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ABSTRACT. The Molecular Beam Epitaxy growth of Fe on MnAs/GaAs(001) leads to the 

formation of a new nanostructured phase of the FeMnAs compound at the Fe/MnAs interface. 

We investigate the structural and magnetic properties of this interfacial layer by high angle annular 

dark field imaging in a scanning transmission electron microscope (HAADF-STEM). We determine that 

the epitaxial FeMnAs layer presents an unusual orthorhombic structure, with vacancy ordering. We 

completed our study by ab initio calculations and we foresee an antiferromagnetic ground state for this 

structure. 
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INTRODUCTION  

 Arsenide compounds with composition MM’As, M and M’ being 3d transition metals (TM), 

display a wealth of magnetic and structural phases that depend of the M/M’ ratio and on the 

crystal growth procedure1-3. Among them, FeMnAs was found to crystallize in the tetragonal (T) 

Fe2As-type structure under normal growth conditions, or in the hexagonal Fe2P-type (H) one at 

high pressure and temperature4. It was found that the magnetic properties of FeMnAs strongly 

depend on the crystalline structure: the T phase is antiferromagnetic (AFM) and the H phase is 

ferromagnetic (FM). The magnetic moments carried by Mn and Fe depend on the atomic 

structure, as well4.  

In this article we report on a new FeMnAs orthorhombic (Co2P-type) phase which is stabilized 

by epitaxy on a MnAs thin film. MnAs is a ferromagnetic metal that can be epitaxied on 

GaAs(001) for spintronics applications5. This new FeMnAs phase results from the partial 

diffusion of Fe during the molecular beam epitaxy (MBE) growth of an iron layer on MnAs. 

Therefore, we deal with a FeMnAs thin film embedded between pure Fe and MnAs epitaxial 

films. Here, we address the structural properties of this new phase by High Angle Annular Dark 

Field (HAADF) imaging in a scanning transmission electron microscope (STEM). This 

technique provides incoherent images of crystallized materials with atomic resolution. Contrary 

to the phase contrast High Resolution TEM technique, it allows for a more straightforward 

interpretation of the sample images, providing direct representations of the atomic columns that 

can be compared easily to model structures. Finally, by an ab initio study of the electronic and 

magnetic ground state, we compare the magnetic configurations and the magnetic moment 

intensities of the new O-phase with the well-known H- and T-phases. Beyond the fundamental 

interest for the coupling between magnetism and structure in this new phase, two more 

applicative issues motivated this work, namely Fe/MnAs interdiffusion and colossal magneto-

caloric effect (MCE). 
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The former is relevant to using Fe/MnAs/GaAs(001) for device applications6-9. Here we show 

that the non-FM ground state of orthorhombic FeMnAs is at the origin of the very low exchange-

coupling observed previously in Fe/MnAs hybrid structures, where it was shown that both 

parallel and anti-parallel magnetic states of Fe and MnAs can be stabilized at low temperature6-7. 

The low magnetic coupling between Fe and MnAs permits non-inductive ways to store 

information in magnetic Fe/MnAs hybrid structures9. 

The latter is important since Mn1-xFexAs is known to exhibit colossal MCE at room 

temperature10  and at ambient pressure. 

Stabilizing MCE in thin films opens up exciting opportunities in micro-scale refrigeration11, 

with the possibility of using high frequency ultrasound triggering12 for sensors applications13.     

 

EXPERIMENTAL DETAILS. 

 The Fe/MnAs/GaAs(001) samples were prepared at the Institut des NanoSciences de Paris by 

Molecular Beam Epitaxy (MBE), following the procedure described in previous works6. First, 

oxide desorption from the GaAs(001) substrate is carried out under As flux, then a thick GaAs 

layer is grown under As-rich conditions, with the substrate kept at T=560 °C. The sample 

temperature is then reduced to 230 °C for depositing the 90 nm thick MnAs layer. The Fe layer is 

deposited from a Knudsen cell on the template kept at a temperature of 150 °C, where MnAs is 

single phase and does not display any stripes. Finally, the sample is protected against 

contamination by 5 nm of ZnSe.  

