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We describe the decoherence process induced on a two-level quantum system in direct interaction with a
nonequilibrium environment. The nonequilibrium feature is represented by a nonstationary random function
corresponding to the fluctuating transition frequency between two quantum states coupled to the surroundings.
In this framework, we compute the decoherence factors which have a characteristic “dip” related to the initial
phases of the bath modes. We therefore study different types of environments, namely, ohmic and supraohmic.
These environments present different decoherence time scales than the thermal environment we used to study.
As a consequence, we compute analytically and numerically the nonunitary geometric phase for the qubit in a
quasicyclic evolution under the presence of these particular nonequilibrium environments. We show in which
cases decoherence effects could, in principle, be controlled in order to perform a measurement of the geometric
phase using standard procedures.
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I. INTRODUCTION

The spin-boson model is studied in a variety of fields,
such as condensed matter physics, quantum optics, physical
chemistry, and quantum information science [1] in order to
describe nonunitary effects induced in quantum systems due
to a coupling with an external environment. For a quantum
system, the influence of the surroundings plays a role at
a fundamental level. When the environment is taken into
consideration, the system dynamics can no longer be described
in terms of pure quantum states and unitary evolution. From
a practical point of view, all real systems interact with an
environment to a greater or lesser extent, which means that we
expect their quantum evolution to be plagued by nonunitary
effects, namely, dissipation and decoherence.

Most theoretical investigations of how the system is affected
by the presence of an environment have been done using
a thermal reservoir, usually assuming Markovian statistical
properties and defined bath correlations [2,3] (there are
also works on non-Markovian models as just, for example,
Ref. [4]). However, there has been some growing interest
in modeling more realistic environments, sometimes called
“composite” environments [5–7]. In fact, the are many
situations where the environment is better modeled by a
nonequilibrium bath. Quantum dynamics in nonequilibrium
environments has been previously considered by some recent
investigations. For example, light-induced ultrafast coherent
electronic processes in chemical or biological systems may
occur on sufficiently short time scales [8]. In these cases, initial
nonequilibrium states induced in the bath through the coupling
among system and environment might not have the chance to
reach equilibrium rapidly. Then, the transient nonequilibrium
bath dynamics may undergo a nontrivial interaction with
the system of interest in comparable time scales. Gordon
et al. discussed the control of quantum coherence and the
suppression of dephasing by stochastic control fields [9]. In
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Ref. [5], the decoherence process induced by a nonequilib-
rium environment described by several equilibrium baths at
different temperatures is discussed. Therein, it was suggested
that the effect of such an environment on the quantum system
could be described as the effect done by a single effective
bath with a time-dependent temperature. The decoherence of
single trapped ions coupled to engineered reservoirs, where
the internal state and coupling can be controlled, was studied
in Ref. [10].

In this context, we shall describe a simple model which
gives a different insight into the behavior of a quantum system
coupled to an environment that is not at thermal equilibrium.
Herein, we study the dynamics of quantum coherence in
nonequilibrium. We consider a two-level quantum system in
a nonequilibrium bath, represented by random perturbations
with nonstationary statistics. Therefore, we shall study how
the quantum system is affected by the decoherence induced by
the environment. We shall compare this decoherence process
with the usual results for a thermal environment.

From another point of view, a system can retain the
information of its motion when it undergoes a cyclic evolution
in the form of a geometric phase (GP), which was first put
forward by Pancharatman in optics [11] and later studied
explicitly by Berry in a general quantal system [12]. Since
then, great progress has been achieved in this field. As an
important evolvement, the application of the geometric phase
has been proposed in many fields, such as the geometric
quantum computation. Due to its global properties, the geo-
metric phase is propitious to construct fault-tolerant quantum
gates. In this line of work, many physical systems have
been investigated to realize geometric quantum computation,
such as nuclear magnetic resonance (NMR) [13], Josephson
junction [14], ion trap [15], and semiconductor quantum dots
[16]. The quantum computation scheme for the GP has been
proposed based on the Abelian or non-Abelian geometric
concepts, and the GP has been shown to be robust against
faults in the presence of some kind of external noise due
to the geometric nature of the Berry phase [17–19]. It was
therefore seen that the interactions play an important role for
the realization of some specific operations. As the gates operate
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slowly compared to the dynamical time scale, they become
vulnerable to open system effects and parameter fluctuations
that may lead to a loss of coherence. Consequently, the study of
the GP was soon extended to open quantum systems. Following
this idea, many authors have analyzed the correction to the
GP under the influence of an external thermal environment
using different approaches (see Refs. [20–23] and references
therein).

