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Free-draining flow is observed in many practical and industrial situations. It is considered as a stage of a
batch dip-coating process, where the draining of the fluid will form a liquid film over a substrate by grav-
ity. The objective of this work was to develop a mathematical model and to obtain analytical solutions for
the fluid-dynamic variables of a free-draining flow during a dip-coating draining stage of a finite vertical
plate using a fluid whose rheological behavior is described by the Carreau-Yasuda model. Mathematical
expressions have been obtained assuming a monophasic, isothermal, and nonevaporative system, where
the most important forces are viscous and gravitational. The studied phenomena occurred far away from
the meniscus formed at the surface of the fluid reservoir. The main operative variables that were esti-
mated are velocity profile, flow rate, local thickness, and average thickness of the film. A validation
was performed by using experimental data of average film thickness values of several representative
food-grade fluids with coating capacity (emulsions and suspensions) obtained from the literature. The
information published in this work will be useful for researchers and technicians to control and predict
film characteristics (thickness and uniformity) and operational variables (velocity and flow rate) during
laboratory and industrial coating processes where free-draining flow takes place.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Free-draining flow is observed in many practical and industrial
situations, for example, during the drainage of liquids from tubes,
reservoirs or tanks and as stage of a batch dip-coating process
(Tallmadge and Gutfinger, 1967; Sherwood, 2009; Ungarish and
Sherwood, 2012; Ali et al., 2016). The draining of the fluid that will
form the coating over any substrate (long, short, rigid, flexible, por-
ous, isolated, with regular or irregular shape) by gravity, is consid-
ered an important step for controlling the thickness and final
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Nomenclature

a; b characteristic parameters used in Eq. (9)
Ca capillary number qUr�1

� �
ei unit vector in ith-direction
Fe external forces, N m�3

2F1 a;b; d; zð Þ Gauss hypergeometric function
g gravity acceleration vector, m s�2

gx gravity acceleration component, m s�2

h local film thickness, m
hL local film thickness at L, m
hh ix area-averaged film thickness in the x-direction, m
L length of the plate, m
K consistency index, Pa s
n behavior index
P pressure, Pa
Q flow rate per unit width, m2 s�1

St Stokes number qgxh
2
Lg�1

ref U
�1

� �
t time, s
U reference velocity in x-direction, m s�1

v i velocity component in ith-direction, m s�1

hvxiy area-averaged vx in y-direction, m s�1

x; y; z Cartesian coordinates
x vector position, m
Z normalized and dimensionless shear rate parameter

Zm normalized and dimensionless shear rate parameter
evaluated at y ¼ 0

Greek symbols
_c magnitude of the rate-of-strain, s�1

_cc characteristic rate-of-strain used in Eq. (9), s�1

_cm magnitude of the rate-of-strain evaluated at y ¼ 0, s�1

g steady state viscosity, Pa s
g0 limiting steady state viscosity when _c! 0 used in Eq.

(9), Pa s
g1 limiting steady state viscosity when _c ! 1 used in Eq.

(9), Pa s
gc shear-thinning relative viscosity defined in Eq. (21)
gref steady state viscosity at reference state, Pa s
n parameter defined as Z=Zm

q density, kg m�3

r surface tension coefficient, N m�1

sij viscous-stress tensor component acting in jth-direction
on a plane with a normal vector acting in
ith-direction, Pa

s0 yield stress, Pa
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quality of films obtained during a dip-coating process (Tallmadge
and Gutfinger, 1967; Schunk et al., 1997).

To understand the advantages and limitations of such process, it
is important to have a fundamental understanding of the physical
principles governing the fluid flow, including its rheological behav-
ior. Sometimes, they can be expressed concisely though a mathe-
matical model with a theoretical background. If an agreement
between theory and experiment is established for the free-
draining flow, the experimental data to explore the effect of pro-
cess variables can be reduced. Therefore, the theoretical analysis
often represents significant savings in time and money for assess-
ing coating choices (Weinstein and Palmer, 1997). Indeed, analyti-
cal solutions provide a good alternative for solving mathematical
models, because they are easier to obtain and use, less prone to
error, and highly accurate (Sochi, 2015).

