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Abstract – The movement of a purely elastic interface driven on a disordered energy potential
is characterized by a depinning transition: when the pulling force σ is larger than some critical
value σ1 the system is in a flowing regime and moves at a finite velocity. On the other hand,
if σ < σ1 the interface remains pinned and its velocity is zero. We show that in the case of a
one-dimensional interface, the inclusion of viscoelastic relaxation produces the appearance of an
intervening regime between the pinned and the flowing phases in a well-defined stress interval
σ0 < σ < σ1, in which the interface evolves through a sequence of avalanches that give rise to
a creep process. As σ → σ+

0 the creep velocity vanishes as a power law. As σ → σ−

1 the creep
velocity increases as a power law due to the increase of the typical size of the avalanches. The
present observations may serve to improve the understanding of fatigue failure mechanisms.

Copyright c© EPLA, 2014

Introduction. – An elastic interface driven through
a disordered energy landscape is a generic model for
many different physical systems, as domain walls in fer-
romagnetic materials [1–3], wetting fronts on a rough
substrate [4,5], seismic fault dynamics [6–8], and crack
propagation [9]. Two generic ways of driving the inter-
face are typically considered. When the interface is forced
to move at a small, constant average velocity, the dy-
namical evolution proceeds through abrupt events called
avalanches. When the elastic interface is driven at con-
stant external stress instead, the dynamics is characterized
by a depinning transition [10]: Below some critical applied
stress σ1 the interface remains pinned, and the configura-
tion is stationary. Above this threshold, the system does
not reach an equilibrium configuration, and the dynamics
proceeds continuously in time, in a flowing regime with a
finite velocity. This velocity critically vanishes as the ap-
plied stress is reduced towards σ1. Within the context of
fracture, the depinning transition is seen as the onset of
crack propagation at a finite velocity, producing the failure
of the material.

The configurations of the system for σ < σ1 correspond
to metastable minima of the total energy. The existence of
these static pinned configurations relies on the absence of
thermal activation mechanisms. If temperature is differ-
ent from zero the energy barriers to escape the metastable
minima are eventually surmounted, and the system can

creep at a finite velocity [11–13]. The velocities generated
by the creep process are much smaller than those of the
flowing regime, so the value σ1 still signals the transition
between a low velocity creep regime and a large velocity
flow regime. In the presence of thermally activated pro-
cesses, the velocity of the interface strictly vanishes only
when σ → 0.

Experimentally, the creep regime may cause fatigue
failure [9,14]1 and is a concern in the performance of me-
chanical components. It may induce failure after a pro-
longed time of service at applied loads well below the
nominal fracture strength. This behavior is captured in
some phenomenological laws, as for instance the Basquin
law [15], that states that the lifetime of a component is
proportional to some negative power of the applied load.
The phenomenology of static fatigue failure typically in-
volves additional features that are not appropriately cap-
tured by the thermal creep mechanism alone. In many
cases a fatigue limit exists, such that there is no pro-
gression of the damage at all if the applied load is be-
low this limit [14]. Theoretical explanations of this fact
have relied upon the existence of healing mechanisms in

1We refer exclusively here to static fatigue failure, that occurs
due to a long time application of a constant load. It must not be
confused with cyclic fatigue processes, in which the failure occurs
due to the interplay of oscillating loads and plastic effects in the
material.
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the material [16–18], that compete with creep, generating
a fatigue limit at a finite applied load.

In this paper we investigate theoretically an alternative
mechanism to thermal creep that can produce the slow
advance of an interface on a disordered media, then giv-
ing insight into the possible mechanisms of fatigue failure
under constant applied loads. The model assumes the ex-
istence of viscoelastic effects in the material. In this case
even if temperature is set to zero, we find that the interface
advances at a finite (but small) velocity in a well-defined
range of the applied stress σ, namely σ0 < σ < σ1. Below
σ0 there is no advance at all, then this value represents
the fatigue limit of the material. The dynamics close to
the fatigue limit can be described as a kind of contact pro-
cess [19]. The advance of the interface in this viscoelastic
creep regime occurs through a sequence of avalanches, that
become progressively larger as σ → σ1, where the creep
regime crosses over to the flow regime. This crossover be-
comes a sharp transition in the limit in which the temporal
scale of the viscoelastic relaxation is much larger than the
scale in which individual avalanches develop. In this last
case the average size of the creep avalanches diverges as
σ → σ1.