Previous High Resolution Transmission Electron Microscopy (HRTEM) analyses indicated 

that Fe grows epitaxially on MnAs with the following relative orientations of the Fe, MnAs and 

GaAs lattices: (2-11)Fe // (1-100)MnAs // (001)GaAs and [11-1]Fe // [001]MnAs // [1-10]GaAs  (see Fig. 

1). It is worth noticing that for few nanometers-thick iron layers, no interdiffused interface layer 

was clearly evidenced by Trasnsmission Elecron Microscopy studies. Nevertheless, the origin of 

the weak magnetic exchange coupling between Fe and MnAs was ascribed to the existence of 
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an interface reacted layer6. Here, we intentionally exaggerated the Fe thickness (around 30 nm 

rather than the ‘usual’ 2-5 nm) in order to enhance the reacted region thickness and permit a 

more comfortable electron microscopy study. 

HRTEM and Energy Filtered Transmission Electronic Microscopy (EFTEM) measurements 

were performed using a Jeol JEM 2100F 200 kV electron microscope equipped with a Gatan GIF 

electron spectrometer. TEM images evidenced the formation of an intermediate compound 

between the Fe and MnAs layers. X-ray Energy Dispersive Spectroscopy (XEDS) and EFTEM 

analysis revealed the presence of Mn, Fe and As in this compound, with average composition 

FeMnAs. 

   In order to determine the structure of the FeMnAs compound, we used HAADF-STEM. 

With a contrast highly sensitive to the atomic number (intensity roughly proportional to Z2), 

HAADF-STEM microscopy can distinguish between Mn (Z=25) and As (Z=33) atoms, but not 

between Fe (Z=26) and Mn (Z=25) because of the weak difference of atomic number. HAADF 

images were obtained on an aberration-corrected STEM (Jeol 2200FS) operating at 200 kV. The 

probe size was 0.1nm (FWHM) and the current probe 50 pA. The half-angle of convergence of 

the probe was 30 mrad. The half-angle of detection for the dark field (DF) detector was set 

between 100 mrad (inner) and 170 mrad (outer). Most of the HAADF micrographs were Fourier 

filtered to improve their quality. 

 

RESULTS AND DISCUSSION 

 Along the [100] zone axis of MnAs 

  HAADF micrographs were recorded along the [100] MnAs-hexa zone axis; an example is 

shown in Fig. 2a. An interfacial layer about 10-15 nm wide is clearly evidenced, between the 

MnAs and the Fe layers. The width of the Fe layer is about 25 nm. One can notice that the 

interface of the FeMnAs phase is very abrupt with the Fe layer, while it is quite rough with the 

MnAs layer. The filtered MnAs layer image (Fig. 2b) accurately corresponds to the structure 
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expected for MnAs (Fig. 2a lower inset), the brightest spots being ascribed to As atoms and the 

darkest ones to Mn atoms. This is consistent with the fact that the columns intensity is directly 

proportional to Z 
2, since As atoms have high atomic number Z compared to the 3d metal (Mn or 

Fe) atoms, and no column is composed of mixed elements along this zone axis. The Fe-filtered 

layer image (Fig. 2d) fits also very well the theoretical Fe structure (Fig. 2a upper inset) 

projected along the [011]Fe direction and the intensities of the spots are normally homogeneous, 

roughly proportional to ZFe
2 . The filtered image of the interfacial layer (Fig. 2c) exhibits a 

complex structure. Since the growth process of this phase is based on diffusion of iron in the 

MnAs layer, one could assume that this new compound has hexagonal structure, like MnAs, with 

tetrahedral and/or octahedral sites partially occupied by iron atoms. A simple comparison with 

the MnAs phase rules out this interpretation (see Fig. 2b and 2c).  

   Starting from the idea that our interfacial compound should be an MM’As arsenide, with the 

additional constraint of a FeMnAs average composition suggested by quantitative analysis of 

XEDS data, we searched the literature for structural information concerning these compounds. In 

general, M2As arsenides are reported to crystallize in one of the three following structures1: P-

62m hexagonal symmetry (Fe2P structure), Pnma orthorhombic symmetry (Co2P structure) and 

P4/n mm tetragonal symmetry (Fe2As structure). 

