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Summary

The propagation of transience gravity waves in a shear flow towards their critical levels is examined
using ray tracing approximation and a higher degree approximation (quasi-optic approximation). Because
of its transience forcing, the amplitude of transience waves decays to zero in the neighbourhood of
the critical region so that it is not clear whether transience gravity waves will reach the convective
instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically
as the inverse of the square root of time, while the vertical wavenumber depends linearly with time
thus transience gravity waves attain the convective instability for long times. The theoretical results
are confronted with numerical simulations. The ray path approximation is not able to reproduce the
maximum amplitude, quasi-optic approximation gives a reasonable agreement at short and long times.
There are three breaking regimes for transience gravity waves; for wave packets with a narrow frequency
spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar
to the abrupt monochromatic wave overturning. On the other hand highly transience wave packets
will dissipate near the critical region for very long times with small wave amplitudes and high vertical
wavenumber. The third regime is a transition between the two extremes, in this case both wave amplitude
and vertical wavenumber are important to produce the convective threshold. The dependencies of the
convective instability height (a quantity that may be useful for gravity wave parameterisations) with the
Richardson number, and the frequency spectral width are obtained.

Keywords: Convective instability quasi-optics gravity wave parameterizations wave breaking
ray tracing

1. Introduction

Gravity waves interact continuously with the mean flow where they propa-
gate. Sometimes the mean flow feeds energy and momentum into the wave field
and sometimes otherwise. These interactions may be reversible during conserva-
tive propagation and irreversible during gravity wave dissipation. One of the most
effective mechanisms of dissipation of internal gravity waves in the atmosphere
is their convective overturning (Fritts, 1984), this occurs when the amplitude of
the wave exceeds a threshold so that the wave induced potential temperature
produces a local decrease of potential temperature with height and therefore
a convective instability. Above this threshold the dynamics is expected to be
dominated by nonlinearities, the gravity wave starts breaking and its momentum
is deposited in the mean flow.

The irreversible forcing produced by gravity waves to the mean flow is re-
sponsible for changes in the meridional circulation from the troposphere (Palmer
et al., 1986) to the mesosphere (Holton, 1982). At that height the gravity wave
drag is believed to produce the meridional circulation that inverts the meridional
temperature gradient. This gravity wave drag is accounted for by parameterisa-
tions in general circulation models.

A steady-state wave in a horizontal background flow that depends on height
conserves its vertical momentum flux (Lighthill, 1978). If the wave possess a
critical level, wave energy density diverges and the wave is strongly attenuated
at the critical level so that there is no sign of the wave above the critical
level assuming a background flow with large Richardson number (Booker and
Bretherton, 1967). Actually, a dissipative mechanism via nonlinear processes or
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viscosity must be activated before the wave reaches the critical level. Brown
and Stewartson (1982) further extended the Booker and Bretherton’s analysis by
considering nonlinear processes inside the critical layer and linear theory outside
it, they found that the reflection coefficient increases with time.

Transience gravity waves do not conserve vertical momentum flux as they
propagate towards the critical region. The amplitude evolution is governed by
the wave action conservation equation (Bretherton and Garret 1968). This fact
introduces notable differences, while the wave energy density of steady-state
waves, whose vertical momentum flux is constant below the critical level, increases
indefinitely in the neighbourhood of the critical level, for transience waves the
wave energy density decreases. This difference is also present in the spectral
evolution, a m−1 power law is satisfied for steady-state waves since vertical
momentum flux is constant in height (Hines, 1991). In the case of transience
gravity waves, the spectral evolution is governed by a m−3 power law which is a
consequence of wave action conservation (Pulido, 2005).

The propagation of a gravity wave packet in a shear flow was examined
through numerical simulations by Grimshaw (1975). He focused on the nonlinear
interactions between the background flow and the wave packet using the wave
action conservation equation and the horizontal momentum equation of the
background flow. His small initial amplitude analysis closely resembles the present
study, however there is a key point where they differ: Grimshaw (1975) assumes
that all the components of the wave packet have a fixed absolute frequency so
that the wave action density does not depend on time. A consequence of this
assumption is that the wave packet height width goes to zero as time goes on,
so that wave energy density increases indefinitely in the neighbourhood of the
critical level in the absence of dissipation. In the present work we examine a wave
packet with a frequency distribution so that the wave action density does depend
on time.

Considering the irreversible feedback processes between the wave field and
the mean flow that take place in the atmosphere, transience gravity wave mo-
mentum deposition may produce responses in the general circulation that are not
necessarily reproduced by steady-state wave momentum deposition. The effects
of gravity wave pulses in the equatorial stratosphere were examined by Piani et
al. (2003). They found that the deposited gravity wave momentum is larger in
the height range of interest when a stochastic gravity wave parameterisation is
used. It was shown that this parameterisation gives a more realistic quasi-biennial
oscillation in multidecadal simulations.

