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A B S T R A C T

Models of the equation of state (EOS) type, used for describing fluid phase equilibria, typically assume
that the system behavior can be described from binary contributions only. This is not enough for
obtaining good predictions for the high-pressure phase equilibria of ternary highly non ideal systems. On
the other hand, cubic mixing rules (CMRs) provide both, binary and ternary interaction parameters. Such
ternary parameters have the potential of improving the reproduction of ternary experimental data while
leaving invariant the description of the three constituent binary subsystems. In this work, we evaluate
the possibilities of the CMRs approach for ternary systems by studying the phase equilibria of two of
them, i.e., CO2 +n-hexadecane +1,8-octanediol and CO2 +H2O+2-propanol. For the system CO2+n-
hexadecane +1,8-octanediol, we have available both, experimental isothermal binary and ternary phase
equilibrium data. For such system, we investigate the influence of the ternary parameters on the size of
ternary two-phase and three-phase equilibrium regions, and compare it to that of the experimental data.
We also consider predicted values of the ternary parameters, which we need when ternary experimental
data are not available. For the system CO2+H2O+2-propanol, we examine the effect of the ternary
interaction parameters on some calculated ternary univariant lines, ternary invariant points and ternary
three-phase equilibria, over wide ranges of conditions.
In this study, we use the Peng–Robinson (PR) EOS and Soave–Redlich–Kwong (SRK) EOS, both coupled

to CMRs. Our results make evident the flexibility and improvement that can be gained in the description
of ternary phase equilibria by resorting to ternary interaction parameters.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

Models of the equation of state (EOS) type are customary used
to describe the phase equilibria of mixtures in liquid, vapor and
supercritical states, over wide ranges of conditions. These models
typically assume that the system behavior can be described from
binary contributions only. Conventionally, the binary interaction
parameters of themodel arefit frombinaryfluid phase equilibrium
data. Once this is done, all the predicted ternary and higher
equilibria become determined by both, the pure compound
parameters and the previously fit binary interaction parameters.
It is well documented in the literature that the high-pressure phase
equilibria of ternary highly non ideal systems is not well predicted
from binary contributions [1]. More specifically, in Ref. [1], among

other tests, binary interaction parameters are fit from both, binary
and ternary data, simultaneously, which implies a poorer
description of the binary data for the sake of improving the
reproduction of the ternary experimental information [1]. It is
clear that we need more flexible models. One possibility is to
couple the EOSmodel tomixing ruleswritten as triple summations
of terms which depend on the product of three mole fractions.
These are cubic mixing rules (CMRs) [2]. CMRs depend on
three-index binary interaction parameters and on three-index
ternary interaction parameters. For a given binary system, CMRs
provide four independent interaction parameters [2]. Thus, highly
asymmetric binary systems can be representedmore accurately by
CMRs than by quadratic mixing rules (QMRs).

Cismondi et al. [3] described the phase behavior of CO2 +n-
alkane systems in the carbon number range from 14 to 22, using
the RK-PR [4] EoS coupled to temperature dependent CMRs. They
[3] optimized the CMRs parameters paying attention to a number
of experimental phase equilibrium key points (e.g., critical
endpoints) of the binary fluid phase equilibrium characteristic
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maps. They [3] showed that the CMRs have a significant flexibility,
which is needed to describe the phase behavior of highly non ideal
systems. Later, Cismondi et al. [5] provided an extensive listing on
works in the literature which reported experimental data for
CO2 +n-alkane phase equilibria (carbon number range from 1 to
36). They [5] also proposed the method of predictive correlation,
again using the RK-PR EoS combined with temperature dependent
CMRs. In the quoted works [3,5] the performance of the CMRs for
ternary systems was not explored.

The key features of the (experimental or calculated) phase
behavior of a ternary system can be seen at a glance, by the trained
eye, over wide ranges of conditions, by looking at the ternary phase
equilibrium characteristic map (T-CM) of the system [6,7]. A T-CM
is a tool that by reducing the amount of information helps us to
increase our understanding of the system behavior.

The fluid phase behavior of ternary systems is related to certain
extent to the type of fluid phase behavior of the binary subsystems
[6–9]. Pisoni et al. [6,7] have listed types of univariant lines and
invariant points that constitute a T-CM, and have calculated them
for a number of systems. Their aim [6,7] was to identify patterns of
the ternary phase behavior. A point belonging to a phase
equilibrium univariant line is an object that has a single degree
of freedom. An invariant point has no degrees of freedom. Table 5
provides the names and acronyms of some ternary phase
equilibrium univariant lines, and the names, acronyms and
physical description of the points they are made of. Table 6 is
analogous to Table 5, but it deals with ternary fluid phase
equilibrium invariant points. More details on the phenomenology
of the phase behavior of ternary systems is provided by Pisoni et al.
[7] and by Adrian et al. [1]. It is advised to consider, in particular,
Appendix C of Ref. [7], which deals with the fluid phase behavior of
ternary systems as seen on sets of Gibbs triangles.

The use of the term T-CM is preferred here over the term
“pressure–temperature phase diagram” or “pressure–temperature
projection of the phase diagram”. The reason is that the words
“pressure–temperature” (PT) only mean that certain phase
equilibrium line (or hyper-line) is seen in its pressure–temperature
projection. For instance, andmore specifically, a binary critical line
and a binary isopleth phase envelope could both be studied when
looking at their PT projections. However, while a binary critical
point is univariant, a point of a binary isopleth phase envelope is
di-variant. In other words, a binary critical point is a phase
equilibrium object that has a single degree of freedom, while a
point of a binary isopleth phase envelope has two degrees of
freedom. In conclusion, “PT projection” is an ambiguous label,
while the words T-CM are not, since we define a T-CM as the set of
all phase equilibrium univariant lines and invariant points of a
ternary system. A T-CM can be studied by looking at any of its
possible projections, e.g, PT, pressure–composition, temperature–
composition, pressure–density, etc.

Let us come back, after having mentioned the T-CMs, to the
work of Adrian et al. [1], where the performances of a number of
mixing rules were compared for highly non ideal ternary systems.
They [1] considered CO2 +H2O+polar solvent systems and focused
on the capability of the mixing rules for reproducing T-4PPs, T-
CEPs, invariant points (mainly T-TCPs), and ternary two-phase and
three-phase equilibria. The authors [1] showed that it is not
possible to accurately reproduce ternary phase equilibrium data
with cubic equations of state and simple mixing rules when using
interaction parameters fit from binary experimental data. See e.g.,
their Figs. 21 and 23 [1]. In other words, Adrian et al. [1] have
shown that, for the highly non-ideal systems studied, the
assumption of multicomponent system describability from binary
parameters [2] did not perform well.