According to Ref. 1, As atoms form two types of interstices in the three structures: 

tetrahedrons and square based pyramids which are alternately stacked along the [001] axis of the 

hexagonal structure or the [010] direction of the orthorhombic and tetragonal structures (see Fig. 

3). One can therefore define a rhombic pseudo unit cell built with one tetrahedron and one square 

pyramid, both sharing a triangular face. The difference between the 3 types of structure lies in 

the ordering of these rhombic blocks. The metal atoms are always located in the tetrahedral and 

square based pyramidal sites1-3. 

   Most of the binary phases M2As have a tetragonal structure (Fe2As, Mn2As, Cr2As) while 

ternary phases MM’As have hexagonal symmetry, except FeMnAs whose structure is 
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tetragonal under normal growth conditions1-2. We didn’t find any TEM study on these materials, 

but the STEM-HAADF technique, as we previously pointed out, allowed us to compare directly 

the HAADF micrographs with the theoretical structures of Fe2As, Fe2P, Co2P. 

   The image corresponding to our interfacial compound was compared to the three known 

structures of the arsenides depicted along the [001] direction for Fe2P and along the [010] 

direction for Fe2As and Co2P in the publication of A Nylund et al.1 (Fig. 4a-c). An accurate 

coincidence of the atomic columns of the interfacial FeMnAs compound (Fig. 4d) with the 

atomic positions of the Co2P type structure was evidenced if P is replaced by As and Co by Mn 

or Fe. To facilitate the comparison several markers have been drawn on the HAADF micrograph, 

using the following convention: big yellow circles show the periodicity of the pattern, green and 

blue filled circles represent the pyramidal and tetrahedral sites occupied by the metal (M=Mn or 

Fe), respectively, pink and red filled circles indicate the As columns, pink lines point out the 

rhombic blocks (pyramid + tetrahedron) and the blue dotted lines delimit the unit cell. The 

agreement is also good for the intensities which are approximately proportional to ZAs
2 for the 

white spots and to ZM
2 (M=Mn, Fe) for the grey spots.  

 Therefore, the resulting relationship with the MnAs structure would be [100]MnAs-hexa // 

[010](Fe,Mn)As-ortho , [001]MnAs-hexa // [100](Fe,Mn)As-ortho. The parameters aortho = 6.36 Å and cortho = 

7.04 Å have been obtained from the HAADF images along the [010](Fe,Mn)As-ortho. The bortho 

parameter was measured on HAADF images along the [100](Fe,Mn)As-ortho perpendicular zone axis. 

All the experimental values are given in Tab.1. Several projected distances were thus calculated 

from the theoretical Co2P type structure with these parameters. They agree with the measured 

distances between the atomic columns displayed on Fig. 4d. The calculated projected distances 

between the As columns and the closest metal columns are 1.48 Å, 1.83 Å and 2.0 Å. The 

measured values (respectively 1.4 Å, 1.9 Å and 2.0 Å) are in good agreement with these 

calculated values. Let us draw the attention to the fact that these values are close to the 
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microscope spatial resolution (1 Å), which may explain why the As and M columns are not 

always well resolved.  

This meticulous observation along the [100]MnAs-hexa direction supports the validity of the Co2P 

type structure. In the discussion that follows, we assume that our FeMnAs interfacial layer has 

orthorhombic Co2P-type structure, showing that all TEM results are coherent with this 

hypothesis. We will refer to this orthorhombic structure O-FeMnAs. 

 

 Diffraction patterns along [100]MnAs-hexa // [010](Fe,Mn)As-ortho and [001]MnAs-hexa // 

[100](Fe,Mn)As-ortho 

  Diffraction measurements represent a suitable way to confirm the FeMnAs orthorhombic 

structure. Let us recall some information about the Pnma space group. The existence of a 

diagonal glide plane ‘n’ ⊥ a and an axial glide plane ‘a’ ⊥ c implies the reflection conditions 0kl 

: k+l=2n and hk0 : h=2n respectively. 