Jones (1967) examined gravity waves propagating on a shear flow in a
rotating frame. There are three singularities in this case, one of which is the
critical level and the other two levels are located where the magnitude of the
intrinsic frequency equals to the Coriolis frequency. These inertia critical levels
depend on the horizontal wavenumber, so that a disturbance that is composed
by a continuous distribution in the horizontal wavenumber and a fixed absolute
frequency possesses a different inertia critical level for each component. This
effect was examined by Wurtele et al. (1996) through numerical experiments,
they found that the amplitude of an orographic wave spectrum remains finite and
the evolution of broad horizontal wavenumber spectra appears to be dominated
by linear processes, on the other hand nonlinear processes are found for narrow
spectra.
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Shutts (1998) and Broad (1999) examined a spectrum of orographic waves
propagating in a horizontal background wind that is rotating with height. In
this case there is also a different critical level for each component. They found
that the wave energy density does not increase indefinitely but decays to zero
along the ray path. However, the vertical wavenumber becomes unbounded at a
critical level, so that the existence of the convective overturning depends on the
asymptotic tendencies. Broad (1999) found that the vertical wavenumber increase
dominates the vertical shear so that the convective threshold is exceeded in the
neighbourhood of the critical level.

For a transience gravity wave propagating in a shear wind, each component
(of the frequency spectrum in this case) possesses its own critical level in
consonance with the cases examined by Shutts (1998), Broad (1999) and Wurtele
et al. (1996). We call critical region the height range where each component
of the wave spectrum finds its critical level, this height range will depend on
the width of the horizontal phase speed spectrum and the vertical shear of the
horizontal background wind. As the forcing is transience we expect that wave
energy goes to zero at the critical region (and so the wave amplitude). The
instability threshold will depend on the rate of the amplitude and the vertical
wavelength. Since vertical wavelength also decreases, the asymptotic behaviour
for long times of amplitude and vertical wavelength will determine whether the
instability threshold is reached. This is one of the purposes of this work, to
determine whether a transience gravity wave in a shear flow will attain the
convective instability when it propagates towards the critical region.

Another purpose is pursued in this work, to compare numerical simulations
of the wave amplitude evolution with the theoretical results obtained using ray
tracing and a higher degree approximation. Although the asymptotic behaviour
for long times is well captured by ray tracing approximation, we find important
differences for shorter times, in particular, we find a characteristic maximum
in the wave amplitude which is not predicted by ray tracing approximation.
The proposed higher degree approximation (known as quasi-optics) shows good
agreement with numerical simulations at short and long times.

2. Ray tracing

Consider waves which are small perturbations to a basic state which is
characterised by a zonal wind u0(z) and a constant buoyancy frequency N0.
We neglect rotation and viscosity effects and take the hydrostatic, and WKB
approximations. The resulting dispersion relation is

ω = ku0(z) ±
N0k

m
(1)

where ω is the absolute frequency, k is the horizontal wavenumber and m the
height-dependent vertical wavenumber.

We assume a wave packet with a fixed horizontal wavenumber, kf , a frequency
distribution localised around a central frequency ωc and with a spectral width of
∆ω. By means of the relation dispersion (1) the frequency distribution results in
a vertical wavenumber distribution which is centred at m(ωc).

The trajectory of a gravity wave packet is given by

dtx= ∂kω = u0(z) −
N0

m
, dtz = ∂mω =

N0kf
m2

. (2)
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Since we consider waves that are propagating upward we have kept the negative
sign in (1).

If at time t= 0 the packet is located at (xi, zi) then from (2),

x− xi =
ω

kf
t, t=N0kf

∫ z

zi

dz′

{ω − kfu0(z′)}2
. (3)

Equation (3) yields the trajectory (x, z) = (x(ω, t), z(ω, t)) for the wave packet
with central frequency ω.

The energy of the wave packet is governed by the wave action conservation
equation (Bretherton and Garret, 1968),

∂t

(

Wr

Ω

)

+ ∇ ·
(

cg

Wr

Ω

)

= 0, (4)

where Wr is the wave energy density, Ω = ω − ku0 is the intrinsic frequency and
cg = (∂kω, ∂mω) is the group velocity.

Integrating in height in a vertical interval long enough to contain the whole
disturbance, equation (4) results in

∂t

∫ ∞

0

Wr

Ω(z′)
dz′ = 0. (5)

The wave energy density is uniform in the horizontal coordinate so that Wr is
given per horizontal distance units.

As we consider a wave packet, it is localised in a limited region with a
height width ∆z; the wave energy density outside this height width is considered
negligible (e.g. Broad, 1999),

〈Wr〉(t)
Ω

∆z =
〈Wr〉(0)

Ωi
∆zi, (6)

where ∆zi is the height width at the initial time, 〈 〉 means an average within the
height width, and Ωi is the intrinsic frequency of the central mode at the initial
time.

Using the principle of energy equipartition and considering quasi-horizontal
movements, the wave energy density is given by (e.g. Pulido, 2005)

Wr = ρ0u2
1 (7)

where u1 is the horizontal wind perturbation induced by the wave and the overline
means a phase average of the field.

We focus on the gravity wave breaking process induced by gravity wave-mean
flow interactions so that the density decrease in height is neglected. Therefore the
background density is considered constant. From (6) and (7), the evolution of the

envelope amplitude a(t) =

√

〈u2
1〉 becomes

a(t) = a(0)

√

Ω(t)∆zi
Ωi∆z

(8)

The evolution of the wave packet height width (which forms the so-called ray
tube) is related to the spectral width through the Jacobian of the transformation
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between the physical and spectral space (Broad, 1999):

∆z = (∂ωz)ω=ωc
∆ω. (9)

The Jacobian is determined using the ray tracing equation (z = z(ω, t)). The
transformation is represented as a function of absolute frequency so that the
spectral width, ∆ω, is constant along the ray. On the other hand, the vertical
wavenumber width will not necessarily be constant, except for a linear background
wind where the vertical wavenumber width is constant in time although the
vertical wavenumber does depend linearly on time.