For a given ternary system, CMRs provide two three-index
ternary interaction parameters: one of them influences the

mixture attractive energy parameter while the other affects the
mixture covolume parameter [2]. By optimizing such ternary
parameters, it could be possible to improve the reproduction of
ternary experimental data while leaving invariant, i.e, without
affecting, the description of the three constituent binary sub-
systems. In the first part of this work, we examine this approach by
studying the system CO2 (1) +n-hexadecane (2) + 1,8-octanediol
(3), for which we have available both, binary and ternary
experimental phase equilibrium data at 393.2K [10]. For such
system, we evaluate the influence of the ternary parameters on the
size of ternary two-phase and three-phase equilibrium regions.
This study is carried out for varying pressures at constant
temperature. It makes possible to establish how helpful changes
in ternary parameters are in improving the reproduction of ternary
experimental data of a real highly non ideal system. We also study
the performance of predicted ternary parameters, whichwewould
need if ternary data were not available.

Before moving forward, let us consider a number of terms
related to ternary phase equilibrium objects that partially make
the T-CM up [6,7]:

(a) In a ternary critical endpoint (T-CEP), a ternary critical phase is
at equilibriumwith a ternary non-critical phase. A T-CEP is one
of the possible termination points of a continuous set of ternary
three-phase equilibria (see Appendix D of Ref. [6] for a
discussion on the “termination” nature of a T-CEP).

(b) A ternary critical end line (T-CEL) is a locus of T-CEPs.
(c) At a ternary four-phase (equilibrium) point (T-4PP), four

ternary non-critical phases are at equilibrium.
(d) A ternary four-phase (equilibrium) line (T-4PL) is a locus of T-

4PPs.
(e) A T-4PL may end at a ternary critical endpoint of a four-phase

(equilibrium) line (T-CEP-4PL) where a ternary critical phase is
at equilibrium with two ternary non-critical phases.

(f) If, in a continuous set of ternary three-phase equilibria, three
phases become critical simultaneously, then, a ternary
tricritical endpoint (T-TCEP) (also named ternary tricritical
point (T-TCP)) has been reached.

The previous definitions are summarized in Tables 5 and 6.
Notice that using the acronyms T-CEP and T-CEL is, in a way,

analogous to use, for binary systems, the pairs of words “critical
point” and “critical line”. A binary critical point is a constitutive
unit of a binary critical line. Similarly, a T-CEP is a constitutive unit
of a T-CEL.

As it is well known, a binary critical endpoint (B-CEP) sets,
simultaneously, the end of a binary critical line (B-CL) and the end
of a binary three-phase equilibrium line (B-3PL). Analogously, a T-
CEL sets, simultaneously, the end of a ternary three-phase
equilibrium surface and the end of a ternary critical surface
[6,7], i.e., a T-CEL is a boundary between both surfaces. This is the
reason for replacing the character “P” (point) present within the
CEP acronym by the character “L” (line), which leads to the CEL
acronym, when going from binary to ternary systems (CEP!CEL).

With the goal of evaluating the effect of ternary interaction
parameters over wider ranges of conditions, we perform, in the
second part of this work, a parametric study to evaluate the
influence of such ternary parameters on calculated (see
Tables 5 and 6) T-CELs, T-CEP-4PLs and T-TCPs, i.e, on part of the
T-CM, for the system CO2 (1) +H2O (2) + 2-propanol (3). We do that
at set values for the interaction parameters of the corresponding
binary subsystems, i.e., CO2 (1) +H2O (2), CO2 (1) + 2-propanol (3),
and H2O (2) + 2-propanol (3). It is also studied how the changes in
the T-CM (caused by the changes in ternary parameters) influence
the calculated three-phase equilibria of the mentioned ternary
system.
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We summarize the goals of this work, as follows:

(a) To study the effect of ternary parameters on the high-pressure
isothermal phase behavior of the system CO2 (1) +n-hexade-
cane (2) + 1,8-octanediol (3), comparing calculated and experi-
mental phase equilibria.

(b) To study, over wider ranges of conditions than in item (a), the
effect of ternary parameters on calculated T-CELs, T-CEP-4PLs,
T-TCPs and ternary three-phase equilibria, for the system CO2

(1) +H2O (2) + 2-propanol (3).

Both considered ternary systems are highly non-ideal.

2. Cubic mixing rules (CMRs)

More specifically cubic mixing and combining rules (CMRs)
[2,3,5] are the following:

a ¼
XN

i¼1

XN

j¼1

XN

k¼1

xixjxkaijk (1)

aijk ¼ a0ijk 1� kijk
� �

(2)

a0ijk ¼ aiajak
� �ð1=3Þ (3)

b ¼
XN

i¼1

XN

j¼1

XN

k¼1

xixjxkbijk (4)

bijk ¼ b0ijk 1� lijk
� �

(5)

b0ijk ¼
bi þ bj þ bk

3
(6)

where N is the number of components in a multicomponent
mixture, ai, bi and xi are, for component i, the EOS attractive energy
parameter, the EOS repulsive co-volume parameter and the mole
fraction in themulticomponent system, respectively, kijk and lijk are
respectively the energy interaction parameter and the covolume
interaction parameter. For a binary system of components 1 and 2,
the cubic mixing rules provide four independent three-index
binary interaction parameters, i.e., k112, k122, l112 and l122. Thus, the
number of available binary (three index) interaction parameters in
cubic mixing rules doubles the number of binary (two-index)
interaction parameters that quadratic mixing rules provide. The
conventional quadratic mixing rules are a particular case of cubic
mixing rules [2]. For ternary or higher systems, Eqs. (2) and (5)
require three-index ternary parameters (e.g, k123 and l123 for the
case of a ternary system). Such ternary parameters can be either
regressed from experimental information on ternary systems or
predicted from three-index binary parameters obtained from
experimental data on binary systems [2]. The potential correlation
of ternary data by fitting ternary interaction parameters, while
leaving invariant the description of the constituent binary systems,
makes the CMRs appealing. In Appendix A, a brief discussion is
provided on the composition dependence of virial coefficients
obtained from a chosen combination of equation of state and
mixing rules.