   The Fast Fourier Transform (FFT) performed on our FeMnAs-O phase along its [010] zone 

axis (Fig. 5a) shows a nearly square lattice with 7.1 Å and  6.4 Å interplanar distances values, 

matching very well to the d001=7.04 Å and d100=6.36 Å of the orthorhombic structure, whose 

reciprocal lattice is presented in Fig. 5b. One must specify that the normally forbidden h00: 

h=2n+1 and 00l: l=2n+1 reflexions are excited by the dynamical effects of the electronic 

diffraction. 

   To complete the study, we analyze the diffraction micrograph along the [100] zone axis of 

our FeMnAs-O layer. Despite appearances, Fig. 6a does not depict a hexagonal symmetry but an 

orthorhombic symmetry with extinctions. The zone axis is not six-fold, like for MnAs; four 

angles were measured to be approximately 62° whereas the two others were close to 57°. This 

diffraction pattern fits exactly the reciprocal lattice of the orthorhombic structure along the [100] 

direction (Fig. 6b), characterized by four angles equal to 61.48° [between (002) and (011), (002) 

and (0-11)], two angles equal to 57.03° [between (011) and (01-1)] and measured values in 
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agreement with d011=3.36 Å and d002=3.52 Å. We must point out that the spots corresponding to 

the (011) and (002) plane families, close to the centre of the diffraction pattern, are not visible 

because they merge with the MnAs spots. We can conclude that the diffraction results confirm 

unequivocally the orthorhombic structure of our FeMnAs phase, with the lattice parameters 

given in the previous section.   

 

 Along the [001] zone axis of MnAs : a compound with arranged vacancies 

  A series of HAADF images along the [001]MnAs-hexa zone axis were also recorded; an 

example is shown in Fig. 7a. Similar comments as those made on Fig. 2a apply, in particular 

concerning the exact coincidence between the MnAs and Fe layers with their theoretical 

structures and the difference of roughness for the two interfaces MnAs-FeMnAs and FeMnAs-

Fe. But, contrary to the Fig. 2c, the O-FeMnAs layer picture exhibits areas with different 

intensity distributions (Fig. 7c). This will be discussed further in the rest of the paper. If we first 

consider the [001] oriented MnAs layer, the HAADF micrograph corresponds perfectly well to 

the projected MnAs structure. We notice that all the columns of the HAADF image (Fig. 7b) 

have the same intensity, although they are supposed to be alternately As and Mn columns (Fig. 

7a, upper inset). The MnAs cell has two atomic positions for Mn (0,0,0 and 0,0,1/2) which are 

aligned along the c-axis direction, whereas the two As positions (1/3, 2/3, 1/4 and 2/3, 1/3, 3/4)  

are not superposed along this axis. Therefore, Mn columns are twice as dense (intensity 

proportional to 2Z Mn
2 ) as the As columns (intensity proportional to ZAs

2 ). Since 2Z Mn
2 is nearly 

equal to ZAs
2, the intensities are not much different. Also the filtered Fe layer image (Fig. 7d) 

coincides well, for positions and intensities, with the theoretical Fe structure projected along the 

[11-1]Fe direction (Fig. 7a, lower inset). 

From these HAADF images of the O-FeMnAs layer along the [100](Fe,Mn)As-ortho, the bortho 

parameter was calculated to be 3.825 Å. Taking into account the three lattice parameters 

measured from the HAADF images, the O-FeMnAs structure along the [100] direction is 
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reported in Fig. 8b. In this figure, the red filled circles represent the As atoms while the green 

and blue circles represent respectively the pyramidal and tetrahedral sites occupied by the metal 

(M=Mn or Fe). The O-FeMnAs structure is compared to the filtered HAADF image shown in 

Fig. 8a (zone 1). If we consider the As columns of the theoretical structure, we can see a 

coincidence with the brightest spots of the HAADF micrograph. The obvious difference is the 

systematic existence of the columns corresponding to the tetrahedral metal sites (blue filled 

circles in Fig. 8b) very close to the As columns in the schematic structure which are not 

evidenced in the micrograph. The projected distance (d= 0.42 Å) between these As and M 

columns, calculated from the theoretical structure, is smaller than the microscope resolution (1 

Å), which explains why we see only one spot, whose intensity should be roughly proportional to 

ZAs
2 + ZM

2. If we take the average position (along the ‘c’ axis) of these very close As and M 

columns, the calculated distances (d(5,6-7,8) = , d(7,8-11,12) =2.185 Å, d(5,6-13,14) =4.86 Å in Fig. 8b) 

match very well the measured distance between the bright spots in Fig. 8a (d1= , d2=2.3 Å , 

d3=5.0 Å). 