Furthermore, the initial height width ∆zi may be expressed in the frequency
spectrum, ∆zi = (∂mω)t=ti ∆ti. From Fourier analysis we use the well known

relationship ∆ti = ∆ω−1, so the initial height width may be expressed as

∆zi =
ω2
c

N0kf∆ω
. (10)

Hence, the resulting amplitude evolution yields

a(t) = a(0)

√

Ω(t)

Ωi

ω2
c

N0 kf ∆ω2
(∂ωz)−1. (11)

(a) Wave amplitude evolution in a linear horizontal wind

In the general case the trajectory and amplitude can be determined through
a numerical integration of (3) and (9). To evaluate the tendencies in a particular
case we assume a linear horizontal background wind, i.e. U(z) = dzUz, where
dzU is constant. In this case calculations can be carried out analytically.

From (1) and (3), the trajectory yields

z(ω, t) =
ω2t

kfN0(1 +Ri−1/2ωt)
(12)

where the background Richardson number is Ri= N2
0

(∂zu0)2
. We assume that at the

initial time t= 0 the wave packet is at the origin (x, z) = (0, 0).
From (12), as t→∞, the height of the wave packet with central frequency

ωc tends to ωc
dzUkf

= zc, where zc is the critical level of the central frequency.

The Jacobian of the transformation for the central frequency of the packet
in the neighbourhood of the critical region is

∂ωz |ωc =
ωct

kfN0

2 +Ri−1/2ωct

(1 +Ri−1/2ωct)2
. (13)

Replacing (13) in (11), the amplitude of the wave packet is

a(t) = a(0)

√

ωc
∆ω2t

1 +Ri−1/2ωct

2 +Ri−1/2ωct
. (14)

As expected, when t→ 0, all the rays converge at the initial point (0, 0) and
therefore the amplitude goes to infinity.

For long times the amplitude in a wave packet that is propagating towards
the critical region goes to zero, it diminishes as t−1/2. This behaviour is in contrast
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with monochromatic waves whose amplitudes diverge at the critical level. Modes
that compose the wave packet are interfering destructively in the neighbourhood
of the critical region. However, this does not mean that the wave will not break,
the vertical wavenumber increases as time goes on so the asymptotic tendency
of the vertical shear of the horizontal perturbation, ∂zu1, is not evident. This is
examined in Section 4.

The wave energy density is proportional to the square of the amplitude (7)
so it diminishes as t−1 for long times. This result reminds us the steady-state
case examined by Broad (1999) where an orographic wave propagates in a flow
in which the wind direction is turning with height. For a broad wavenumber
spectrum there are multiple critical levels where U.k = 0 , in that case the wave
energy density also goes to zero. It goes as z − zc at the so-called 3D critical
levels. Because it is a steady-state case the analysis is done for altitude tendencies
instead of time tendencies.

3. Quasi-optic approximation

The ray tracing approximation assumes that the wave packet is concentrated
in a point at the initial time so that this approximation can only be used for long
times. In other words, the result (14) gives the dominant terms of the asymptotic
expansion for long times (note that strictly ray path is not the asymptotic term).
However we expect that the wave packet achieves a maximum amplitude and after
that the amplitude starts to decay, a feature that is not captured by the ray path
approximation. A better approximation is needed to determine whether the wave
packet reaches the convective instability threshold before the maximum amplitude
or before the maximum vertical wavenumber, viz near the critical level. In this
work we apply the quasi-optic approximation which keeps information about the
initial width of the wave packet. This approximation is usually found in quantum
mechanics books to explain in classical terms the growing uncertainty in position
as the spreading of a wave packet. A general introduction to the quasi-optic
approximation may be found in Ostrovsky and Potapov (1999).

Since the background fields are independent of both time and horizontal
coordinate, the general solution under WKB approximation may be written as

u(x, z, t) =
1√
2π

∫

û(ω)

(

m(ω, z)

m(ω, zi)

)1/2

exp(iψ)dω (15)

where m(ω, z) is given by (1) and the phase is defined as

ψ = ωt− kfx+

∫ z

zi

m(ω, z′)dz′. (16)

As in the ray tracing approximation, the horizontal wavenumber is fixed to be
kf .

The solution (15) is expressed as a Fourier integral in absolute frequency
because this parameter is constant along the propagation and therefore the
frequency spectrum, û(ω), does not evolve with time.†

† This is a key point in the proof, any attempt to work with the vertical wavenumber would be infructuous
because of refraction (see Pulido, 2005).
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We assume a Gaussian frequency spectrum with central frequency ωc and
spectral width σω,

û(ω) =
ûω
σω

exp

{

−(ω − ωc)
2

2σ2
ω

}

. (17)

The phase ψ is expanded in Taylor series up to second order in ω around the
central frequency and the amplitude term is expanded only up to first order in
(15). This is done assuming large Richardson number, an assumption consistent
with WKB approximation. This assumption implies that the amplitude term
changes are slower than the oscillatory term changes so that it is only necessary
to retain the first order in the amplitude expansion. The resulting integral is

u=
ûω√
2πσω

(

mc

mic

)1/2

eiψc
∫ ∞

−∞
e
− (ω−ωc)

2

2σ2
ω ei{∂ωψc(ω−ωc)+

1

2
∂2
ωωψc(ω−ωc)

2}dω. (18)

The suscript c means evaluation at ω = ωc.
Expression (18) is then integrated by completing squares in the exponents.