The system CO2 (1) +n-hexadecane (2) + 1,8-octanediol (3) was
experimentally studied by Spee and Schneider [10], who reported
phase equilibrium data at 393.2K for the ternary system and for

the three binary subsystems, in the pressure range from 10MPa
(100bar) to 100MPa (1000bar). At 393.2K, the binary system CO2

(1) +n-hexadecane (2) has a critical point at about 256bar [10]. At
393.2 K the system CO2 (1) + 1,8-octanediol (3) presents liquid–
liquid equilibrium in the pressure range considered in this work
(pressure greater than or equal to 225bar). This conclusion comes
from our correlation of the CO2 (1) + 1,8-octanediol (3) fluid–fluid
equilibrium data at 393.2K, after looking at the (not shown in this
work) values of the calculated mass densities of the phases at
equilibrium. At 393.2K, the system n-hexadecane (2) + 1,8-
octanediol (3) also presents liquid–liquid equilibrium in the
pressure range studied in Ref. [10]. Using the PR-EOS [11], coupled
to CMRs, we obtained in this work a (not shown) very good
correlation of the experimental data of the three binary
subsystems. Table 1 reports the binary parameter values, and
Table 2 reports the pure compound parameters that we used for
the PR-EOS [11].

At 393.2K, the ternary system CO2 (1) +n-hexadecane (2) + 1,8-
octanediol (3) presents, at a given pressure in the range from
256bar to 500bar, a single two-phase region (e.g., Fig. 1)
connecting the two immiscible binary subsystems, i.e., the systems
CO2 (1) + 1,8-octanediol (3) and n-hexadecane (2) + 1,8-octanediol
(3); while, in the range from 100bar to 256bar, where the system
CO2 (1) +n-hexadecane (2) gives vapor–liquid splits, the ternary
systempresents, at a givenpressure, three two-phase regions and a
single three-phase region (e.g., Fig. 4) [10]. Besides binary three-
index parameters, Table 1 reports ternary three-index parameters
predicted [2], for this system, based on the assumption of mixture
molar volume invariance [2]. This assumption [12] leads to a
classification that distinguishes between variant and invariant
properties ofmixtures. Ref. [12] has generalized the considerations
by Michelsen and Kistenmacher [13]. These authors defined [13]

Table 2
Pure compound parameters used in this work for the PR-EOS [11] and/or for the
SRK-EOS [16].

Compound Critical temperature (K) Critical pressure
(bar)

Acentric factor

Carbon dioxidea 304.21 73.83 0.22362
2-Propanola 508.30 47.64 0.66690
Watera 647.13 220.55 0.34490
n-Hexadecanea 723.00 14.00 0.71740
1,8-Octanediolb 709.46 26.71087 1.13320651

a From DIPPR [21] data base.
b Obtained in this work by interpolating DIPPR [21] information on components

1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol and decan-1,10-diol.

Table 1
Binary three-index and nominal ternary three-index interaction parameters at
393.2K used in this work for the PR-EOS [11] coupled to CMRs [2,3,5] for the system
CO2 (1) +n-hexadecane (2) + 1,8-octanediol (3).

Parameter Value Parameter Value

Three-index binary parametersa

k112 �0.26264 l112 0.16014
k122 �0.44454 l122 0.14698
k113 �0.09550 l113 0.10495
k133 �0.23524 l133 0.11093
k223 0.11000 l223 0.01042
k233 0.02074 l233 0.00030

Nominal three-index ternary parameters
k123 �0.3625460b l123 0.1201179c

a Fitted in this work from binary phase equilibrium data from Ref. [10].
b Predicted from Eq. (30) of Zabaloy [2].
c Predicted fromEq. (30) of Zabaloy [2] but using such equationwith bijk of Eq. (5)

in place of aijk of Eq. (2).
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the afterwards called [14] “Michelsen–Kistenmacher syndrome”.
The predicted ternary three-index interaction parameters reported
in Table 1 come froma formula [2] that is free from such syndrome.

Such predicted values, whichwe name “nominal” values, would
be used for ternary and higher systems if the ternary experimental
data were not available. Our goal for this ternary system is to
evaluate how themodel departs from the experimental data as the
three-index ternary parameters change.

Di Andreth [15] studied the phase behavior of the ternary
system CO2 (1) +H2O (2) + 2-propanol (3) over wide ranges of
temperature and pressure. He fit phase equilibrium experimental
data for such system using themodel SRK-EOS+QMRs [16]. Table 2
reports the pure compound parameters used in this work, which
correspond to the systemCO2 (1) +H2O (2) + 2-propanol (3). For the
binary subsystems CO2 (1) +H2O (2), CO2 (1) + 2-propanol (3) and
H2O (2) + 2-propanol (3), we obtained, using the SRK-EOS+CMRs,
values for the binary three-index interaction parameters. They are
reported in Table 3. These parameters qualitatively reproduce the
topology of the binary univariant lines (in their pressure–
temperature projections) that can be computed using also the
SRK-EOS, but coupled to QMRs, with the (two-index) binary
interaction parameters reported by Di Andreth [15]. Examples of
binary univariant lines are critical lines, liquid–liquid–vapor lines
and azeotropic lines; and examples of a binary invariant points are
binary critical end points and critical azeotropic points [8,9].

Appendix C presents the calculated phase behavior characteristic
maps, in their pressure–temperature projections, for the binary
systems CO2 (1) +H2O (2), CO2 (1) + 2-propanol (3) and H2O (2) + 2-
propanol (3).

Our goal in this case is to carry out a parametric study to
evaluate the effect of the three-index ternary interaction
parameters, of the CMRs, on the ternary fluid phase equilibria,
over wide ranges of conditions, for system CO2 (1) +H2O (2) + 2-
propanol (3). The changes in the three-index ternary interaction
parameters will be done keeping the two-index binary interaction
parameters fixed at the values given in Table 3. In this second part
of the present work, it is not our goal to reproduce experimental
information on ternary phase equilibria, but to explore to which
extent we could manipulate the computed ternary phase
equilibrium by varying the values of the three-index ternary
parameters. Table 4 reports the ternary three-index interaction
parameters k123 and l123 used in this work to compute, for three
different cases, ternary univariant lines and ternary three-phase
equilibria for the CO2 (1) +H2O (2) + 2-propanol (3) system.