In this paper, we shall study how the GP is affected by the
presence of a nonequilibrium environment. We shall consider
a two-state quantum system coupled to such an environment
and derive the corresponding decoherence factor in Sec. II.
We shall analyze the decoherence process for ohmic and
nonohmic environments. In Sec. III, we shall derive the GP for
a nonunitary evolution of the quantum system in the presence
of a nonequilibrium environment and compute how the GP is
corrected in each case. Finally, in Sec. IV, we shall make our
final remarks.

II. PURELY DEPHASING SOLVABLE
SPIN-BOSON MODEL

A paradigmatic model of open quantum systems is a two-
state quantum system coupled to a thermal environment. This
is a particular case of the spin-boson model by Leggett [1]
(where the tunneling bare matrix element is � = 0) and has
been used by many authors to model decoherence in quantum
computers [24] and, in particular, it is extremely relevant to the
proposal for observing GPs in a superconducting nanocircuit
[25]. In spite of its simplicity, this model captures many of
the elements of decoherence theories and sheds some insight
into the modification of the GPs due to the presence of the
environment. The interaction between the two-state system
and the environment is entirely represented by a Hamiltonian
in which the coupling is only through σz. In this particular case,
[σz,Hint] = 0 and the corresponding master equation for the
reduced density matrix is much simplified, with no frequency
renormalization and dissipation effects. In other words, the
model describes a purely decohering (dephasing) mechanism,
solely containing the diffusion term D(t) [21]. In such a case,
it is easy to check that

ρr01 (t) = e−i�t e−A(t)ρr01 (0)

is the solution for the off-diagonal terms of the reduced
density matrix (while populations remain constant) and A =∫ ∞

0 dsD(s). � refers to the angular frequency of precession
of a spin precessing the z axis as ruled by the isolated from
the environment Hamiltonian H0 = 1

2�σz (responsible for the
unitary evolution). The spin-boson model is the one used in
Ref. [21] in order to present a solvable model to study how
the GPs are corrected by decoherence in open systems. In
that framework, we have studied not only how the GPs are
corrected by the presence of the different type of environments
but estimated the corresponding times at which decoherence
become effective as well. These estimations should be taken
into account when planning experimental setups, as the
one performed in Ref. [26], where using a NMR quantum
simulator, the geometric phase of an open system undergoing
nonunitary evolution has been obtained. The GP was computed
in a tomographic manner, measuring the off-diagonal elements

of the reduced density matrix of the system. This study of
the GP in the nonunitary regime is particularly important
for the application of fault-tolerant quantum computation (see
Ref. [27] as an example of measuring the Berry phase in a solid-
state qubit where there is an important geometric contribution
to dephasing that occurs when geometric operations are carried
out in the presence of low-frequency noise).

In the present paper, we shall adopt a different model of
decoherence than the one in Ref. [21]. We are concerned
with nonequilibrium situations, in which the qubit (the main
quantum system) is coupled to a nonequilibrium bath. The two-
level quantum system presents an energy gap E2(t) − E1(t) =
h̄ω(t) which fluctuates due to the influence of the environment,
where Ej (t), with j = 1,2 is the instantaneous energy of
state j as perturbed by the surroundings. Following the idea
proposed in Ref. [28], the bath is represented by a random
function of time corresponding to the transition frequency
of the two-state quantum system. In contrast to the usual
treatment, the statistical properties of this random function
are nonstationary, corresponding physically to, for example,
impulsively excited phonons of the environment with initial
phases that are not random, but which have defined values
at t = 0. Due to this assumptions, this environment is not at
thermal equilibrium. The time-dependent frequency is written
in the form ω(t) = � + δω(t), where δω(t) is defined as