The result is

u=
ûω
σω

(

mc

mic

)1/2 ei(ψc−θ/2)

{1/σ4
ω + (∂2

ωωψc)
2}1/4

e
− (∂ωψc)

2

2(σ
−2
ω −i∂2ωωψc) (19)

where θ = tan−1(−∂2
ωωψcσ

2
ω). The exponential with imaginary argument repre-

sents the phase of the principal component, and the real exponential is the
modulation of the amplitude that propagates with the group velocity

∂ωψc = 0. (20)

Equation (20) defines the path of the central mode.
The limit case for 1/σω → 0 resembles the phase of the stationary phase

method: θ/2 = π/4 or 3π/4. These are related to the slopes of the steepest
descent path in the integration near a stationary point (Lighthill, 1978).

The amplitude of the envelope is

a(t) = ûω

(

mc

mic

)1/2
{

1 + σ4
ω(∂2

ωωψc)
2
}−1/4

(21)

Here the amplitude evolution is not only given by the vertical wavenumber square
root dependencies but also by the second derivative of the phase which represents
the dispersion of the wave packet. Wave energy density diminishes because ray
paths with different absolute frequency separates. Contrary to ray tracing in this
approximation the amplitude of the Gaussian packet always remains finite even
at the initial time where ∂2

ωωψc(t= 0) = 0 and then a(t= 0) = ûω.
For the limit σω → 0, the monochromatic amplitude is recovered from (21)

aσω→0 = ûω

(

mc

mic

)1/2

(22)

and therefore aσω→0 is unbounded in the neighborhood of the critical level because
mc →∞ at that level. On the other hand, the broader the frequency spectrum
the smaller the amplitude, from (21), because of dispersion.

The solution given by the quasi-optic approximation, (19), not only gives the
evolution of wave amplitude but also determines the evolution of the wave packet
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temporal width, using that ∆z = ∂mω∆t, the height width is

∆z = ∆zi

(

mic

mc

)2
{

1 + σ4
ω (∂2

ωωψc)
2
}1/2

. (23)

(a) Wave amplitude evolution in a linear horizontal wind

The propagation of a Gaussian wave packet in a linear background wind (the
same conditions as Section 2 (a)) is an example where the evolution of the wave
packet can be examined analytically under the quasi-optic approximation.

The first derivative of the phase, (16), is given by

∂ωψc = t− N0kfz

(1 − z/zc)ω2
c

. (24)

From the phase stationary condition, ∂ωψc = 0, results the ray equation (12).
Using (24) and (12), the dispersion of the waves with different frequencies for a
linear background wind yields

∂2
ωωψc =

t

ωc
(2 +Ri−1/2ωct). (25)

Therefore the height width of the wave packet increases as the wave packet
propagates towards the critical region.

The vertical wavenumber from (1) and (12) is expected to grow in the form
(

mc

mic

)

= (1 +Ri−1/2ωct). (26)

Finally, replacing (25) and (26) in (21) results

a=
ûω
σω

(1 +Ri−1/2ωct)
1/2

{

1/σ4
ω + (t/ωc)2(2 +Ri−1/2ωct)2

}1/4
. (27)

A comparison between the amplitude evolution given by quasi-optic approx-
imation, (27), with the amplitude evolution given by ray path approximation is
shown in Fig. 3 (continuous and dashed curves respectively). The quasi-optic ap-
proximation can capture the finite initial amplitude, then the amplitude presents
a maximum and finally the asymptotic behavior is achieved. On the contrary, the
amplitude under ray path approximation is unbounded at the initial time and
then diminishes monotonically.

The asymptotic term of (27) for long times is

at→∞ =
ûω
σω

(ωc
t

)1/2
(28)

The asymptotic behaviour given by (28) is equivalent to the one obtained
with the ray tracing approximation (see Fig. 3). Moreover, the equivalence of
the quasi-optic and ray tracing approximations in the wave amplitude includes
superior terms in the asymptotic series, the only difference between the two exact
expressions (14) and (27) is that the initial time width σ−1

ω is taken to be zero in
ray tracing.

The initial time width term at (27) is essential to represent the amplitude evo-
lution at short times. In particular, the amplitude maximum in (27) (∂ta(tM ) = 0)
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is found at

tM =

(

Ri

σ4
ω

+
Ri2

ω4
c

)1/4

− Ri1/2

ωc
. (29)

The height where the wave packet achieves the maximum wave amplitude is
obtained from (29) and (12),

zM = zc

{

1 −
(

Ri σ4
ω

Ri σ4
ω + ω4

)1/4
}

(30)

Quasi-optic approximation is able to reproduce both the time and the
amplitude of the actual maximum very well as shown in the numerical simulations
(Section 6). The maxima are found at longer times and higher altitudes for
narrower frequency spectra.

The presence of this wave amplitude maximum is also essential to obtain an
asymptotic agreement between transience gravity waves in the limit for steady-
state waves σω → 0 and the well known monochromatic case. Monochromatic
waves have the maximum wave amplitude at the critical level where it is
unbounded.