3. Results and discussion

3.1. Effect of three-index ternary interaction parameters on the
description of the phase equilibria of system CO2 (1) +n-hexadecane
(2) + 1,8-octanediol (3)

In this work, we performed fluid phase equilibria calculations
by solving the isofugacity condition, for the ternary system CO2

(1) +n-hexadecane (2) + 1,8-octanediol (3), and also for the
corresponding binary subsystems, at 393.2K, using the PR-EOS
[11] coupled to CMRs [2,3,5] with the binary interaction parameter
values of Table 1 and the pure compound parameters of Table 2.We
compared the model results with the experimental data of Spee
and Schneider [10].

Fig. 1 shows the fluid–fluid equilibrium for the system CO2

(1) +n-hexadecane (2) + 1,8-octanediol (3) at 400bar and 393.2K.
The concentration scale of Fig. 1 is the “mole fraction” scale. The
squares and the black dashed (straight) tie lines correspond to the
experimental data of Spee and Schneider [10]. Three squares are
very close to each other. Two of them are located also very close to
the CO2 (1) + 1,8-octanediol (3) side of the Gibbs triangle and the
third one on such side. This last point is part of a binary datum, and
the other two are ternary data. The black solid curves correspond
to the PR-EOS [11] (with Table 2 pure compound parameters)
coupled to CMRs with Table 1 parameters. Thus, for the black lines,
the ternary parameters have the predicted (not fitted) values of
Table 1. The black lines connect the miscibility limits of the n-
hexadecane (2) + 1,8-octanediol (3) binary to those of the CO2

(1) + 1,8-octanediol (3) system (the binary CO2 (1) +n-hexadecane
(2) is homogeneous at 400bar and 393.2K, Fig. 1). It is therefore
clear that the black lines are the boundaries of a two-phase
equilibrium region which is continuous from the n-hexadecane
(2) + 1,8-octanediol (3) binary to the CO2 (1) + 1,8-octanediol (3)
binary. The black curves give the same qualitative behavior than
that of Fig. 5 of the paper by Spee and Schneider ([10] p. 270). From
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Fig. 1. Fluid–fluid equilibrium for the system CO2 (1) +n-hexadecane (2) +1,8-
octanediol (3) at 400bar and 393.2K (concentration scale: mole fraction). Squares:
experimental binary or ternary two-phase compositions [10]. Straight black dashed
lines: experimental ternary two-phase tie-lines [10]. Black solid curves: PR-
EOS +CMRs with Tables 1 and 2 parameters. Red solid curves: PR-EOS +CMRs with
Tables 1 and 2 parameters except for k123 (k123 =�0.26254). Red solid straight lines:
calculated ternary two-phase tie-lines (k123 =�0.26254). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 3
Binary three-index interaction parameters used in this work for the SRK-EOS [16]
coupled to CMRs [2,3,5] for the CO2 (1) +H2O (2) + 2-propanol (3) system.

k112 0.10700 l112 �0.020
k122 �0.06700 l122 0.009
k113 �0.02499 l113 0.001
k133 �0.05400 l133 0.012
k223 �0.13000 l223 0.060
k233 �0.11000 l233 0.004

Table 4
Combinations of values of the ternary three-index interaction parameters (k123 and
l123) considered in this work for computing some T-CELs and some three-phase
equilibria for the CO2 (1) +H2O (2) +2-propanol (3) system using the SRK-EOS [16]
coupled to CMRs [2,3,5].

Cases k123 l123

Case 1 0.00 0.00
Case 2 0.13 �0.14
Case 3 �0.25 0.20
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Fig. 1, it is clear that if we use predicted (i.e., “nominal”) ternary
parameters we obtain, for the phasewith the lowest 1,8-octanediol
(3) concentration, a curve (left black curve) closer to the
1,8-octanediol (3) vertex than the experimental curve. Notice that
no tie-lines are shown for the case of the nominal ternary
parameters.

Fig. 1 also presents calculation results (red curves and red tie-
lines) that we carried out using the nominal value of parameter l123
(Table 1) and setting k123 = (�0.26254). Such value for k123 came
from forcing a good agreement between the ternary experimental
data at lower 1,8-octanediol (3) concentration and themodel. Such
forced agreement is evident in Fig. 1 from comparing the red curve
located close to the CO2 (1) +n-hexadecane (2) side of the Gibbs
triangle with the experimental ternary data (squares).

Notice in Fig. 1 that the miscibility limits for the binary
subsystems are the same both, for the nominal value of k123
(�0.362546, Table 1) and for the fitted value (�0.26254). Since

k123 ¼ ð�0:26254Þ > knominal
123 ¼ �0:362546, the nominal case cor-

responds to greater values for the attractive mixture parameter
(Eqs. (1)–(3)). From this, we expect a higher miscibility for the
ternary system modeled using the nominal value for k123. Fig. 1
confirms such expectation: we observe that the red curves are
located closer to the non horizontal sides of the Gibbs triangle than
the black curves do.

Fig. 2 is analogous to Fig. 1. The black curves in Fig. 2 are
identical to the black curves in Fig. 1, i.e., they correspond to the
nominal case (Table 1). We obtained the red curves and (straight)
tie-lines in Fig. 2 differently from the case of Fig.1, i.e., byfitting the
l123 parameter while keeping parameter k123 set at its nominal
value. The red curves in Fig. 2 have a qualitative behavior quite
similar to that of the red lines in Fig. 1. We see however that the
immiscibility region corresponding to the red curves of Fig. 2 is
slightly wider than the immiscibility region of the red curves of
Fig. 1. This is noticeable by looking, e.g., at the left red curves in
Figs. 1 and 2.

The fitted value of l123 (0.00979) is less than its nominal value
(0.1201179, Table 1), which implies higher values for the mixture
repulsive parameter (Eqs. (4)–(6)). This is associated to an
expectation of a wider immiscibility region for the fitted
parameter, which we verify in Fig. 2. In conclusion, we can
produce similar effects by decreasing the ternary attractive
mixture parameter “a” (Fig. 1) or by increasing the ternary
repulsive mixture parameter “b” (Fig. 2). This is consistent with
results previously found in a proto-modeling study [17] related to
the seminal work by Scott and van Konynenburg [9].We stress that
the (straight) tie-lines in Figs. 1 and 2 correspond to two-phase
equilibria (not to three-phase equilibria).