The paper is organized as follows. In the second section
we define in detail the viscoelastic model used, and give
details of the numerical simulation technique. Results are
presented in the third section, whereas discussions and
conclusions are contained in the last section.

Model and simulation technique. – As it was al-
ready indicated, the growing of a crack on a material un-
der load, can be described by treating the one dimensional
crack front as an elastic interface that is driven through
a disordered pinning potential, representing the material
imperfections at a microscopic scale (see the discussion
around fig. 34 in [9]). An appropriate model that captures
the essence of this phenomenon is the one-dimensional
quenched Edwards Wilkinson (qEW) model [20] that is
schematically represented in fig. 1(a). The equations that
govern the evolution of the variables hi (representing the
coordinates of the interface) are

η∂thi = Fi + fdis

i (hi) + k1∆hi. (1)

This is an overdamped dynamics for the variables hi,
which are defined on a sequence of discrete sites. ∆ indi-
cates the discrete Laplacian, fdis

i (which is negative) rep-
resents the pinning forces at different sites, and Fi is the
driving force on the interface. Note that the elastic inter-
actions in actual cracks are long ranged. The local form
used here (the Laplacian term) is justified on the basis of
its simplicity, and must be considered as a first approxi-
matioin to a more realistic modeling.

In constant force driving, the value of Fi is constant, and
independent of i, and represents the stress applied onto the
system, namely Fi ≡ σ. This is the case in which a criti-
cal stress σ1 exists that separates a pinned regime from a
flowing, depinned regime. In constant velocity driving Fi

Fig. 1: (a) Sketch of the discrete quenched Edwards-Wilkinson
model. (b) The viscoelastic version discussed here. Fi are the
driving forces. Fi ≡ σ in constant force driving, and Fi ≡

k0(V t − hi) in constant velocity driving. (c) Sketch of one of
the sites in the discrete pinning potential used, from which
the pinning forces are obtained: fdis

i (hi) = −dW dis

i /dhi. The
positions of the narrow pinning wells and their strengths are
randomly distributed (see parameters in text).

is chosen to be of the form Fi = k0(V t − hi), represent-
ing a driving at constant velocity V through springs of
stiffness k0. The average stress in the system in this case
is given by σ = k0(V t − hi). Constant velocity driving
corresponds to the application of a constant strain rate in
the fracture context. In the limit of V → 0, the dynam-
ics in the constant velocity case consists of a sequence of
avalanches, that have a typical duration that is propor-
tional to η. We will take formally η → 0, and in this
sense, the avalanches will be considered as instantaneous.
Constant velocity driving is connected with constant force
driving in the limit k0 → 0. In fact, in constant velocity
driving the values of Fi for all i tend to σ1 as k0 → 0 (see
below).

We work in the case of a discrete pinning potential in
which fdis

i (hi) is different from zero only in some discrete

46003-p2
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set of values of hi, that represent the positions of pinning
centers (fig. 1(c)). This is convenient for the numerical im-
plementation, but the results obtained are independent of
this choice. Pinning centers are uncorrelated for different
positions i. Each pinning center is characterized by the
force that is necessary to apply in order to extract a par-
ticle from it. These values are noted f th

i , and are drawn
from a Gaussian distribution with zero mean and unitary
variance. The location of the pinning centers along the h
direction is random, with a mean separation z0 = 0.1.

A viscoelastic version of the qEW model was introduced
in the constant force set up and studied in mean field ap-
proximation by Marchetti et al. [21]. Here we use the
version presented in [22]. The model takes into account
the possibility of relaxation effects in the material, by re-
placing the k1 springs by linear viscoelastic elements, as
depicted in fig. 1(b). The equations of this model in the
constant force setup are given by

η∂thi = fdis
i (hi) + kr∆hi + Di + σ, (2)

where σ is the externally applied constant force, and the
additional term Di represents the forces onto hi exerted by
branches containing the kc spring. Di obeys the equation

ηu∂tDi + kcDi = ηukc(∆∂th)i. (3)

Equation (3) describes the relaxation of the force through
the kc branches, due to existence of the dashpot elements,
characterized by the viscosity constant ηu. The value of
ηu sets a new time scale in the system given by ηu/kc. We
work in the case in which this time scale is much larger
than the typical timescale of individual avalanches, namely
ηu ≫ η. This implies that the solutions to (2), (3) can be
obtained through the following protocol. Given some con-
figuration hi of the interface, Di relax in time according
to