δω(t) =
∞∑

k=1

ck cos[ωkt + θk(t)]. (1)

The Fourier components ck are positive constants related to
the spectral density of the environment and the coupling of the
bath modes to the system. It is important to mention that, in
this model, the randomness enters through the nonstationary
distribution of random phases θk(t), which are given by θk(t) =
θk(0) + xk(t). The random function xk(t) satisfies a diffusion
equation

∂tPk(x,t) = Dk∂
2
xPk(x,t), (2)

where Pk(x,t) is a time-dependent probability distribution and
Dk is the diffusion constant. The quantity xk is an angle,
so P (x,t) is a function with period 2π . The time-dependent
probability distribution for component k that solves Eq. (2)
with an initial localized condition P (x,0) = δ(x) is

Pk(x,t) = 1

2π
+ 1

π

∞∑
n=1

e−n2Dkt cos(nx). (3)

This means that, physically, the phase of each component of
the random force is not random at t = 0, when an impulsive
excitation creates a quantum coherence in the system, but de-
cays to a uniform 1/2π distribution under diffusive evolution
with diffusion constant Dk [28].

Following this approach, it is possible to evaluate

ρr01 (t) = e−i�t
〈
e−i

∫ t

0 δω(s)ds
〉
ρr01 (0) ≡ e−i�tF(t)ρr01 (0), (4)

the solution for the off-diagonal element of the density matrix
(while the populations remain constant again). Here, we denote
with 〈· · ·〉 the nonequilibrium average over the nonstationary
random bath and F(t) is defined as the decoherence factor.

By considering the typical factor fk(t) =
exp[−i

∫ t

0 δωk(s)ds], one has to do some algebra to
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obtain |F(t)|. This mainly consists of performing the
time integral and the averaging fk(t) over the distribution
probability Pk(xk,t) [28]. After these computations, a simple
but accurate approximation can be obtained, namely,

|F(t)| =
∣∣∣∣∣
∏
k

fk(t)

∣∣∣∣∣ � e−β(t), (5)

with

β(t) = 1

4

∫ ∞

0
dωI (ω)[1 − e−2Dt + (e−2Dt − e−4Dt )

× cos{2[ωt + θ (ω)]}]. (6)

It is important to note that in Eq. (6), the continuum limit
has already been taken (in the number of bath modes) and the
diffusion constant has been assumed D(ω) = D for simplicity.

In order to study the decoherence process induced in the
system by the presence of a nonequilibrium environment,
we define a widely used physical spectral density I (ω) =
4γ /2ωn/n−1e−ω/ [1], where γ is the dimensionless
dissipative constant and  is the cutoff frequency. On general
grounds,  is the biggest frequency present in the environment,
i.e., the frequency range of the environmental modes. In
particular, the case with n = 1 is the “ohmic” case and the one
with n > 1 is the “supraohmic” case. The ohmic environment
is the most studied case in the literature, for example, in
the quantum Brownian motion paradigm, and produces a
dissipative force that in the limit of the frequency cutoff
 → 0 is proportional to the velocity. The supraohmic case,
on the one hand, is generally used to model the interaction
between defects and phonons in metals [1] and also to mimic
the interaction between a charge and its own electromagnetic
field (see, for example, Ref. [29]). In particular, the use of
the supraohmic case can be used as a toy model to study
decoherence process in quantum field theory [30].

This model of nonequilibrium is characterized by a key
quantity which considers the effect of the initial phases of the
bath modes in the function θ (ω). In this case, we consider a
linear dependence such as θ (ω) = −λω. It is interesting to
have the possibility to control dephasing by varying the single
parameter λ. Following Eq. (6), the decoherence factors can
be exactly calculated and they are given by

Fohmic = e
−γ e−4Dt (−1+e2Dt )[e2Dt+ 1−42(t−λ)2

[1+42(t−λ)2]2
]

(7)

for the ohmic case, and

Fsupra = e
−6γ e−4Dt (−1+e2Dt )[e2Dt+ 1−24(t−λ)22+16(t−λ)44

[1+4(t−λ)22]4
]