Fig. 3 presents our calculation results for the fluid–fluid
equilibrium of system CO2 (1) +n-hexadecane (2) + 1,8-octanediol
(3) at 500bar and 393.2K, at varying k123 values, again for the PR-
EOS [11] with CMRs [2]. In Fig. 3, rather than reproducing
experimental data, what we do is to illustrate the high level of
flexibility associated to the ternary parameters of the cubic mixing
rules. We see that by decreasing parameter k123, i.e., by increasing
the mixture parameter “a” (Eq. (2)), we are able to produce an
evolution from a continuous two-phase region connecting the two
binary immiscible subsystems (blue lines), to a situationwherewe
have two disconnected two-phase regions (black lines). In this last
case, a given two-phase region stems from a binary fluid–fluid
equilibrium point and ends at a critical point (not identified in
Fig. 3). The transition between the two extreme cases of Fig. 3
requires that at intermediate k123 values the ternary miscibility
boundary lines of the continuous two-phase region (blue lines) get
increasingly closer, as illustrated by the red lines in Fig. 3. Besides,
Fig. 3 shows, perhaps more clearly than the previous figures, that
the changes inside the Gibbs triangle happen, for CMRs, without
changes in the binary phase equilibria represented on the sides of
the triangle, i.e., the description of the binary subsystems remains
invariant with respect to changes in the ternary three-index
parameters if we keep constant the binary three-index parameters
(and also the pure compound parameters).
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Fig. 4 presents the fluid–fluid equilibrium for the system CO2

(1) +n-hexadecane (2) + 1,8-octanediol (3) at 225bar and 393.2K.
The system pressure, i.e., 225bar, is below 256bar, i.e., below the
critical pressure of the binary system CO2 (1) +n-hexadecane (2) at
393.2K. Therefore, the three binary subsystems present two-phase
equilibrium under the conditions of Fig. 4, at which, Spee and
Schneider [10] experimentally detected a three phase ternary
region (squares not located on the sides of the Gibbs triangle and
straight dashed tie-lines in Fig. 4). Notice that in Fig. 4, we actually
see two replicates of a single three-phase equilibrium experiment.
Fig. 4 shows that the PR-EOS [11] +CMRs [2] with nominal ternary
three-index interaction parameter values, predicts three two-
phase regions: each of them ends at one of the sides (tie-lines) of
the calculated three-phase triangle. Such three-phase region is
narrower than the experimental one. Fig. 5 (225bar) shows that
the agreement between the model and the experiments, at three-
phase equilibrium, significantly improves if we use for k123 the
value thatwe previouslyfit from ternary two-phase data at 400bar
(Fig.1). See Appendix B for a better visualization of the information
already given in Fig. 5.

The results shown in this section provide evidence of the
improvement that can be gained in the quantitative description of
ternary phase equilibria by resorting to three-index ternary
parameters set at convenient values.

3.2. Effect of three-index ternary interaction parameters over wide
ranges of conditions: system CO2 (1) +H2O (2) + 2-propanol (3)

In Section 3.1, we have considered isothermal (single tempera-
ture value) equilibria and a range of pressures. In contrast, the
present section deals with wide ranges of temperature (and also of
pressure). The effect of a given parameter on the calculated phase
behavior given by an EOS model can be seen at a glance by looking
at corresponding series of phase behavior T-CMs, or at least at
series of some of the elements of such T-CMs. The present section
reports a parametric studywhose goal is to scrutinize the influence

of three-index ternary parameters on the shape and extent of
calculated T-CELs and related three-phase equilibria. Since T-CELs
are boundaries of ternary three-phase surfaces, their extent are in
part indicative of the extent of such regions.

T-CELs for system CO2 (1) +H2O (2) + 2-propanol were comput-
ed using the SRK-EOS [16] +CMRs [2], for the three cases defined in
Table 4, while keeping fixed the binary parameters of Table 3. The
calculation procedures have been described elsewhere [6,7].

Fig. 6 presents the pressure–temperature projection of a part of
the T-CMs for the three cases of Table 4. The system is
CO2 +H2O+2-propanol. This figure shows that the topology of
the computed T-CELs strongly depends on the values of parameters
k123 and l123 (the binary phase behavior is the same for all three
cases). It is again suggested the reading of Appendix C of Ref. [7] for
a better understanding on what T-CELs mean.

Fig. 7a shows “case 1” of Table 4 (k123 and l123 are both equal to
zero). The computed T-CEL originates at a binary critical endpoint
(B-CEP, empty circle) of the subsystem CO2 (1) +H2O (2) and ends
at a T-TCP. Ref. [6] describes how the imminency of a T-TCP is
detected while computing a T-CEL, and it also gives an account of
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the process of rigorously solving the system of equations
corresponding to the tricritical conditions. A brief discussion on
the nature of tricritical points is provided in Appendix D.

Fig. 7b is a zoom of Fig. 7a. It shows the pure CO2 vapor pressure
line (pure liquid–vapor equilibrium). It also shows, for the binary
subsystem CO2 (1) +H2O (2), a critical line (B-CL), the three-phase
equilibrium line (B-3PL), and the B-CEP (empty circle). All binary
and unary objects were computed according to Ref. [18]. In Fig. 7b,
it is more clearly seen how the computed T-CEL originates at the
B-CEP.

Fig. 8a shows “case 2” of Table 4 for which k123 is positive and
l123 is negative. Fig. 8b is a zoom of Fig. 8a covering the narrower
temperature range from300 to 310K. The T-CEL originates at the B-
CEP of system CO2 (1) +H2O (2) (empty circle) and ends at a T-TCP.
The temperature range of existence of the “case 2/T-CEL” (Fig. 8a) is
significantly wider than that of the “case 1/T-CEL” (Fig. 7a). On the
other hand, the “case 1/T-CEL” covers a pressure range wider than
that of “case 2/T-CEL” by approximately 20 bar (Fig. 6). Finally, the
pressure–temperature projection of the “case 2/T-CEL” has a
higher level of non linearity than that of the “case 1/T-CEL” (Fig. 6).

Fig. 9a presents “case 3” of Table 4 forwhich k123 is negative and
l123 is positive. We see two T-CELs. One of them has a narrow
temperature range. It originates at the B-CEP (empty circle) and
ends at a T-CEP-4PL (triangle in Figs. 6 and 9a and b). The second T-
CEL emerges at the T-CEP-4PL and extends up to a T-TCP. The
presence of a T-CEP-4PL implies a more complex qualitative
behavior than those of cases 1 and 2. Such T-CEP-4PL indicates the
existence of a T-4PL (see Tables 5 and 6) [6,7], which is not shown
in this work. The T-4PL originates at the T-CEP-4PL [6,7]. Besides,
the temperature range of the “case 3” T-CELs is much narrower
than those of “case 1/T-CEL” and “case 2/T-CEL”, as clearly shown in
Fig. 6.