Di(t) = Di(t0) exp (−kct/ηu), (4)

which is the solution to eq. (2) when h’s are kept constant
(as it is the case since the pinning centers are discrete).
This relaxation is followed until the force onto some hi

reaches its threshold value, namely Di + kr∆hi +σ = f th

i .
At this point, an avalanche starts at position i, producing
the advance of hi to the next potential well hi ← hi + z
(where z is taken from an exponential distribution with
mean z0 = 0.1), and a corresponding rearrangement of Di

according to

Di ← Di − 2kcz, (5)

Dj ← Dj + kcz, (6)

where j are the two neighbor sites to i, and the value
of f th

i is renewed from its probability distribution. All
successive unstable sites are treated in the same way until
there are no more unstable sites. Note that due to the
time separation condition ηu ≫ η we do not need to care
about eq. (4) during the avalanche. Once the avalanche

Fig. 2: (Colour on-line) The average stress σ as a function of
k0 in constant velocity driving simulations, for the qEW model
(squares, k1 = 1), and the viscoelastic qEW model (circles,
kr = 0.1, kc = 0.9) in one dimension. The bars indicate the
value of the dispersion of σ, which is observed to tend to zero
as k0 → 0. Dotted lines are power law fittings of the form
σ(k0) = σ(0) − αkγ

0 . The best fitted values of σ(0) in the two
cases are σ0 = 1.415, and σ1 = 1.493.

is exhausted, we continue relaxing Di according to eq. (4)
until the next instability.

This scheme is used to study the dynamics of the system
for any value of the applied stress σ. All the simulations
presented below were made in a system of 214 sites, using
periodic boundary conditions. This size is much larger
than the largest size of the avalanches observed.

Results. – In [22], the properties of the viscoelastic
qEW model were studied both in the mean field limit,
and in two spatial dimensions, in the constant velocity
driving case. Here we concentrate on the one-dimensional
case, that we have found behaves very differently to the
higher-dimensional cases discussed in [22] (the reason of
this difference is briefly discussed in the conclusions). As a
preliminary result, we show in fig. 2 results for the average
stress and its fluctuation across the surface in constant
(vanishingly small) velocity driving through a spring of
value k0 (see footnote 2).

Results are shown for a viscoelastic qEW model with
kr = 0.1, kc = 0.9, and for a reference qEW model, with
k1 = kr +kc = 1. We see that in the two cases, the fluctu-
ations of σ across the whole interface (represented as bars
in fig. 2) tend to zero as k0 → 0, indicating a convergence
to a constant force driving scenario in both cases in this
limit. A fundamental fact of the one-dimensional model is
that the limiting value σ0 for the viscoelastic qEW model
is lower than the value σ1 for the standard qEW model.

On the basis of the these results we will now describe
the behavior of the viscoelastic model in the constant force
set up. If σ is sufficiently large, there is not any stationary
solution to eq. (2). This means that the system evolves by
a single avalanche that lasts forever. The dynamics of this

2The numerical algorithm in this case is a slight generalization
of the one presented in the previous section. Details can be seen
in [22].
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Fig. 3: Velocity as a function of stress in the creep regime. The
vertical dotted lines indicate the values of σ0 and σ1 from the
fits in the previous figure.

avalanche develops in a time scale of the order of η. In our
time units in which η → 0, we will consider this velocity as
diverging, v → ∞. As this dynamics is much more rapid
than the viscoelastic one, the dashpots remain blocked
during the evolution. This means that in this regime the
model behaves as a standard qEW model with an effective
elastic constant k1 of value k1 = kr + kc. The value σ1 in
fig. 2 is precisely the depinning stress of this elastic model,
so this regime occurs for all σ > σ1. In the opposite limit of
small σ, namely σ < σ0, the interface reaches a stationary
configuration in which it remains pinned, and its velocity
is zero.

The intermediate regime σ0 < σ < σ1 is the viscoelas-
tic creep regime in which we are mostly interested here.
We present in fig. 3 the results of numerical simulations
in which a constant σ is applied, and the average velocity
of the interface is measured. The vanishing of the veloc-
ity as σ → σ0 is clearly observed in this plot. In the
range σ0 < σ < σ1 the velocity of the interface remains
finite (and proportional to η−1

u ), indicating that the in-
terface does not reach any globally stable configuration.
As σ → σ1 we observe a divergence in the velocity. This
divergence actually signals the transition from a velocity
that is order η−1

u for σ < σ1, to one of the order of η−1 for
σ > σ1. We are interested in characterizing in more detail
this intermediate creep regime of the dynamics.