The differences between the quasi-optic and ray path approximations are
also present in the height width evolution (see Fig. 4). The evolution of the wave
packet height width in the ray path approximation, (9), is zero at the initial
time and then grows monotonically (all the rays start at the same point at the
initial time). On the other hand the wave packet height width in the quasi-optic
approximation from (23) results

∆z = ∆zi

[

1 +
{

σ2
ωt/ωc(2 +Ri−1/2ωct)

}2
]1/2

(1 +Ri−1/2ωct)2
, (31)

The wave packet height width is ∆zi at the initial time and then it diminishes
until a minimum is achieved at

tm =

{

(

Ri

ω2
+
ω2

σ4
ω

)1/2

− Ri1/4

ω

}

. (32)

Interestly, the time at which the wave packet height width minimum (32) is
obtained is found at earlier times than the time at which the wave amplitude
maximum (29) is achieved. For long times the height width under both ray path
and quasi-optic approximations tend asymptotically towards a constant.

4. Convective instability analysis

The convective instability threshold is attained when the buoyancy frequency
N2 = g

θ∂zθ (where θ is the potential temperature) becomes zero,

N2 =N2
0 −N0

∣

∣∂zu1

∣

∣ = 0, (33)

where only the first order is kept and we have used the polarization relation,
N2

1 = g ∂zθ1θ0
= iN0∂zu1. As expected the instability depends only on the phase

averaged vertical shear of the horizontal wind perturbation.
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Figure 1. Breaking height z̃b as a function of β for different initial amplitudes for fixed ũ (ũ=
0.05, ..., 0.95 at intervals of 0.15) and height of the maximum wave amplitude (dashed curve). See

section 4 (a) for a definition of the parameters.

Assuming a slowly varying amplitude (Lighthill, 1978), the instability condi-
tion (33) is reduced to

1 − |mc|a
N0

= 0 (34)

Equation (34) shows that the threshold depends on the wave amplitude and the
vertical wavenumber of the wave packet. This condition, (34), determines the
minimum time at which the threshold is reached.

Since wave amplitude decreases and vertical wavenumber increases for long
times, the asymptotic behaviour determines if the convective threshold is reached.
The asymptotic value of the vertical wavenumber from (26) is

mc, t→∞ =micRi
−1/2ωct (35)

Taking the asymptotic value of wave amplitude (28) and vertical wavenumber
(35), the buoyancy frequency square for long times is

N2 =N2
0

{

1 − kfRi
−1/2 ûω

σω
(ωct)

1/2

}

(36)

As vertical wavenumber increases linearly with time while the wave amplitude
decreases as the root square of time, then the phase averaged vertical shear of
the horizontal perturbation increases with time near the critical region. Therefore
the wave packet will reach the convective threshold. The nature of this convective
instability is essentially different from the picture of a quasi-monochromatic wave,
where very large amplitudes (wave energy densities) are reached. On the contrary
the convective instability given by (36) in a highly transience wave is reached at
long times with small amplitudes and high vertical wavenumbers.

Under the quasi-optic approximation, (27) shows that the wave packet
reaches a wave amplitude maximum before attaining the asymptotic behaviour.
Therefore depending on the parameters of the wave packet, the flow will become
convectively unstable either before the wave amplitude maximum or before
the vertical wavenumber maximum. Furthermore, we expect that the physical
mechanisms involved in these two cases may be different.
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The maximum wave amplitude found with quasi-optic approximation occurs
at longer times for smaller σω. Indeed at the limit of monochromatic waves, σω →
0, the wave amplitude maximum is located at the critical level so that the quasi-
optic approximation shows a completely agreement with monochromatic waves
when σω → 0 as already mentioned. Therefore we expect that the characteristics
of the convective instability produced by a wave packet near the maximum wave
amplitude are similar to the convective instability produced by a monochromatic
wave. This feature will be further analysed through numerical simulations in
Section 6.

(a) Convective instability in a linear horizontal wind under quasi-optic
approximation

An expression for the adimensionalised breaking altitude z̃b = zb/zc may be
obtained using the convective instability condition, (34), with the wave amplitude
given by (27) (which is expressed as a function of z through (26)),

β4 =
ũ4 − (1 − z̃b)

6

(1 − z̃b)2(z̃
2
b − 2z̃b)2

(37)

where ũ= ûω(ωc/kf )
−1 is the wave amplitude adimensionalised by the phase

speed of the central mode and β =Ri1/4σωω
−1
c is the adimensionalised spectral

width (weighted by Ri1/4).
In the case of a monochromatic wave, β = 0, the breaking height is given by

z̃b β→0 = 1 − ũ2/3, (38)

the depth of the critical layer is 1 − z̃b β→0 = ũ2/3 so that the classical monochro-
matic result is recovered in this limit. Besides, using (12) and (38) we recover the
time limit of linear theory (e.g. Brown and Stewartson, 1980):

ωc t < Ri1/2 (ũ−2/3 − 1) (39)

On the other extreme, for a highly transience wave β→∞ the wave ampli-
tude goes as

z̃b β→∞ = 1 − ũ2

β2
(40)

The breaking height in this limit is the critical level of the central mode. In other
words, the highly transience wave will break very close to the critical level of the
central mode where the vertical wavenumber is large and the wave amplitude is
very small. The nonlinear terms become significant for times longer that

ωc t=Ri1/2 (β2ũ−2 − 1). (41)

In this case, the time limit depends on the spectral width, it is very large for
broad spectra.