Fig. 10a exhibits the same T-CELs of Fig. 6 but in their
temperature–molar volume projections. In general, we see in
Fig. 10a, for a given T-CEL and given temperature, the molar
volumes of two phases at equilibrium (the two phases of the
chosen T-CEP, Table 5). The exception is the T-CEP-4PL (triangles)
where three phases are at equilibrium (see Table 6). Three out of
the four T-CELs originate at the B-CEP of system CO2 (1) +H2O (2),
which in this projection is indicated as two empty circles (Fig. 10a
and b). Fig. 10a shows important differences among the topologies
of the T-CELs. Such differences are promoted by the differences in
the values of the three-index ternary parameters k123 and l123
corresponding to cases 1–3 (Table 4). In the projection of Fig. 10a,
the three clearly visible T-CELs present a highly non-linear
behavior, mainly for case 2. In Fig. 10a and b, it is again possible
to visualize that changes in parameters k123 and l123 may influence
not only the values of the phase equilibrium variables of the
ternary system but also the nature of such phase equilibria, giving
raise, e.g., to the appearance of a T-4PL in “case 3”, while such type
of line is not observed in cases 1 and 2. Notice that although four T-
CELs are represented in Fig. 10b, it is difficult to visualize one of
them due to its relatively narrow temperature range of existence.

Since a T-CEL is a boundary between a ternary three-phase
equilibrium surface and a ternary critical surface [6,7], the
topology and ranges of existence of a T-CEL partially influences
the topology, and the ranges of existence, of both mentioned
surfaces. For instance, Fig. 6 tells that one of the boundaries of the
three-phase surface of “case 2” covers a wider temperature range
than the corresponding boundary of the three-phase surface of
“case 1”. The first mentioned boundary is the “case 2/T-CEL”, and
the second one is the “case 1/T-CEL”.

To more completely scrutinize how the changes in the values of
the ternary three-index parameters promote changes in the
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calculated ternary phase equilibria, two isobaric ternary three-
phase equilibrium lines (or hyper-lines, T-3PLs) were calculated in
this work over relatively wide temperature ranges. They corre-
spond to cases 1 and 2 of Table 4.

Fig. 11 shows the temperature–molar volume projection of a
T-3PL, computed at a constant pressure of 73bar, for “case 1”
(Table 4). At a given temperature, it is possible to read from Fig. 11
the molar volume for each of the three equilibrium phases. The
three branches of Fig. 11 are all part of the same isobaric three-

phase hyper-line. This multiplicity of coordinates (molar volumes,
pressure, temperature, and phase compositions, etc.) that describe
a ternary three-phase equilibrium point (or hyper-point) is the
reason that makes the word “hyper-line” more appropriate than
the word “line”. The T-3PL originates at low temperature, more
specifically at a binary three-phase equilibrium point (B-3PP,
empty circles) of the subsystem CO2 (1) +H2O (2). This B-3PP could
be visualized, for instance in Fig. 9b, as the intersection point of a
constant pressure line at 73bar with the line labeled “B-3PL”. The
T-3PL extends up to a T-CEP that belongs to a T-CEL (not computed
in this work) which is not the same than the T-CEL shown for this
case (case 1) in Fig. 7a and b (a given ternary system may have
several T-CELs, [6,7]). The liquid phases L1 and L2 become critical at
about 321K (left full circle in Fig. 11). Phase L3 is a vapor phase.

Fig. 12 shows in a 3D space the temperature–mole fraction
projection of the same calculated ternary three-phase line of
Fig. 11. The phase compositions at a given temperature of a three-
phase equilibrium hyper-point are obtained by intersecting a
constant temperature (horizontal) planewith lines L1, L2 and L3. In
this figure, the CO2 (1) +H2O (2) B-3PP of Fig. 11, where the three-
phase hyper-line originates, is also visualized (empty circles). From
Fig. 12, it should be clear that two of the phases of the B-3PP are
highly concentrated in CO2.

The three-phase equilibrium has a continuous evolution from
the B-3PP to a T-CEP where the compositions of phases L1 and
L2 become identical due to the criticality condition for one of the
phases of the T-CEP. Fig. 12 illustrates the rationale behind part of
the name “T-CEP”: it is an hyper-point where a ternary three-phase
equilibrium locus ends. The label T-3PL applies to the set made of
the three red curves in Fig. 12, since such three red lines make a
single (constant pressure) three-phase hyper-line [6,7]. Actually,
such hyper-line also includes additional information, e.g., the red
lines in Fig. 11.

In Fig. 11 and indeed in Fig. 12, it can be seen that the
temperature range of existence of the ternary three-phase
equilibrium at 73bar is approximately 18K wide.

Fig. 13 is analogous to Fig. 11. The difference is that the ternary
three-index parameters are those of “case 2” (Table 4) for Fig. 13.
The T-3PL in Fig. 13 (case 2) originates at the same binary CO2

(1) +H2O (2) three-phase equilibrium point than the T-3PL in
Fig.11 (case 1). The T-3PL in Fig.13 does not have a T-CEPwithin the
temperature range of Fig. 13. Such range is significantly wider than
that of Fig. 11 (range width about 44K in Fig. 13 vs. 18K in Fig. 11).

Fig. 14 relates to Fig. 13 in a way analogous to the way in which
Figs.11 and 12 relate. The qualitative behavior in Fig.14 is similar to

Table 6
A couple of ternary fluid phase equilibrium invariant points [1,6,7,15].

Point acronym Pointa name Point physical description

T-CEP-4PL Ternary critical endpoint of a four-phase (equilibrium) line A ternary critical phase is at equilibrium with two ternary non-critical phases.
T-TCEP or T-TCP Ternary tricritical endpoint or ternary tricritical point Three ternary phases at equilibrium become critical simultaneously at the T-TCP.

a The point has no degrees of freedom.
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Fig. 9. (a) Caption as in Fig. 6, except that only case 3 (Table 4) is shown. (b) Zoom of
(a) (case 3, Table 4). Acronyms as in Figs. 7 and 9. Acronyms: T-CELs: ternary critical
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Table 5
Ternary fluid phase equilibrium univariant lines [1,6,7,15].