The advance of the interface for σ0 < σ < σ1 occurs
through abrupt avalanches, that are instantaneous for our
choice η → 0. During avalanches the stretching of the
dashpots remain fixed. Immediately after an avalanche,
the dashpots are unrelaxed, an tend to equilibrium in a
time scale of the order of η−1

u . This relaxation triggers
eventually new avalanches that maintain the interface in
motion forever. This is the mechanism that generates a ve-
locity of the order of ηu, in the creep regime σ0 < σ < σ1.

Each avalanche can be characterized by the spatial co-
ordinate i at which it starts, its time of occurrence t and
its size S, that is defined as the sum of the displacements
of all sites that participate in it. An important quantity to
consider is the size distribution of avalanches N(S), such
that N(S)dS is the number of avalanches in the interval

Fig. 4: (Colour on-line) Velocity (squares) as a function
of stress and its decomposition as the ratio of an average
avalanche size S and an inter-avalanche time t0. The two
plots highlight the power law dependencies for σ → σ0(a)
and σ → σ1(b). In (a) the expected result of the velocity
as σ → σ0 for a directed percolation process is indicated by
the dashed line. In (b), the dashed line shows the expected
behavior of S as σ → σ1 from the results of a qEW model with
k1 = kr + kc = 1. The values of σ0 and σ1 here are those
obtained from fig. 2.

[S, S + dS] per unit of time and unit of length in the sys-
tem. The velocity of the interface can be written in terms
of N(S) as

v =

∫
SN(S)dS. (7)

It is convenient to introduce an average time t0 be-
tween avalanches (per unit of system length), such that
t0 = (

∫
N(S)dS)−1. We can then write v as v = S/t0

where S ≡

∫
SN(S)dS/

∫
N(S)dS is the average size of

avalanches. In fig. 4 we plot the results for t0 and S from
the numerical simulations. As we see, a divergence of S
controls the divergence of velocity for σ → σ1, whereas a
divergence of t0 controls the vanishing of v for σ → σ0.

The size distribution of avalanches for different values
of σ is presented in fig. 5. We observe the development of
a critical distribution as σ → σ1, with a decaying expo-
nent τ ≃ 1.11, which is similar to that corresponding to
the qEW model. The scaling of the curves as σ → σ1 is
rather well described by the qEW values also (fig. 5, in-
set). An examination of the epicenters of the avalanches in
the present case, reveals that they are not temporally nor
spatially correlated. This seems reasonable in this regime:
if one large avalanche is triggered, relaxation may produce

46003-p4
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Fig. 5: (Colour on-line) The size distribution of avalanches in
the creep regime, for different values of σ, as indicated. The
inset shows the scaling of the curves using the known exponents
of the qEW model.

Fig. 6: (Colour on-line) Size distribution of avalanches in the
viscoelastic qEW model in the creep regime, compared with the
distribution of avalanches in the standard qEW model driven at
constant force, in which the avalanches are randomly triggered
(pairs of curves at different σ have been vertically displaced for
clarity). The distributions in the two cases tend to coincide as
σ → σ1 ≃ 1.493.

a subsequent avalanche essentially in any point affected by
the first one, not necessarily close to the epicenter of the
first one. This makes plausible that the size distribution
obtained coincides with that of the normal qEW model:
the avalanches in the limit σ → σ1 are equivalent to those
of a normal qEW model with constant force driving, in
the case in which avalanches are triggered in random po-
sitions of the system. In fact, a direct comparison of the
two cases (fig. 6) confirms this equivalence.

Exploiting this equivalence, we can analyze further the
results in fig. 4(b). For the qEW model, the divergence
of S as σ → σ1 is given by (see the standard definitions
of the exponents in [23]) S ∼ S2−τ

max ∼ (σ1 − σ)ν(2−τ)(1+ζ).
Using the known values of the exponents for the qEW
model we obtain S ∼ (σ1 − σ)2.7. This dependence of
S on σ → σ1 controls the divergence of v, as the time
between avalanches t0 becomes constant in this limit. In
fig. 4(b) we can see in fact that the behavior of the creep
velocity is compatible with this analysis.