(8)

for the supraohmic case (we use n = 3 throughout this article).
It is interesting to analyze the asymptotic behavior of the

function β(t). Both types of nonequilibrium environments
produce a linear time dependence for the very short time scale
Dt , t � 1, which induces a decoherence factor of the form
F ∼ exp[−aγ t] (where a is a constant with proper units).
This is similar to the decoherence factor calculated in Ref. [21]
for the case of an ohmic finite-temperature environment (just
assuming that γ ∼ γ0KBT ). In this limit, decoherence is
always an efficient process, unless the dissipative constant γ is
very small. In the long time limit Dt , t 
 1, both β functions
(the one for the ohmic, and the one corresponding to the
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FIG. 1. (Color online) Evolution in time of the decoherence factor
F(t) for different models of the environment in the strong coupling
limit. The red short-dashed line is for an ohmic nonequilibrium
bath and the long-dashed black line is for the supraohmic. For Dt ,
t 
 1, the decoherence factor behaves as Fohmic(t) ∼ exp(−γ )
and Fsupra(t) ∼ exp(−6γ ). We also present a solid blue line for
the assumptions made in Ref. [8], a nonequilibrium bath with
a Gaussian spectral density. Parameters used: γ = 3; /� = 1;
�λ = 1; D/� = 0.5; and n = 3 for the supraohmic environment.

supraohmic cases) acquire a constant value (different for each
type of environment). In this long time regime, the decoherence
factor in the ohmic case behaves as F ∼ exp[−γ ], similar
to the decoherence factor for the equilibrium supraohmic
environment at zero temperature [21]. Meanwhile, in the
supraohmic case, the decoherence factor approaches a long
time value given by F ∼ exp[−6γ ]. Again, as we mentioned
before, in the case of small γ , decoherence never occurs, even
at very long times. Intermediate times are ruled by the specific
randomness introduced into the model. All in all, it is important
to note the richness of the model which guarantees known and
unknown decoherence processes by the correct tuning of the
parameters.

In Fig. 1, we present the behavior of the decoherence
factor for a strong dissipative case for both environments.
As expected, the decoherence factor decays from unity to an
asymptotic value. Therein, we also present the behavior of
the decoherence factor found in Ref. [8], where a different
spectral density to describe the environment has been used.
The parameters used in the figure are similar to those used in
Ref. [8] in order to do a better comparison and analysis. Unlike
typical studies using the master equation in the weak-coupling
limit (γ ∼ c2

k), in the present approach there is no constraint for
the value of γ . Therefore we can use either a strong or weak
coupling as a value for γ . In the figure, we can note three
different lines: the solid blue line for the results in Ref. [8],
the red short-dashed line for our ohmic environment, and the
solid black long-dashed line for the supraohmic environment.
Then, it is easy to see that the ohmic case is very similar to
the one obtained in Ref. [8], where a Gaussian spectral density
was considered. In both cases, decoherence is very efficient,
as expected since we are considering the overdamped case
(γ � 1). There is also an interesting fact: The supraohmic
decoherence factor has a smaller decoherence time scale than
the other two decoherence factors considered herein. This is
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FIG. 2. (Color online) Evolution in time of the decoherence factor
F (t) for different models of the environment in the weak-coupling
limit. The red short-dashed line is for an ohmic nonequilibrium bath
and the black solid line (botton line) is for the supraohmic case. We
also present a solid blue line for the assumptions made in Ref. [8], a
nonequilibrium bath with a Gaussian spectral density (different with
respect to the normally used in the theory of quantum open systems
theory). Parameters used: γ = 0.5; /� = 1; �λ = 1; D/� = 0.1.

unlike the case for the equilibrium supraohmic environment,
where decoherence is effective only at high temperature. This
modeling of the environment gives a decoherence factor which
drops from its initial value toward an asymptotic value [F(t →
∞)] after the intermediate time t = λ. At this time the system
rephases back to the slowly decaying envelope that is not
purely exponential. As λ becomes large and positive, the decay
approaches the envelope function without the nonmonotonic
dip (that occurs at t = λ). Nonexponential behavior in the
decay of quantum coherence has been observed in full many-
particle simulations of quantum coherent dynamics under
nonequilibrium conditions [31].