However, it is known that the connection between the transport
phenomena governing the fluid flow and the rheological behavior
of the fluid during any coating process is difficult to obtain using
mathematical expressions (Eley and Schwartz, 2002). In recent
years, our group has made efforts to find novel analytical solutions
of mathematical models that describe the fluid-dynamic variables
(like velocity and film thickness profiles) during the draining stage
of a dip coating, incorporating to such expressions an equation that
represents the rheological behavior of the fluid (Herschel-Bulkley,
Power law, Casson, Quemada, etc.) (Peralta et al., 2014a; Peralta
et al., 2014b; Peralta and Meza, 2016).

The Carreau-Yasuda model is a well-known rheological model
used to estimate the steady state viscosity in a non-Newtonian
fluid (Carreau, 1972; Yasuda, 1979). Recent studies have shown
that it has a continuum mechanics foundation, albeit is considered
an empirical rheological model (Surana, 2014). This expression was
used to describe, in any of its forms and for certain conditions, the
viscosity of several and different types of fluids (e.g. suspensions,
emulsions, aerated emulsions, polymer solutions, and melts)
(Lapasin and Pricl, 1995; Kistler and Schweizer, 1997; Dantzig
and Tucker, 2001; Morrison, 2013; Osswald and Rudolph, 2014;
Rao, 2014). Even though different phenomena may occur
in these fluids, they have shown shear-thinning behavior in the
range of conditions where Carreau-Yasuda model was used.
Shear-thinning is a concept used to refer the viscosity decreasing
due to an increment in the deformation rate applied to the fluid.
It may be attributed to the dispersed and/or continuous-phase
material (Genovese, 2012; Spikes and Jie, 2014) and can be
described by assuming that fluids are dispersions of particles,
where the main interactions are Brownian and hydrodynamic
forces (Brummer, 2006). The shear-thinning region is observed
when both forces are similarly relevant, achieved when the charac-
teristic Peclet number (Pe) is Pe ¼ Oð1Þ (Quemada, 1998;
Willenbacher and Georgieva, 2013). This approach simplifies the
model and explains the viscosity variation for a fluid composi-
tion/structure and interactions (Quemada, 1998; Brummer, 2006;
Willenbacher and Georgieva, 2013; Osswald and Rudolph, 2014).

Fig. 1 shows some examples of structural changes observed as
consequence of shear rate variations in a shear-thinning fluid dur-
ing a free-draining flow. As described in the literature (Quemada,
1998; Brummer, 2006; Willenbacher and Georgieva, 2013;
Osswald and Rudolph, 2014), structurally viscous fluids may con-
tain irregularly shaped particles, droplets or branched and/or
entangled long molecular chains. In those systems, high levels of
entropy are expected at rest and low rate of deformation due to
a randomly distribution of particles as clusters of aggregates (high
volume fractions) (Quemada, 1998; Genovese, 2012), droplets, and
molecules. This highly structured fluid configuration exhibits a
high constant viscosity value referred to as a Newtonian plateau
(Osswald and Rudolph, 2014). At this point, the small deformation
results in Brownian forces higher than its hydrodynamical counter-
part (Pe � 1). Naturally, the system shows a tendency to maintain
this state up to a point where further increments in shear rate (or
shear stress) produce alignments of the structural components in
the direction of the main flow. A disentanglement process, fol-
lowed by a deformation of macromolecular chains and ellipsoidal
deformed droplets, is observed for entangled molecular chains
and emulsion droplets, respectively. Also, clusters, aggregates,
and flocs tend to decompose into their elements (Quemada,
1998). In this range, the described phenomena leads to a shear-
thinning behavior of the fluid, where Brownian and hydrodynam-
ical forces are similar (Pe ¼ Oð1Þ). Finally, as these structures tend
to adopt less organized configurations and align in the direction of