The breaking height as a function of the transience parameter, β, is shown
in Fig. 1 for a fixed ũ. As β grows we find three breaking regimes:

I For small β, transience waves break before they reach the maximum ampli-
tude. In this case the breaking amplitude is practically the one given by the
monochromatic case (38).
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II For β in the medium range, transience waves break just after they reach the
maximum amplitude. The breaking altitude is higher than the given by the
monochromatic case.

III For large β, transience waves break near the critical level of the central mode.
This regime represents the highly transience and low initial amplitude cases.
This is the only one found in the ray path approximation.

For ũ > 2−1/4 regimes II and III are not present because the curves for a fixed
β value contain three solutions. In these cases, the smallest z̃b must be interpreted
as the breaking height.

The physical processes involved in the dissipation of these so-called breaking
regimes are likely different. If the convective instability threshold is reached before
the maximum amplitude height, that is, for waves in the regime I, we expect an
abrupt wave breakdown and the subsequent turbulence generation. For waves in
regime III, the time to reach the convective instability is longer than for waves
in regime I, the wave amplitude at the threshold is very small and the vertical
shear induced by the wave is very large so that diffusive processes may play a
more important role in this case. Waves in regime II are in the transition region
so that both turbulence generation and diffusive processes may be important to
represent their dissipation.

Two extreme wave breaking regimes have already been found by Winters and
D’Assaro (1989) in nonlinear numerical simulations of transience wave packets
propagating in a shear flow. They found two gravity wave packet evolutions
depending on the initial wave amplitude. In a large amplitude case study there
is an abrupt breakdown. In the small amplitude case, the packet is completely
absorbed by the mean flow without breaking during its whole life cycle. Lin et al.
(1993) also find that small amplitude wave packets do not break, regrettably small
amplitude cases are not shown in that work. Even though Wurtele et al. (1996)
examined a different configuration, inertia critical levels for orographic waves
with a horizontal wavenumber spectrum, they also found two wave regimes which
depend on the width of the horizontal wavenumber spectrum in concordance with
the results found in the present case for the frequency spectrum. In the context of
Fig. 1 the two cases examined by Winters and D’Assaro (1989) are two ũ values
for a fixed β, on the other hand the two cases presented by Wurtele et al. (1996)
may be thought as two β values for a fixed ũ.

5. Numerical model

In order to evaluate the theoretical results and to find the range of validity of
the different approximations, two sets of numerical simulations were performed
with just representative values of the background flow and gravity wave packet
characteristics. This numerical study does not pretend to be an exhaustive
simulation of realistic situations but an idealised numerical case to be confronted
with the theoretical results.

The simulations were performed using the numerical model described in detail
in Pulido (2005). The model reproduces the evolution of an arbitrary disturbance
in a shear wind by solving numerically the Taylor-Goldstein equation in the
spectral space followed by a transformation to the physical space.

For each mode in the spectral space, the numerical model solves the Taylor-
Goldstein equation and obtains the component of the horizontal velocity (u(ω, z))
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Figure 2. (a) Profile of the horizontal velocity perturbation obtained with the numerical model for
a wave packet at t= 0 (dashed line) and t= 12h (solid curve) with ωc = 0.10N0 and σω = 0.15ωc

propagating in a background flow defined by Ri= 100. (b) Wave energy density at t= 0 (long dashed),
4 (dashed), 12 (continuous), and 24h (dotted curve).

as a function of height. The Taylor-Goldstein equation is represented by two first
order differential equations which are solved using the four order Runge-Kutta
scheme with adaptive stepsize (Press et al. 1992). Once all the spectral compo-
nents are obtained, they are Fourier transformed to the physical space obtaining
u(z, t). As in the theoretical development we assume that the disturbance is
periodic in x.

At z = 0, the wave packet modes conform a Gaussian spectrum so that

u(ω, z = 0) =
ûω
σω
e

−(ω−ωc)
2

2σ2
ω (42)

where ωc is the central frequency and σω is the frequency spectral width.
The background is given by a constant buoyancy frequency N0 and a

horizontal wind

u0(z) =
N0

Ri1/2
z (43)

where Ri is the backgraound Richardson number. In all cases we take N0 =
0.02s−1 as representative value.

The numerical experiments were performed from a lower boundary at z = 0
to the upper boundary at z = 3 Ri1/2ωc(N0 kf )

−1. The radiation condition is
imposed in order to keep only upward propagating waves. When the envelope of
the wave packet is examined at the initial time, the lower boundary is located at
z = −3∆zi. The vertical resolution was set at 2m and the frequency resolution at
10−4σω.

6. Numerical simulations

Figure 2 (a) shows the wave profile at the initial time and at t= 12h. At
the initial time, the wave packet is quite extended in altitude, because of this
the vertical wavenumber and wave amplitude changes due to background wind
changes are evident inside the wave envelope. As time goes on the wave envelope
is more compact and the vertical wavenumber increases so that the wave packet
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Figure 3. Evolution of the wave amplitude for (a) a wave packet with σω = 0.1ωc and different
background flows Ri= 25 (♦), Ri= 100 (4) and Ri= 400 (2), (b) a background flow given by
Ri = 100 and for different spectral widths σω = 0.05ω0 (♦), 0.10ω0 (4) and 0.15ω0 (2). The quasi-
optic approximation (27) is represented by solid curves and ray path approximation (14) by dashed

curves

is more symmetric and the modulated wave hypothesis (the envelope width must
be composed by many wavelengths) is more clearly satisfied as the transience
wave propagates towards the critical region.