Line
acronym

Line name Point
acronym

Pointa name Point physical description

T-4PL Ternary four- phase
(equilibrium) line

T-4PP Ternary four-phase
(equilibrium) point

Four ternary non-critical phases are at equilibrium.

T-AL Ternary azeotropy line T-AP Ternary azeotropic point A ternary liquid phase and a ternary vapor phase having identical
composition are at equilibrium.

T-CEL Ternary critical end line T-CEP Ternary critical endpoint A ternary critical phase is at equilibrium with a ternary non-critical phase.

a The point has a single degree of freedom.
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the one in Fig.12. Figs.13 and 14 suggest that phases L1 and L2 tend
to become identical, i.e., critical, with increasing temperature, and
consequently that the ternary three-phase locus would terminate

at a T-CEP of higher temperature than that of the T-CEP in
Figs. 11 and 12.

It is important to notice that in this work all values set for the
interaction parameters are less than +1. This implies that both, aijk
(Eq. (2)) and bijk (Eq. (5)) are positive, and therefore the mixture
parameters “a” and “b” remain positive regardless the composition
of the ternary (or binary) system.

The parametric study considered in this section provides
evidence of the fact that by resorting to three-index ternary
interaction parameters it is possible to have control on the extent
of the calculated T-CELs, which in turn influence the ranges of
conditions of existence of calculated three-phase equilibria.
Indeed, changes in ternary interaction parameters should change
all ternary phase equilibrium objects including, e.g., critical hyper
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surfaces, azeotropic hyper-lines and T-4P lines (with calculated
phase behavior of binary subsystems indifferent to changes in
ternary interaction parameters).

4. Remarks and conclusions

When using quadratic mixing rules (QMRs), the calculated
ternary fluid phase behavior becomes determined by the (two-
index) binary interaction parameters, whose values are typically
obtained bymatching experimental data of the binary subsystems.
Such binary parameters do not in general reproduce over wide
enough ranges of conditions ternary experimental data, e.g., four
phase equilibria. In contrast, cubic mixing rules (CMRs) make
possible to change the calculated ternary phase equilibria under
conditions of invariance of the calculated phase equilibria of the
binary subsystems.

In this work, we have provided evidence on the improvement
that can be gained in the description of the ternary phase behavior
by resorting to three-index ternary interaction parameters.

In the first part of this work (Section 3.1), we considered the
case of the system CO2 (1) +n-hexadecane (2) + 1,8-octanediol (3).
We described its phase behavior using the Peng–Robinson (PR) [11]
equation of state (EOS) coupled to cubic mixing rules (CMRs)
[2,3,5]. This combination was able to represent the high-pressure
two-phase and three-phase equilibria of the mentioned highly
non-ideal asymmetric system [CO2 (1) +n-hexadecane (2) + 1,8-
octanediol (3)]. Predicted values (Table 1) for the three-index
ternary parameters [2] provided an acceptable agreement with
experiment. The level of agreement was increased by using three-
index ternary parameters optimized so as to reproduce the
available ternary experimental data. In this work, we made no
attempt to automate the fitting of ternary three-index interaction
parameters.

The second part of this work (Section 3.2) was a parametric
study that considered the effect on ternary phase behavior of
changing the values of the ternary three-index interaction
parameters over wide ranges of conditions. This parametric study
led to the conclusion that the values of the CMRs [2] three-index
ternary interaction parameters have a strong influence on the
topology of the calculated T-CELs and the associated ternary three-
phase equilibria. More specifically, the ranges of conditions of
existence of T-CELs change significantlywhen changing the ternary
parameters, and so do the ranges of conditions of existence of
associated ternary three-phase equilibria. It was also shown that
CMRs can induce the appearance of ternary four-phase equilibria
by modifying the values of the three-index ternary interaction
parameters (this takes place without changing the binary
equilibria), as it happened when going from “case 1” (Table 4
and Fig. 7b) to case “case 3” (Table 4 and Fig. 9b). In “case 3”, the
appearance of a ternary critical end point of a four-phase line
(T-CEP-4PL) was indicative of the existence of a ternary four phase
equilibrium line (T-4PL). In “case 2” (Table 4) T-4PLs do not exist
within the ranges of conditions considered. It is worth to
emphasize that the model gives for the cases 1–3 an identical
phase behavior for the three binary subsystems. This is indicative
of the flexibility of the CMRs, which is also significant for binary
systems, as shown in Refs. [3] and [5]. It was also illustrated
through cases 1 and 2 that changes in the three-index ternary
interaction parameters can be used to modify the ternary three-
phase equilibria, as shown in Figs. 11–14. This can be exploited for
matching experimental ternary phase equilibria.

Acknowledgements

We are grateful to Consejo Nacional de Investigaciones
Científicas y Técnicas de la República Argentina (CONICET),
Universidad Nacional del Sur (U.N.S., Arg.), Universidad Nacional
de Córdoba (U.N.C., Arg.) and Agencia Nacional de Promoción
Científica y Tecnológica (ANPCyT, Arg.) for their financial support.

Appendix A.