Fig. 1. Schematic representation of the main fluid-dynamic variables in the free-draining flow stage of a dip-coating process using a shear-thinning fluid. Details correspond
to some effects of shear rate on fluid interaction and structures (i.e. orientation, stretching, deformation, and decay in aggregation).
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the flow when the rate of deformation is increased, the system
tends to flow more easily. Here, the high rate of deformation leads
to large hydrodynamical interactions (Pe � 1). At this point, fur-
ther increments in shear rate do not modify the configurations
considered as fluid structures, and the viscosity tends to be con-
stant again (second Newtonian plateau).

On one hand, even though numerous studies were focused on
dip-coating systems using shear-thinning fluids, as far as the
authors know only two of them used a Carreau or Carreau-
Yasuda rheological models to predict the steady state viscosity
(Javidi and Hrymak, 2015; Zhang et al., 2016). Furthermore, those
studies were based on numerical and experimental work focused
on systems where an asymptotic film thickness was formed due
to balancing viscous and surface tension forces. The main phenom-
ena occur around the fluid meniscus and are used to describe the
formation of a thin film on a plate that is constantly withdrawn
from a fluid bath. On the other hand, no theoretical studies for
the draining stage (i.e. where usually the main forces are gravita-
tional and viscous) of a dip-coating system using a Carreau-
Yasuda model were found in the literature. Therefore, the objective
of this work was to develop a mathematical model and to obtain
analytical solutions for the fluid-dynamic variables of a free-
draining flow during a dip-coating draining stage of a finite vertical
plate using a fluid whose rheological behavior is described by the
Carreau-Yasuda model.
2. Theoretical approach

2.1. Equations of change

A schematic representation of the free-draining flow stage of a
dip-coating process is shown in Fig. 1. The figure indicates that the
system studied in this work is similar to a previous published pro-
cess (Peralta et al., 2014a; Peralta et al., 2014b; Peralta and Meza,
2016). Nevertheless, because of the nature of the constitutive
model adopted further in the paper, a detailed description of all
the steps used to achieve balances is essential to understand the
obtained expressions for the main variables. Briefly, the studied
phenomena occur far away from the meniscus (formed at the sur-
face of the fluid reservoir), in isothermal and non-evaporative con-
ditions. Also, the following assumptions were considered: (1) the
fluid is incompressible (q – f ðx; tÞ), (2) the external forces are
mainly gravitational (Fe ¼ qg), (3) the surface interactions are neg-
ligible (Ca ! 1), (4) the system is open (rP ¼ 0), (5) the system
can be represented in Cartesian coordinates (x ¼ exxþ eyyþ ezz),
(6) the problem is mainly 2D (i.e. vz � 0 and changes in z direction
are negligible: @=@z � 0), and (7) gravity acts in x-direction
(g ¼ exgx),

@vx

@x
þ @vy

@y
¼ 0 ð1Þ

@syx
@y

� qgx ð2Þ

@sxy
@x

þ @syy
@y

� 0 ð3Þ

Considering that the film will be surrounded at the top by air
and that gair � gfilm, a feasible boundary condition will be syx � 0
in y ¼ hðxÞ. Then, after integration, Eq. (2) yields:
syx ¼ �qgx h� yð Þ ð4Þ

This equation, as obtained and described in previous works
(Peralta et al., 2014a; Peralta and Meza, 2016), predicts a linear
profile of the shear stress across the film with a slope that depends
on the ratio between gravitational and viscous forces. Also, it
shows that syx is independent on the fluid nature of the coating
material (i.e. Newtonian, viscoelastic, etc.), and the maximum
shear stress is expected at the plate surface: sm ¼ �qgxh.