The evolution of the wave energy density shows that the wave packet tends
towards a Gaussian shape in altitude (Fig. 2 (b)) so that the wave packet height
width and the maximum wave amplitude are clearly defined for long times. The
wave packet width evolution focuses at short times and then it remains rather
constant, although wave amplitude continues diminishing because the intrinsic
frequency diminishes monotonically with time (see (6)).

Numerical experiments with different Richardson numbers were performed,
the evolution of the wave amplitude is shown in Fig. 3 (a). We found out
that the smaller Richardson number the larger wave amplitude maximum. This
effect is well reproduced by the quasi-optic approximation. Furthermore the wave
amplitude does not depend on Richardson number at long times as both quasi-
optic and ray path approximations predict.

There are two subtle differences between the numerical experiments and the
quasi-optic approximation. The case for small Richardson number (represented
by diamonds in Fig. 3 (a)) presents differences at t= 0. These differences may
be traced back to the wave energy density profile at t= 0 shown in Fig. 2 (b).
This profile contains the maximum amplitude at a higher altitude than z = 0, this
effect is due to the (m/mi)

1/2 factor in each component of the solution. Although

the level of perfect constructive interference is at z = 0, the (m/mi)
1/2 factor

produces a larger wave amplitude at higher altitudes. As already mentioned,
these effects are most evident for short times (because the wave packet is rather

extended in height) and also for small Richardson numbers (because (m/mi)
1/2

changes with height are larger).
The other difference between the analytical prediction (27) and the numerical

experiments is a small oscillation that appears in the numerical simulations
for long times, particularly for large Richardson number. A set of numerical
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experiments with different vertical resolutions shows that the amplitude of the
oscillation is reduced for higher vertical resolution (these results are not shown).

A second set of numerical experiments was designed to examine the depen-
dencies of the wave packet spectral width (σω) in order to evaluate the tendencies
found in the theoretical development. The asymptotic long-time decay of the am-
plitude depends on the wave packet width, the broader the spectral width, the
smaller the wave amplitude (Fig. 3 (b)). Furthermore, the maximum amplitude
shifts towards longer times for narrower spectral width. This behaviour is also
well captured by the quasi-optic approximation.

The evolution of the wave packet height width for the experiments with
different Ri is shown in Fig. 4 (a). The height width in the numerical experiments
is defined to be half of the height distance between the levels where the wave
energy density decays to e−1 with respect to the maximum amplitude. The
wave packet narrows at short times, then the wave packet width grows until it
reaches an asymptotic constant value at long times. The correspondence between
the theoretical predictions from quasi-optic approximation and the numerical
experiments is remarkably similar at both short and long times. On the other
hand, ray path approximation reproduces the width evolution for long times, for
short times the ray path width goes to zero.

The asymptotic height width is longer for larger Richardson number. This
effect is directly related to the spectral distribution of the modes contained in
the wave packet. Since each component of the wave packet must reach its own
critical level, we expect that the height width for long times must be related to
the altitude range formed by the critical levels of the different components of the
wave packet. For a linear background wind, the critical level for a mode with
frequency ω is defined as zcω = ω(k∂zu0)

−1 so that the asymptotic height width
for long times is

∆z(t→∞) =
σω

kf∂zu0
=
Ri1/2σω
N0kf

(44)

The so-called critical region may be identified as this height range. This infered
asymptotic height width, (44), agrees for long times with the one obtained
analytically in (31) and the numerical experiments (see Figure 4 (a)).

As expected from (44), the asymptotic height width of the wave packet
depends linearly on the spectral width σω. Figure 4 (b) shows the height width
evolution corroborating the linear dependence of the asymptotes. There are some
differences between the quasi-optic approximation and the numerical simulations
at short times for the small σω case, these differences are again related to the
extended asymmetric envelope found at the initial time (Fig. 2 (b)). Note that
extended envelopes are very sensitive to the decay rate criterion (the e−1 factor)
used to define the wave packet width in the numerical simulations.

Our results show that both the wave packet width and the wave action
density (from (5)) tend to a constant value for long times. These features are
different from the asymptotic tendencies obtained by Grimshaw (1975). The small
amplitude inviscid case examined by Grimshaw presents a wave packet height
width that goes to zero for long times and thus a wave action density that grows
indefinitely as the wave packet propagates towards the critical level. As already
mentioned, we take into account the spectral distribution of the wave packet
in frequency, each mode posesses a different critical level (instead of only one)
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Figure 4. Evolution of the height width for (a) wave packets with an initial spectral width of σω = 0.2ωc

and different Ri, (b) wave packets propagating in a background with Ri= 100 and different σω . The
width given by (44) is represented by dashed curves. Other conventions as in Fig. 3.

Figure 5. Evolution of the buoyancy frequency (33) for (a) different Richardson numbers and (b)
different spectral widths. Conventions as in Fig. 3.

forming the so-called critical region. This is the key difference between Grimshaw
(1975) and the present study.