When examining the upper part of the schematic structure of Fig. 8b (along the ‘a’ axis), one 

expects that two levels of intensity in the HAADF micrograph: the higher proportional to ZAs
2 + 

ZM
2 for the pairs of As and M columns mentioned above (red empty circles in Fig. 8b), the lower 

proportional to ZM
2 for the pyramidal metal sites (green filled circles). 

The pairs of As and M columns make a 2D pseudo-hexagonal network (highlighted by red 

lines in the Fig. 8a,b), delimiting an area that contains two atomic columns which correspond to 

the pyramidal metal sites of much lower intensity.  

Arrows in Fig. 8a,b indicate spots where vacancies have replaced the second metal column. 

In some parts of the micrograph (Fig. 8a, zone 2), the spot intensity distribution is different, 

with three intensity levels. The brightest spots (proportional to ZAs
2 + ZM

2) form a pseudo-

triangular network (red drawing in Fig. 8a,b), which can be interpreted as two out of the four 

tetrahedral sites being vacant (represented by a cross in Fig. 8b). The spots surrounded by 
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these ‘triangles’ are alternately grey and white, meaning that two of the four pyramidal sites are 

vacant as it is schematized at the bottom of Fig. 8b. Consequently, spots surrounded by these 

pseudo-triangles have alternatively an intensity proportional to ZM
2 (grey spot) and to ZAs

2 (white 

spot).  

The interpretation of the intensities in a HAADF micrograph of such a complex structure is not 

an easy task, and no quantitative investigation has been attempted. Nonetheless, we can draw a 

qualitative picture from our analysis, showing that the structure of the interfacial FeMnAs phase 

is composed of As pyramids and tetrahedra, forming the frame of the structure, containing metal 

atoms (Mn or Fe) or vacancies. The presence, in some areas of the sample, of an ordered vacancy 

network may correspond to local composition variations of the O-FeMnAs phase. Our results are 

at variance with published data on bulk FeMnAs, reporting crystallization in the Fe2As tetragonal 

or hexagonal symmetry and not mentioning the existence of vacancies in the structure. Both the 

unusual structure and the presence of vacancies have to be related to the way we formed the 

FeMnAs sample, i.e. diffusion of iron in the MnAs layer during growth, under the action of 

epitaxial constraints. 

It was shown, by neutron diffraction, that Fe and Mn atoms in both tetragonal and hexagonal 

MnFeAs bulk phases are located at tetrahedral and pyramidal sites respectively4,14. We couldn’t 

prove that such a Mn and Fe crystallographic ordering exists in our FeMnAs layer because, as 

we said previously, STEM-HAADF technique cannot distinguish between Fe and Mn.  

 

 Magnetism of orthorhombic FeMnAs. 

  In the following we address the magnetic properties of the unusual orthorhombic (O) 

structure of FeMnAs. As mentioned above, FeMnAs crystallizes “naturally” in the tetragonal (T) 

structure and, under pressure, in the hexagonal (H) one. It has been shown that the T-structure 

presents a larger volume and an antiferromagnetic (AFM) ground state with a Néel temperature 

of 463 K. The H-phase is ferromagnetic (FM) with a Curie temperature near to 190 K (see 
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Ref. 4 and references therein]. It has also been reported that the magnetic moments carried by the 

Mn and Fe atoms strongly depend on the atomic structure and particularly of the metal to metal 

(M-M) distance, dMM. It turns out that the larger is dMM the more intense will be the magnetic 

moment of Fe and Mn4. This empirical observation makes us to expect that the observed 

orthorhombic structure that presents an enhanced cell-volume (+7% and +2% than the H and T 

phase, respectively) will present an AFM ground state with an increased magnetic moment for 

the Mn and Fe atoms.  