2.2. Range of theoretical validity of the approach

An important feature of the theoretical approach presented
here is the verification of the range of validity of the set of Eqs.
(1)–(3). As the system studied in this work is the same that was
presented in previous studies (Peralta et al., 2014a; Peralta and
Meza, 2016), the theoretical validity of the expressions presented
can be made by checking the following expressions:

hL=L � 1 ð5Þ

qUh2
L

gref L
� 1 ð6Þ

St ¼ qgxh
2
L

gref U
¼ Oð1Þ ð7Þ

As stated in previous works (Peralta et al., 2014a; Peralta and
Meza, 2016), it is noteworthy that in order to evaluate Eqs. (5)–
(7), two parameters should be defined: (1) gref and (2) U. The def-
inition of these parameters will depend on the adopted rheological
model.
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2.3. Constitutive equation

At this point, an additional equation that relates the rate of
deformation (expressed as a function of the velocity gradients in
the material) to the stress in the film is necessary. The simplest
way to obtain this relationship is assuming the fluid material
behavior as a generalized Newtonian fluid:

s ¼ �g _c ð8Þ

where s is the viscous stress tensor [Pa], g is the steady state viscos-
ity [Pa s], and _c is the rate-of-strain tensor [s�1]. Here, g is a function

of the magnitude of the viscous stress tensor s or the magnitude of
the rate-of-strain tensor _c, temperature, pressure, and
concentration.

The rheological model used to estimate g as a function of _c is
the well-known shear-thinning Carreau-Yasuda model (Carreau,
1972; Yasuda, 1979):

g ¼ g1 þ g0 � g1

1þ _c= _ccð Þa� �b ð9Þ

where g1 is the limiting steady state viscosity when _c ! 1 (i.e.
lim _c!1g) [Pa s], g0 is the limiting steady state viscosity when
_c ! 0 (i.e. lim _c!0g) [Pa s], _cc is a characteristic shear rate [s�1],
and a and b are characteristic parameters. These parameters could
be described as a function of system variables such as concentra-
tion, temperature, and pressure (Osswald and Rudolph, 2014).

It is important to mention that several well-known rheological
models can be obtained by modifying conveniently the parameters
in Eq. (9). Some of these models were listed elsewhere with mod-
ifications in their derivations (Osswald and Rudolph, 2014): Car-
reau model (Carreau, 1972), a ¼ 2 then g ¼ g1 þ ðg0 � g1Þ=½1þ
ð _c= _ccÞ2�b; Cross model (Cross, 1965), b ¼ 1 then g ¼ g1þ
ðg0 � g1Þ=½1þ ð _c= _ccÞa�; Bingham model (Bingham, 1922),
a ¼ b ¼ �1;g0 ¼ K; ðg0 � g1Þ _cc ¼ s0 then g ¼ K þ s0= _c; and
Ostwald-de Waele model (i.e. Power law) (Ostwald, 1925),
a ¼ 1; b ¼ 1� n; _c � _cc;g0 � g1;g0= _cc ¼ K then g � K _cn�1.

Although analytical solutions were found in previous studies
using Cross, Bingham, and Ostwald-deWaele fluids for a similar
dip-coating draining stage (Peralta et al., 2014a; Peralta and
Meza, 2016), new solutions using Carreau-Yasuda and Carreau flu-
ids will be presented in the following Sections. This generality fea-
ture of Eq. (9) increases the practical application of the present
study.

