
evolution depends on strain rate, the stronger fabric will
evolve fabric more quickly than the weaker fabric. Rather
than simply slowing the decrease in separation (slowly
closing the window), there will be a positive feedback that
opens the window wider. This effect is observable in the
deepest ice in ice sheets, where shear stress is typically
highest; this deep ice exhibits the strongest variations in
fabric (Gusmeroli and others, 2012).

It is likely that fabric can be developed as a climate proxy,
because a climate-induced variation in fabric can be
preserved throughout the depth of an ice sheet. Through
the use of geophysical inverse methods, it may be possible to
use a fabric-evolution model to invert continuous fabric data
(e.g. a sonic velocity profile) for past temperatures. However,
there is still much research needed for the fabric proxy to be
realized. A fabric-evolution model that includes dynamic
recrystallization will need to be coupled to an ice-flow
model, and the response of fabric variations across a wide
variety of stress states will have to be quantified. Furthermore,
the parameterizations used to model the dynamic recrystalli-
zation processes need to be robust, and new parameter-
izations may need to be developed, especially in the case of
migration recrystallization (Kipfstuhl and others, 2009).
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