In order to have a better view of the dip where the
system “recoheres” for a while, we present the behavior of
the decoherence factors for the weak-coupling case in Fig. 2.
Therein, γ has a smaller value, comparable to those we used
when dealing with environments in thermal equilibrium in
the underdamped case [21,32,33]. The dip is obtained by
introducing, as we mentioned before, the simple relation
θ (ω) = −λω for the initial phases of the bath modes in the
modeling of the environment. Even though this assumption is
a minimalistic model, it allows to have some kind of control
in the decoherence process which in turn can be useful in
experimental setups where decoherence is always an obstacle
to overcome. This result agrees with the one in Ref. [5], where
it was shown that nonequilibrium decoherence can be slowed
down in a controlled manner as compared to the corresponding
equilibrium situation.

A different modeling of the initial phases of the bath
modes can, in principle, be adopted. However, herein we
use the linear one just for simplicity. A complex assumption
can be, for example, θ (ω) = −λω2. The derivation of the
decoherence factor is somewhat more difficult and is not worth
writing explicitly here. Anyway, the decoherence factor for a
quadratic behavior in ω is presented in Fig. 3 for an ohmic and
supraohmic nonequilibrium environment. In such a case, it is
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FIG. 3. (Color online) A more complex modeling of the initial
phases of the bath modes by considering θ (ω) = −λω2 in an ohmic
(blue solid line on the botton) and supraohmic (black solid line on top)
environment. Parameters used: γ = 3; /� = 1; �λ = 1; D/� =
0.1.

important to note a more complicated structure of dips in the
decoherence factor.

III. APPLICATION: GEOMETRIC PHASE FOR A QUBIT
COUPLED TO A NONEQUILIBRIUM ENVIRONMENT

In order to compute the GP and note how it is corrected by
the environment, we shall briefly review the way the geometric
phase can be computed for a system under the influence of
external conditions such as an external bath. In Ref. [20], a
quantum kinematic approach was proposed and the geometric
phase (GP) for a mixed state under nonunitary evolution has
been defined as

φG = arg

{∑
k

√
εk(0)εk(τ )〈�k(0)|�k(τ )〉e− ∫ τ

0 dt〈�k | ∂
∂t

|�k〉
}

,

(9)

where εk(t) are the eigenvalues and |�k〉 the eigenstates of
the reduced density matrix ρr (obtained after tracing over the
reservoir degrees of freedom). In the last definition, τ denotes a
time after the total system completes a cyclic evolution when
it is isolated from the environment. Taking into account the
effect of the environment, the system no longer undergoes a
cyclic evolution. However, we shall consider a quasicyclic path
P : tε[0,τ ], with τ = 2π/� (� is the system’s characteristic
frequency). When the system is open, the original GP, i.e.,
the one that would have been obtained if the system had been
closed φU , is modified. This means, in a general case, that
the phase can be interpreted as φG = φU + δφG, where δφG

depends on the kind of environment coupled to the main system
[7,21–23,26,34].

Assuming an initial quantum state of the form

|ψ(0)〉 = cos

(
θ0

2

)
|0〉 + sin

(
θ0

2

)
|1〉, (10)

its evolution at a later time t is

|ψ(t)〉 = e−i�t cos(θ+)|0〉 + sin(θ+)|1〉, (11)
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FIG. 4. (Color online) Behavior of the geometric phase as a
function of the initial state of the quantum system θ0 (measured
in radians) and the dissipation of the environment (dimensionless
γ ) induced by an ohmic nonequilibrium environment in a cycle.
Parameters used: /� = 1; �λ = 1; D/� = 0.1.

where

cos(θ+) = sin(θ0)|F(t)|√
sin2(θ0)|F(t)|2 + 4

[
ε+ − cos2

(
θ0
2

)]2
, (12)

sin(θ+) = 2
[
ε+ − cos2

(
θ0
2

)]
√

sin2(θ0)|F(t)|2 + 4
[
ε+ − cos2

(
θ0
2

)]2
, (13)

and ε+ the eigenvalue of the reduced density matrix, namely,

ε+ = 1
2 [1 +

√
cos2(θ0) + sin2(θ0)|F(t)|2], (14)

while ε− does not contribute to the geometric case since ε−(t =
0) = 0 [see definition Eq. (9)].