 We performed electronic calculations using ab initio density functional theory as 

implemented in the VASP code15. Projector Augmented Wave (PAW) pseudopotentials are 

used16, together with the generalized gradient approximation as parameterized by Perdew et al.17 

for the exchange and correlation potential.  We consider a plane wave basis set with kinetic 

energy values up to 337 eV and 432 k-points in the irreducible Brillouin zone. We found that the 

cell parameters agree with experimental values within 3% of confidence. 

A comparison of magnetic configurations and calculated magnetic moments is given in table 

I. In order to perform a fruitful comparison with values reported in the literature4,14,18 we 

performed ab initio calculations for the H, T and O-FeMnAs phases. Our results reproduce 

closely the ones reported in references 4 and 18 for H and reference 14 for T-FeMnAs. Despite 

the overall agreement, we report that the value of the magnetic moment of Fe in the tetragonal 

position of the T phase is higher than the value obtained by Tobola et al.
4 Nevertheless, it agrees 

well with the range of values reported by other authors even using the same calculation 

method19. Similarly to what happens in H and T phases4, we confirm the localization of Fe and 

Mn on tetrahedral and pyramidal sites, respectively. 

Below, we focus on the main magnetic properties that come out from our calculations. 

The major points concerning the O-phase are the following: 

The orthorhombic cell presents an AFM ground state similarly to the tetragonal one (tab.1). In 

order to find the magnetic ground state, we tested several magnetic configurations. Having in 
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mind that the arrangement of the atoms along c-axis is t p p t t p p t, where ‘t’ and ‘p’ mean the 

tetrahedron and square pyramid sites respectively (see Fig. 3), the magnetic configuration 

obtained is + - + - - - + +. This indicates that t-type positions (occupied by Fe atoms) prefer a 

ferromagnetic alignment, while p-type (Mn atoms) prefer an antiferromagnetic orientation. The 

antiferromagnetic alignment of the p-type positions is consistent with what happened in 

tetragonal and hexagonal structures4. 

The Fe and Mn magnetic moments increase significantly as compared to the values reported in 

H and T phases. In particular the one computed for Fe is equal to 1.6 µB.  

In order to estimate the magnetic coupling between Fe and Mn we calculated the energy 

difference between ground state and a second magnetic configuration. This second magnetic 

configuration is similar to the magnetic ground state but with all Mn magnetic moment within 

our unit cell inverted. The obtained energy difference value of 6 meV per magnetic ion reveals a 

weak magnetic coupling between Fe-Mn leading to an antiferromagnetic configuration of the 

magnetic moments of the unit cell. 

 

 

CONCLUSION 

 We have shown, by STEM-HAADF microscopy measurements, the existence of a new 

structural phase of FeMnAs stabilized by the epitaxy of Fe on MnAs/GaAs(001). A FeMnAs 

layer forms at the growth interface, and adopts an orthorhombic structure. This new phase 

presents a large unit cell volume, if compared to the most known hexagonal and tetragonal bulk 

phases. Interestingly, we found ordered vacancies with composition variations suggesting that 

the orthorhombic FeMnAs phase is not stoichiometric. In order to give an insight into the 

magnetic properties of this system we performed ab initio calculations that indicate that the 

ground state of this new FeMnAs phase is antiferromagnetic.  
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FIGURES  

 

Figure 1. HRTEM cross-

sectional image of 

Fe/MnAs/GaAs(001) along c 

axis of MnAs  for a thin Fe 

layer. 
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Figure 2. (a) STEM-HAADF cross-sectional 

image of Fe/MnAs/GaAs(001) along [100] axis 

of MnAs for a  thick Fe layer.  Filtered images 

of (b) MnAs layer (c) intermediate compound 

(d) Fe layer. 
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Figure 3. 