At this point, it would be helpful to show briefly the effect of the
parameters of Eq. (9) on the viscosity estimation. Fig. 2 shows pre-
dicted steady state viscosity profiles as a function of shear rate
Fig. 2. Steady state viscosity profiles as a function of shear rate predicted by Eq. (9) for
with g0 ¼ 10 Pa s, g1 ¼ 0:1 Pa s, _cc ¼ 1 s�1, and a ¼ b ¼ 1.
obtained by Eq. (9) for a shear-thinning fluid (i.e. g0 > g1) and
selected values of g0;g1; _cc; a, and b. First, as g0 and g1 are the lim-
its of the range of possible viscosity values predicted by Eq. (9),
variations in those parameters vertically scale the profiles. Second,
_cc is related to a characteristic response time (inverse) of the fluid
and changes in this parameter produce a horizontal shift in the
profile. For example, in dispersions _cc is related to the mean parti-
cle size in the fluid, being higher for smaller particles
(Willenbacher and Georgieva, 2013; Morrison, 2013). When
_c ¼ _cc , viscosity is g ¼ ðg0 þ g1Þ=2. Third, a and b primarily affect
the slope of the thinning range of viscosity. The main difference
is that a produces these slope changes pivoting at _cc and controls
the curvature of the concave region (Morrison, 2013; Osswald
and Rudolph, 2014), while b has an asymmetric effect on the entire
profile. The combined effect of these parameters gives Eq. (9) the
freedom of different profile curvatures near g0 and g1, resulting
in a highly descriptive capability of Eq. (9) to experimental data
compared to simpler models.

Now, two magnitudes are required to be calculated to continue
with the analysis: _c and s. This calculation can be carried out
applying a dimensional analysis to the definition of the rate-of-
strain and viscous stress tensors. That is, _c ¼ rv þ ðrvÞT where

_cij ¼ @v i=@xj þ @v j=@xi and, according to Eq. (2), the only compo-
nent of s necessary to calculate is syx ¼ �gð@vy=@xþ @vx=@yÞ.
Finally, after applying the dimensional analysis presented in a pre-
vious work (Peralta and Meza, 2016):

_c � @vx

@y

����
���� ð10Þ

syx � �g @vx

@y
ð11Þ

Henceforth, to simplify the presentation of the equations,
approximately equal signs will be replaced by equal signs.

2.4. Velocity profile

Taking into account Eqs. (4) and (11), the fluid velocity profile
(i.e. the velocity component in x-direction) can be estimated by:

vx ¼
Z _c

_cm

_c
@ _c=@yð Þ d _c ð12Þ

where _cm is the shear rate obtained at the plate surface. Now, the
denominator of Eq. (12) can be rearranged by the resulted expres-
sion of replacing the velocity gradient in Eq. (11) with _c (Eq. (10))
and differentiating with respect to y, to yield:
selected values of g0; g1; _cc ; a, and b. Dashed lines represent a reference condition
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vx ¼
Z _c

_cm

_c
@s=@yð Þ gþ _c

@g
@ _c

	 

d _c ð13Þ

As _c and _cm can theoretically range from 0 to 1, a convenient
way to handle this feature is to define a normalized and dimen-
sionless shear rate parameter, that ranges from 0 to 1, as:

Z ¼ ð _c= _ccÞa
1þ ð _c= _ccÞa

ð14Þ

Replacing the derivative of Eq. (4) with respect to y in the
denominator of Eq. (13) and using Z to change variables:
_c ¼ _ccZ1=a=ð1 � ZÞ1=a; @ _c=@Z ¼ ð _cc=aÞZ1=a�1=ð1 � ZÞ1=a�1

; @g=@Z ¼
�bðg0 � g1Þð1� ZÞb�1, and g ¼ g0½gc þ ð1� gcÞð1� ZÞb�, the veloc-
ity can be expressed as:

vx ¼ g0 _c2c
qgx

Z Zm

Z

gc

a
þ 1� gcð Þ
a 1� Zð Þ�b

� b 1� gcð ÞZ
1� Zð Þ�b

" #
Z2=a�1

1� Zð Þ2=aþ1 dZ ð15Þ

where Zm ¼ ð _cm= _ccÞa=½1þ ð _cm= _ccÞa� and gc ¼ g1=g0.
To integrate Eq. (15) the following identities can be used

(Weisstein, 2016a; Weisstein, 2016b):Z Z

0

Z A

ð1� ZÞ�B dZ ¼ Z A 1� Zð ÞB
A 2F1 1;Aþ B;Aþ 1; Zð Þ ð16Þ

2F1 1;Aþ Bþ 1;Aþ 2; Zð Þ ¼ Aþ 1
Aþ B

Z�1
2F1 1;Aþ B;Aþ 1; Zð Þ � 1½ �

ð17Þ
where Eq. (16) is the Chebyshev integral, in terms of the Gauss
hypergeometric function 2F1ða;b; d; xÞ, and holds when �A is not a
natural number.