The evolution of the buoyancy frequency for the two sets of experiments,
for different Richardson numbers and for different spectral widths are shown
in Fig. 5. Again the quasi-optic approximation shows good agreement with the
numerical results with the exception of the two problems already found for both
the amplitude and width evolution. The cases for small Richardson number (in
Fig. 5 (a)) and small spectral width (in Fig. 5 (b)) present negative values for
long times, these features are just shown for completeness of the curves, nonlinear
processes are thought to be activated near the convective instability threshold.
The cases for large Richardson number and broad frequency spectrum do not
reach the convective instability threshold even for the very long times considered
in Fig. 5. Lin et al. (1993) through nonlinear numerical experiments found that
the larger Richardson number the longer time to reach the convective instability
threshold in accordance with the present linear results. Although wave packets in
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Figure 6. (a) Wave amplitude ã= a(ω/kf )−1 as a function of altitude for ũω = 0.2, Ri= 100. The
spectral width is σω = 0.30ω (dashed curve), σω = 0.15ω (dotted curve) and the monochromatic case
σω → 0 (solid curve). (b) Vertical wavenumber as a function of altitude. The letters A, B and C in the

curves represent the height of breaking for σω → 0, σω = 0.15ω and σω = 0.30ω respectively.

large Richardson number will indefectibly reach the threshold, we do not expect
the linear inviscid approach is valid for so long times. A diffusive process must be
acting which may dissipate the transience wave, before it reaches the convective
instability threshold (see Winters and D’Assaro, 1989).

7. Conclusions

Two techniques are applied to examine a transience gravity wave that is
propagating towards the critical region. The application of ray tracing technique
is a complement to applications that focus on orographic waves (Broad, 1999).
In this work, instead of fixing the absolute frequency, we work under the wave
packet assumptions in the frequency spectrum, that is, the central absolute
frequency and frequency width are considered parameters. Ray tracing does not
reproduce the behaviour found in the wave amplitude for short times. Quasi-optic
approximation has a remarkably good performance for short times and long times.

Using quasi-optic approximation we find three “breaking” regimes for gravity
wave packets that are propagating towards their critical regions. For quasi-steady
waves packets with large initial amplitudes, they attain the convective threshold
at some level below the height of maximum wave amplitude (30). This breaking
regime is similar to the monochromatic wave case. On the other hand if the initial
wave amplitude is not large enough and the wave packet is highly transient, it
will not reach the convective threshold before the maximum wave amplitude is
achieved. In this case the convective threshold is achieved for much longer times
near the critical region, the amplitude of the wave packet is small and the vertical
wanumber is large at the breaking height. The third regime is a transition regime
where both amplitude and vertical wavenumber are important to produce the
dissipation of the wave.

To illustrate this result Fig. 6 (a) shows the wave amplitude as a function of
height for two transience waves and for the monochromatic case. For waves with
a narrow spectral distribution in frequency, the breaking height is close to the
monochromatic breaking height, the amplitude is also similar although slightly
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smaller than the monochromatic case. The most transient case does not reach
the convective instability as the wave amplitude grows so that the threshold is
reached near the critical level of the central mode. The “breaking” amplitude is
much smaller in this case. Furthermore, the vertical wavenumber for the transient
case is much larger than for the monochromatic case (Fig. 6 (b)). This fact also
suggests that we must take into account diffusive processes and viscosity in order
to represent correctly the dissipation of highly transient waves.

The processes involved in the gravity wave-critical level interactions are
fully nonlinear (e.g. Fritts, 1984). The nonlinear terms in the equations become
important in the so-defined critical layer for a sufficiently long time while they
are negligible outside it (Brown and Stewartson, 1982). As ray path and quasi-
optic techniques are based on linear wave theory, they can only be used outside
the critical layer. The complex physical processes involved in the wave breaking
inside the critical layer are beyond the scope of these linear techniques. Indeed our
long-time predictions of wave evolution are shown only for illustrative purposes,
wave amplitudes for long times are likely to be affected by both nonlinear and
diffusive processes.

One may also wonder to what extend the breaking height estimated under
linear wave theory may be realistic. There are a number of numerical nonlinear
studies that evaluate the scope of linear wave theory with encouraging results.
Dörnbrack and Nappo (1997) found good agreement between the linear breaking
height and the breaking height found in numerical simulations (the configura-
tion was taken to reproduce the results of a laboratory experiment of gravity
wave breaking). The nonlinear numerical simulations performed by Winters and
D’Assaro (1989) suggest that the entire life cycle of small-amplitude wave packets
is governed by linear wave theory. Prusa et al. (1996) for a constant background
flow also found that the actual breaking height was predicted precisely by linear
wave theory, moreover the vertical and horizontal extension predicted by linear
theory were also in good agreement with the numerical simulation.

Actual gravity wave parameterisations usually apply only one criterion of
breaking independently of the wave characteristics, with the exception of Warner
and McIntyre (1996) who apply an empirical criterion in the spectral space. This
work, in concordance with Winters and D’Assaro results, suggests that a more
realistic gravity wave parameterisation should consider the wave characteristics
(particularly a measure of the transiency of the disturbances, say σω, and the
spectral amplitude) in order to discern whether transience waves dissipate by
overturning or by diffusive processes.
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