As in our previous works [7,21,26,34], the GP is obtained
by computing eigenvectors and eigenvalues of the reduced
density matrix and using Eq. (9),

φG = �

∫ τ

0
cos2(θ+)dt. (15)

In Figs. 4 and 5 we plot the environmentally induced
correction to the unitary phase |δφG| (normalized by the value
of φU ) as a function of the system’s initial quantum state
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 1
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FIG. 5. (Color online) Behavior of the GP as a function of the
initial state (θ0 in radians) of the quantum system and the dissipation
of the environment (dimensionless γ ) induced by a supraohmic
nonequilibrium environment in a cycle. Parameters used: /� = 1;
�λ = 1; D/� = 0.1.

(θ0) and the dissipation induced in the quantum subsystem
due to the presence of the random environment (γ ). In both
figures we have considered a wide range of values for γ ,
considering both weak and strong coupling between system
and environment. For small values of γ , the GP behaves
very similarly to the unitary GP, which is φU = π (1 + cos θ0).
However, as we increase the value of γ , there is a notable
change in the curvature as a function of θ0, leading to more
values of θ0 with a null GP. As expected, the more decohering
environment, the less survival of the GP. In agreement with
Fig. 2, we can see that the geometric phase is less corrected
(with respect to the isolated case) in the presence of an ohmic
nonequilibrium environment rather than of a supraohmic one.
This can be noted by the fact that Fig. 4 remains a smooth
function of θ0 for bigger values of γ than Fig. 5, in which
case the phase rapidly behaves different as a function of the
dissipation constant.

The GP cannot be fully computed analytically but we can
perform an expansion in powers of the coupling constant to
obtain an accurate approximation of it [21–23]. Hence, we
expand in powers of γ the cos2 θ+ in Eq. (15), using the
definition of the decoherence factors for each environment,
namely, Eqs. (7) and (8). As mentioned before, the correction
to the GP is defined as δφG, while φU is the unitary GP. In the
case of the ohmic nonequilibrium environment, the correction
to the unitary GP is given by

δφGn=1 ≈ πγ sin2(θ0) cos(θ0) + γ
�D

2
e−2Dλ sin2(θ0) cos(θ0).

(16)

Proceeding the same way for the supraohmic environment, the
correction to the unitary GP is

δφGn=3 ≈ 6πγ sin2(θ0) cos(θ0)

+ γ
�D3

44
e−2Dλ sin2(θ0) cos(θ0). (17)

The corrections of the GP for both environments agree
for small values of γ in Figs. 4 and 5. In both cases, the
dependence with the parameter λ is exponentially negligible.
Another interesting feature of the corrections of the GP is
that they depend on the initial angle of the quantum state,
and this dependence is in agreement with the ones obtained
for a two-level system in interaction with environments at
equilibrium [7,21–23,26,34]. Neglecting the small correction
induced by λ (which is a correct assumption seen Figs. 4 and 5),
both cases are similar to the very low-temperature corrections
found in Ref. [21] for the case of thermal environments. In
Figs. 6 and 7, we show the range of validity of the first-order
perturbative expansion in powers of γ . In Fig. 6, it is clear that
the perturbative result (solid line) of Eq. (16) is in excellent
agreement with the exact result (dashed line), even for not too
small values of the coupling strength parameter γ . Figure 7
shows that Eq. (17) is also a good approximation to the exact
result (dashed line), but only for very small values of γ .