When σ is reduced towards σ0, the mean size of
avalanches remains finite, as fig. 4(a) shows. This implies

Fig. 7: Epicenters of the events across the system as a func-
tion of time, for σ = 1.4152. The characteristics of a contact
process, in which new events are activated by previous nearby
ones, is apparent.

that spatial correlations between consecutive avalanches
must be observed, as the relaxation of the dashpots can
only trigger new avalanches in the close vicinity of regions
affected by a previous one. In addition, the vanishing of
the creep velocity as σ → σ0 implies a divergence of the
average inter-avalanche time t0. It is interesting to look
at the spatial distribution of avalanches to see how this
happens. We thus run a simulation for σ close to σ0, and
once a stationary creep situation is achieved, plot the lo-
cation of the epicenters of every event in the system, as a
function of time. The result, presented in fig. 7, reveals
a striking spatial structure. Those parts of the system
that are active at some particular time, continue to trigger
avalanches in neighboring places, at a non-singular rate.
There are also large spatial and temporal regions that are
free of avalanches. As σ is reduced, it is observed that the
parts of the system that remain active are more sparse,
making the average inter-avalanche time increase.

These findings clarify the way in which creep velocity
vanishes as σ0 is approached. The structure in fig. 7 re-
veals the existence of a contact process [19], in which a
given avalanche can activate posterior ones within a time
interval of the order of ηu, and no further away than
the maximum extension of avalanches (which is limited
to about 200 lattice sites for the parameters used here).
Although we do not have any other strong evidence, we
want to stress the visual similarity of the spatial structure
of the epicenter’s location in fig. 7 and the structure of a
directed percolation process in the active phase (see [19]).
If the limit σ → σ0 is in fact in the directed percolation
universality class, the velocity of the interface (which is
proportional to the density of events in fig. 7) must fol-
low a law v ∼ (σ − σ0)

β , with β ≃ 0.277. Our results
are not inconsistent with this dependence (see fig. 4(a)),
but further analysis is necessary to put it on more solid
grounds.

Discussion and conclusions. – In this paper we
have analyzed the possibility to describe a fatigue crack

46003-p5
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growth situation at constant applied load by modeling
the advance of the crack edge through a viscoelastic qEW
model. In the absence of any thermally activated effects,
we have seen that three clearly separated regimes appear
as a function of the applied load: no crack advance if
σ < σ0, unstable crack advance (that describes rapid
breaking of the system) if σ > σ1, and a creep regime
if σ0 < σ < σ1, where the crack velocity is controlled by a
viscosity coefficient ηu.

We have analyzed in detail the dynamics of the model in
the creep regime. Our model displays naturally a fatigue
limit σ0 below which the advance of the crack is completely
halted. As the stress is diminished towards the fatigue
limit σ0, the velocity vanishes as a power law. We have
interpreted this behavior in terms of a contact process in
which one avalanche can give rise to successive ones within
a limited spatial range, and in a typical time controlled by
ηu. As σ → σ1 the velocity diverges (in the scale of ηu) as
a power law, until the unstable crack growth regime sets
in for σ > σ1.

The results presented were obtained for the case of a
one-dimensional interface. Although this is the situation
of interest to model the crack growth within a solid, it
is interesting to ask why the two- or larger-dimensional
model does not display the same behavior. The immedi-
ate answer is that the curves equivalent to those in fig. 2
show that σ0 > σ1 in higher dimensions, thus the regime
σ0 < σ < σ1 simply does not exist. The reason of this
difference, that will be elaborated elsewhere, is qualita-
tively the following. Relaxation can be seen as the ad-
justment of the rest lenght of the spring that are in series
with the dashpots. In two dimensions or higher, this ad-
justment generates a configuration of the system that is
more strongly pinned than in the absence of relaxation,
thus making the value of σ0 larger than σ1. In one di-
mension instead, the change of rest lenght of the springs
does not produce a more strongly pinned configuration.
In the end, this implies that σ1 is larger than σ0 in one
dimension.

Compared with the thermal creep case [13], the most
striking difference of the model studied here is the exis-
tence of a fatigue limit, corresponding to a stress below
which the time to failure of the system is truly infinite.
This behavior, which has been observed experimentally in
different materials [14] has been explained before relying in
ad hoc healing mechanisms [16–18]. Our model provides
an alternative possible explanation for this phenomenon
that appears exclusively because of the microscopic dy-
namics of the model. The presented mechanism of visco-
elastic creep may thus serve to improve our understanding
of failure mechanisms of solids under constant stress.
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