Virial coefficients associated to an equation of state

A given equation of state (EOS) defines, for a mixture, the
compressibility factor as a function of temperature, density and
composition. Such function has an associated Taylor expansion in
density about the point at density equal to zero (at set temperature
and composition). A given term in the expansion equals the
product of an integer power of density times a coefficient which
depends on temperature and composition. Such coefficient is
named “virial coefficient”. From statistical mechanics [19], the
virial coefficients are or should be multiple summations of terms
having statistical weights such as xixj (second virial coefficient, B),
xixjxk (third virial coefficient, C), xixjxkxl (fourth virial coefficient, D)
and so on, where xm is themole fraction of componentm. Thus, the
B coefficient given by the chosen EOS should be a double
summation quadratic in mole fraction, the C coefficient a triple
summation cubic (third order) in mole fraction, etc. The van der
Waals EOS (VdW) [19] and also the PR [11] and SRK [16] EOSs, have
a second virial coefficient such that [B= b� a/(RT)], where T is the
absolute temperature. This means that the CMRs defined by Eqs.
(1)–(6) of the main text give a B coefficient which is a triple
summation cubic in mole fraction, in contrast to the supposedly
correct form, i.e., the quadratic double summation. This would
make the CMRs “theoretically incorrect”. For the case of
asymmetric mixtures such as those considered in this work,
Yokozeki [20] has, however, put in doubt the requirement of a
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this figure legend, the reader is referred to the web version of this article.)
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quadratic (with respect to mole fraction) second virial coefficient,
associated to a given combination of equation of state and mixing
rules. He concludes that for asymmetric mixtures the statistical
weight cannot be “theoretically” a simple quadratic, xAxB, form.
Besides, it can be shown that for the simple VdW EOS the higher
virial coefficients have the expressions [C =b2], [D = b3], [E = b4], etc.,
where b is the co-volume parameter. Thus, a linear mixing rule for
b (b= blin), gives, for the VdW–EOS, a quadratic function for C. Since
a quadratic function is a particular case of a cubic function, the
b = blin choice is consistent with the supposedly theoretically
correct behavior for C. Using similar arguments, it is concluded that
the same is true, for D, E and all higher virial coefficients of the
VdW–EOS used with b = blin. If a quadratic mixing rule is used for b
(b= bquad) in the VdW–EOS, then, the mixture third and higher
virial coefficients have orderswith respect tomole fractions higher
than the “theoretically correct” ones. It is known, however, that
b = blin is a choice with significantly limited flexibility. Thus, a
quadratic mixing rule is often chosen for b (bquad), which provides
an extra independent interaction parameter useful to improve the
reproduction of experimental information. From the previous
discussion, it should be clear that the simplest EOS able to describe
equilibria between fluid phases, i.e., the VdW–EOS, coupled to one
of the simplest choices for the composition dependence of b, i.e.,
bquad, already “violates” the restrictions set by statisticalmechanics
on the composition dependence for C, D, E and higher virial
coefficients. Consequently, if an EOS is to be of any practical value,
“violations” to theoretical restrictions set by statistical mechanics,
on virial coefficients associated to the EOS, seem to be unavoidable.
Notice that the “violations” related to the virial coefficients C, D, E
. . . , associated to the choice b = bquad, coexist, if a = aquad, with the
supposedly “right” form for the composition dependence of the
second virial coefficient B, as it should be clear from the equation
[B =b� a/(RT)].

Appendix B.

See Fig. B1.

Appendix C.

Calculated binary characteristic maps related to system CO2 (1) +H2O
(2) + 2-propanol (3)

In this appendix, we present the calculated characteristic maps,
in their pressure–temperature projections, for the binary systems
CO2 (1) +H2O (2), CO2 (1) + 2-propanol (3) andH2O (2) + 2-propanol
(3). The model is SRK-EOS+CMRs with the binary three-index
interaction parameters reported in Table 3 of the main text. Also,
some calculated T-CELs are shown. The acronyms for this appendix
are defined in Table C1.

Fig. C1 shows that the binary system CO2 (1) +H2O (2) presents
a critical line (B-CL) that originates at the pure water critical point
(CP), and extends indefinitely towards high pressures; and Fig. C2
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Fig. B1. This figure is identical to Fig. 5 of the main text except in the colouring of
the equilibrium regions, carried out for a better visualization. Three yellow regions:
two phases. One gray region: three phases. Three white regions: one homogeneous
phase. Only two of the white regions are visible in the scale of the figure. There is
another, very narrow, white region in the close vicinity of the CO2 vertex. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. C1. Pressure–temperature projection of the characteristic map calculated for
the CO2 +H2O system using the SRK-EOS coupled to CMRs (parameters in Tables 2
and 3 of main text). Phase behavior: type III [9].

Table C1
Acronyms in Appendix C.

Acronym Meaning

B-CEP Binary critical end point
B-CL Binary critical line
B-CM Binary phase behavior characteristic map
B-3PL Binary three phase (equilibrium) line
CP Pure compound critical point
P-VP Pure compound vapor–liquid equilibrium line
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shows a second critical line connecting the pure CO2 (1) critical
point and a binary critical end point (B-CEP) where a binary critical
phase is at equilibrium with a binary non-critical phase. A binary
three-phase equilibrium line (B-3PL) originates at the B-CEP and
extends towards low temperatures. This is a type III [9] phase
behavior, which indicates a high level of immiscibility [17]
between the components of the binary system.

Fig. C3 shows that the behavior of system CO2 (1) + 2-propanol
(3) is of type II [9], which is characterized by the presence of a
binary critical line, of the vapor–liquid type, connecting the two
pure compound critical points, and also by the presence of a second
critical line, which is of the liquid–liquid type, that ends at a B-CEP
where a B-3PL originates. To the left of the low temperature B-CL
there is liquid–liquid equilibrium in proper overall concentration
ranges. Type II systems present more miscibility than type III
systems.

Figs. C4 and C5show calculated T-CELs together with computed
binary univariant phase equilibrium lines. Fig. C5 includes the
univariant phase equilibrium lines of the binary system H2O
(2) + 2-propanol (3), which indicate a type I [9] phase behavior for
this binary. These behavior is characterized by the presence of a
single critical line connecting both pure compound critical points.
There are neither three-phase lines nor liquid–liquid critical lines
in type I behavior, i.e., liquid–liquid equilibrium is not observed.

Appendix D.

Nature of tricritical points

According to Ref. [8], in the context of binary systems, if two
critical endpoints (B-CEPs) of a different nature, both located on
the same three-phase curve, coincide, then, the resulting special
point is named (unsymmetrical) tricritical point. The words
“different nature” mean that for one of the B-CEPs the critical
phase is the light one, and, for the other, the denser one. The
number of degrees of freedom (F) of a binary tricritical point (B-
TCP) equals minus one (�1). When using a thermodynamic model,
the F of a B-TCP can be made equal to zero by freeing a parameter,
e.g., an interaction parameter. By making such parameter to vary
within a suitable range, a B-TCP can be captured and computed.
Such process would define a couple of binary critical end-lines (not
observable in the laboratory) of different nature, both existing in a
spacewhich includes the free parameter as one of its variables, and
both meeting at the B-TCP. The process would also define a binary
three-phase surface and a couple of binary critical surfaces. In the
context of ternary systems, if twoT-CELs of a different nature, being
both of them boundaries of the same ternary three-phase surface,
coincide at point in the multi-dimensional space, then, such T-TCP
point should be considered to be of the unsymmetrical type, since
the described behavior is analogous to that of an unsymmetrical B-
TCP. For ternary systems, an example of an unsymmetrical T-TCP is
the one shown in Fig. B-5 of Ref. [7]. It seems to us that all T-TCPs
calculated in this work are of the unsymmetrical type. This would
be verified by carrying out additional T-CEL computations.
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