It is an interesting feature to study which is the influence
of the observed dip (in the decoherence factor) in the behavior
of the GP. In this model of nonequilibrium environment, the
parameter λ, which enters through the random phases, sets the
position at which the “dip” or “recoherence” takes place. As we
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FIG. 6. (Color online) Comparison between exact GP (red dashed
line), in the presence of an ohmic environment, and the first-order
perturbative correction (blue solid line) from Eq. (16). Perturbative
result is in good agreement with the exact result for a long range of
values of γ . Parameters used: D/� = 1, �λ = 1, /� = 1.

have seen, there is a time scale when the system seems to gain
coherence (t ∼ λ). In Fig. 8, we present the correction to the
GP |δφG| as a function of the initial state of the quantum system
(θ0) and the initial phases of the bath modes (�λ)for an ohmic
nonequilibrium environment. Therein, we can observe that the
geometric phase is not affected by the dip in the decoherence
factor, as it is computed over a quasicyclic evolution. In Fig. 8
we can note that the GP has a monotonous behavior as a
function of λ. The analytical estimation of the influence of λ

in the correction to the GP, made in Eqs. (16) and (17), is also
checked in Fig. 8.

IV. FINAL REMARKS

The geometric phase of quantum states is an issue worthy
of attention. It could be a potential application in holonomic
quantum computation since the study of spin systems effec-
tively allows us to contemplate the design of a solid-state
quantum computer. However, decoherence is the main obstacle
to overcome. All realistic quantum systems are coupled to
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FIG. 7. (Color online) Comparison between exact geometric
phase (red dashed line), in the presence of an supraohmic environ-
ment, and the first-order perturbative correction (blue solid line) from
Eq. (17). The perturbative result is a good approximation for really
small values of γ . Parameters used: D/� = 1; �λ = 1; /� = 1.
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FIG. 8. (Color online) Behavior of the geometric phase as a
function of the initial state θ0 (in radians) of the quantum system
and the initial phases of the bath modes (λ) in a cycle for an ohmic
nonequilibrium environment. Parameters used: /� = 1; γ = 3;
D/� = 0.1.

their surroundings to a greater or lesser extent. Furthermore,
in most cases of practical interest, quantum systems are
subjected to many noise sources with different amplitudes and
correlation times, corresponding de facto to a nonequilibrium
environment.

Herein, we have presented a simple case to illustrate the
general phenomenon of dephasing in a nonequilibrium bath.
We have studied the decoherence process of a quantum system
in interaction with an initially nonequilibrium bath that can be
controlled by manipulating the nature of the relative initial
phases of the bath modes. The decoherence factors computed
here suggest that by engineering these initial phases, the
dephasing of the subsequent quantum evolution can potentially
be controlled. We have found similarities and differences in
the decoherence process between the environment presented
here and thermal environments studied in previous works.
The model presented here is another proposal for engineering
reservoirs in a manner reminiscent of a coherent control
experiment using shaped pulses [35]. In this model, the control
parameter λ is derived not from a laser pulse, but rather
from well-defined phase relations between the modes of the
bath. Another possible candidate for realizing this decoherence
environment is to use the artificially generated fluctuating
environments with NMR. It could be possible, in principle,
to use the quantum simulator of Ref. [26] to generate the
fluctuating phase θ (ω) of the present proposal.

The analysis of the effect produced by decoherence on the
GP is crucial at the time to design an experimental setup to
measure the GP using, for example, interferometry. We found
that the convenient nonequilibrium environment to observe
GPs is the weak-coupled ohmic case. It is important that there
is no restriction about zero-temperature environments in this
case, as it was found in Ref. [21], as the most convenient
scenario. In this framework, these kind of environments
could become a proper experimental setup for the observation
of the geometric phase. Therefore, we have computed the
geometric phase for an ohmic and supraohmic nonequilibrium
environment and have seen how they deviate from the unitary
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geometric phase. So far, we have seen that the characteristic dip
of the decoherence factor does not affect much the geometric
phase and that the ohmic nonequilibrium environments are
not as destructive as the supraohmic nonequilibrium ones
or the thermal environments we are so used to see in the
literature. The effect done on the geometric phase by the
ohmic (or/and supraohmic) nonequilibrium environment can
be seen as similar to the one done by a single reservoir with
an effective temperature, as the nonequilibrium environment
model proposed in Ref. [5]. In the very weak-coupling

limit, we have evaluated the corrections induced by the
nonequilibrium environment on the unitary GP, showing that
there is a small (exponentially suppressed) correction due
to the random parameter λ. More general models should be
analyzed in a future work.
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