Tetrahedrons and 

square based c 

pyramids alternately 

stacked along the 

[001] axis of the 

hexagonal structure 

or the [010] 

direction of the 

orthorhombic and 

tetragonal 

structures. 
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Figure 4. Schematic structure of (a) Tetragonal 

Fe2As along [010] direction (b) Hexagonal Fe2P 

along [001] direction (c) Orthorhombic Co2P 

along [010] direction. (d) Filtered STEM-

HAADF cross-sectional image of the 

intermediate compound. 

 

Page 17 of 33

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335
http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335
http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335
http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335
http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335
http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335
http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335
http://pubs.acs.org/action/showImage?doi=10.1021/cg400576m&iName=master.img-006.jpg&w=233&h=335


 

18

 

Figure 5. (a) Fast Fourier 

transform (FFT) obtained 

from the image of the 

intermediate compound 

(along the [100] zone axis 

of MnAs).  (b) Reciprocal 

lattice of the 

orthorhombic Co2P type 

structure along its [010] 

zone axis. 
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Figure 6. (a) Diffraction pattern 

obtained for Fe/MnAs/GaAs(001) 

sample along the [001]  zone axis of 

MnAs. Spots indicated by blue 

squares are those of the intermediate 

compound. (b) Reciprocal lattice of 

the orthorhombic Co2P type 

structure along its [100] zone axis. 
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Figure 7. (a) STEM-HAADF cross-sectional image of Fe/MnAs/GaAs(001) along [001] 

axis of MnAs for a thick Fe layer. Filtered images of (b) MnAs layer (c) intermediate 

compound (d) Fe layer. 
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Figure 8. (a) Filtered HAADF image of the intermediate compound. (b) Schematic structure of 

orthorhombic Pnma ‘FeMnAs’ along its [100] zone axis with vacancies (represented by white 

crosses). Green and blue filled circles correspond respectively to the pyramidal and tetrahedral 

sites occupied by the metal atoms. White crosses symbolize the vacancies in the structure. 
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Structural and magnetic parameters. 

Structural 
phase 

H T O 

a (Å) 6.26 3.74 6.36 

b (Å)   3.825 

c (Å) 3.54 5.99 7.04 

Volume / Z 
(Å3) * 

13.38 14.00 14.27 

Magnetic 
configuration 

F AF AF 

Fe (t-site) (µB) 1.2 
(1.1) 

0.6 ** 
(0.03) 

1.6 

Mn (p-site) 
(µB) 

3.11 
(3.13) 

3.30 
(3.36) 

3.44 

Table 1. Experimental lattice parameters obtained for the hexagonal, tetragonal (values from Ref. 
3) and orthorhombic (our measurements) structures. Magnetic ground-state-configuration and 
magnetic moments obtained by our ab initio calculations. In brackets similar results by Tobola et 
al.3. * Z is the number of formula units in the unit cell. Volume is divided by Z to facilitate the 
comparison between the 3 structures. ** In agreement with calculations of Ref 19. 
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Structure and magnetism of orthorhombic epitaxial FeMnAs. 

Dominique Demaille
*
,  Gilles Patriarche, Christian Helman, Mahmoud Eddrief, Victor Hugo Etgens, Maurizio 

Sacchi, Ana Maria Llois and Massimiliano Marangolo.
 

 

 

 

 

 

Synopsis:  The Molecular Beam Epitaxy growth of Fe on MnAs/GaAs(001) leads to the formation 

of an epitaxial FeMnAs phase at the Fe/MnAs interface. The investigation of the structure by High 

Angle Annular Dark Field imaging in a Scanning Transmission Electron Microscope reveals an 

unusual orthorhombic structure, with vacancy ordering. Ab initio calculations show an 

antiferromagnetic ground state for this orthorhombic FeMnAs. 
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Figure 1. HRTEM cross-sectional image of Fe/MnAs/GaAs(001) along c axis of MnAs  for a thin Fe layer.  
180x180mm (72 x 72 DPI)  
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Figure 8. (a) Filtered HAADF image of the intermediate compound. (b) Schematic structure of orthorhombic 
Pnma ‘FeMnAs’ along its [100] zone axis with vacancies (represented by white crosses). Green and blue 
filled circles correspond respectively to the pyramidal and tetrahedral sites occupied by the metal atoms. 

White crosses symbolize the vacancies in the structure.  
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