Finally, applying Eqs. (16) and (17) to Eq. (15), the expression
for the velocity profile in the film is:

vx ¼ g0 _c2c
2qgx

w _cmð Þ � w _cð Þ½ � ð18Þ

w _cmð Þ¼ Z2=a
m

1�Zmð Þ2=a
gcþ 1�gcð Þ 1�Zmð Þb 2� 2F1 1;b;

2
a
þ1;Zm

� �	 
 �

ð19Þ

w _cð Þ ¼ Z2=a

1� Zð Þ2=a
gc þ 1� gcð Þ 1� Zð Þb 2� 2F1 1; b;

2
a
þ 1; Z

� �	 
 �

ð20Þ

gc ¼
g1
g0

ð21Þ

It is noteworthy to mention that vx is a function of _c in Eqs.
(18)–(21). That is, a set of parametric equations are necessary to
relate vx with the position y. This can be done by combining Eqs.
(4) and (9)–(11), and defining n ¼ Z=Zm to obtain:

y
h
¼ 1�

gc þ 1� gcð Þ 1� nZmð Þb
h i

n1=a 1� Zmð Þ1=a

gc þ 1� gcð Þ 1� Zmð Þb
h i

1� nZmð Þ1=a
ð22Þ

Now, the velocity profile can be calculated by giving values to n
from 0 (i.e. air-film interface) to 1 (i.e. plate-film interface) to
obtain vx vs. y=h.

2.5. Flow rate

The flow rate per unit with of the plate can be estimated by:

Q ¼
Z h

0
vxdy ð23Þ
taking into account Eq. (14), evaluated at the plate-film interface
(i.e. Zm), to change variables and Eqs. (16)–(21) to integrate Eq.
(23), the expression of Q for a Carreau-Yasuda fluid is:

Q ¼ g2
0 _c3m

3 qgxð Þ2
g2
c þ

2gc 1� gcð Þ
1� Zmð Þ�b 2F1 1; b;

3
a
þ 1; Zm

� �"

þ 1� gcð Þ2 1� Zmð Þ2b2F1 1;2b;
3
a
þ 1; Zm

� �

� 3abgc 1� gcð ÞZm

3þ að Þ 1� Zmð Þ�b 2F1 1; bþ 1;
3
a
þ 2; Zm

� �

� 3ab 1� gcð Þ2Zm

3þ að Þ 1� Zmð Þ�2b 2F1 1;2bþ 1;
3
a
þ 2; Zm

� �#
ð24Þ

Additionally, the area-averaged (in y-direction) fluid velocity at
position x can be estimated by knowing that: vxh iy ¼ Q=h.

2.6. Local film thickness

Considering the assumptions made in previous Sections, a mass
balance on the film in terms of h yields (Peralta et al., 2014a;
Peralta and Meza, 2016):

@h
@t

þ @Q
@x

¼ 0 ð25Þ

Assuming that h ¼ 0 at x ¼ 0 (i.e. at the beginning of the coated
plate) for t > 0 and monotonicity of Q on h (for simplicity), the
solution to Eq. (25) can be written as (Peralta et al., 2014a;
Peralta and Meza, 2016):

x
t
¼ @Q

@h
ð26Þ

To find an expression for h, the derivative of Eq. (26) is:
@Q=@h ¼ ð@Q=@ZmÞð@Zm=@ _cmÞð@ _cm=@gmÞð@gm=@hÞ. Now, using Eqs.
(4), (9), (10), (11), and (14) evaluated at the plate-film interface
(i.e. Zm), the local film thickness can be calculated by:

ha þ x=tð Þa
_cac

	 
b qgxh
2

x=tð Þ � ha þ x=tð Þa
_cac

	 
b
g1 � g0 � g1ð Þhab ¼ 0 ð27Þ
2.7. Average film thickness

As stated in previous works (Peralta et al., 2014a; Peralta and
Meza, 2016), the uniformity of the film is one of the main proper-
ties to be evaluated in a coating process. This quantity can be esti-
mated by the ratio of the average film thickness to the local
thickness at any time and position (Gutfinger and Tallmadge,
1965). Consequently, the uniformity ranges from 1=2 to 1 for any
given position x, obtaining more leveled films as this parameter
tend to 1 and vice versa.

The average film thickness at a distance x can be calculated as
an area-averaged parameter as:

hh ix ¼
1
x

Z x

0
hdx ð28Þ

To integrate Eq. (28), a change of variables using the local film
thickness profile (Eq. (27)) combined with Eq. (14) evaluated at
the plate-film interface (i.e. Zm) is necessary. Then, an expression
for h ¼ f ðZmÞ is found using the relation qgxh ¼ gm

_cm with Eqs.
(9) and (14) evaluated at Zm (Gutfinger and Tallmadge, 1965;
Peralta et al., 2014a; Peralta and Meza, 2016). Subsequently, Eq.
(28) can be written as:
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hh ix
h

¼ Z�2=a
m 1� Zmð Þ2=a

a gc þ 1� gcð Þ 1� Zmð Þb
h i2
2g2

c

Z Zm

0

Z3=a�1
m

1� Zmð Þ3=aþ1 dZm

"

þ 4gc 1� gcð Þ
Z Zm

0

Z3=a�1
m

1� Zmð Þ3=a�bþ1 dZm

þ 2 1� gcð Þ2
Z Zm

0

Z3=a�1
m

1� Zmð Þ3=a�2bþ1 dZm

� abgc 1� gcð Þ
Z Zm

0

Z3=a
m

1� Zmð Þ3=a�bþ1 dZm

�ab 1� gcð Þ2
Z Zm

0

Z3=a
m

1� Zmð Þ3=a�2bþ1 dZm

#

ð29Þ

Now, using Eq. (16), the uniformity can be estimated by:

hh ix
h

¼ 1

gc þ 1� gcð Þ 1� Zmð Þb
h i2
2
3
g2
c þ

4gc

3
1� gcð Þ

1� Zmð Þ�b 2F1 1; b;
3
a
þ 1; Zm

� �"

þ 2
3

1� gcð Þ2 1� Zmð Þ2b2F1 1;2b;
3
a
þ 1; Zm

� �

� ab 1� gcð Þ2Zm

3þ að Þ 1� Zmð Þ�2b 2F1 1;2bþ 1;
3
a
þ 2; Zm

� �

� abgc 1� gcð ÞZm

3þ að Þ 1� Zmð Þ�b 2F1 1; bþ 1;
3
a
þ 2; Zm

� �#

ð30Þ
Table 1
Physical properties and rheological parameters fitted to Eq. (9) of food-grade fluids with c

Fluid _c [s�1] s [Pa] q [kg m�3] g0 [Pa s]

Ca 0.2–6 7–19 986 175.20
CMb 0.2–3 1–18 1367 8.81
MWPSc 0.4–192 0.1–12 1088 0.31
G20d 0.6–13 30–202 1336 247.29
G30d 0.6–50 14–255 1334 116.19
G40d 0.6–50 9–162 1331 66.39
G50d 0.6–50 4–108 1327 31.35
MCL0e 1.9–50 50–333 1216 1147.98
MCL0.1e 1.9–50 22–196 1216 924.27
MCL0.2e 1.9–50 16–161 1216 585.40
MCL0.3e 1.9–50 15–125 1216 401.41
MCL0.4e 1.9–50 15–128 1216 298.93
MCL0.5e 1.9–50 15–125 1216 159.99
MCP0.1f 1.9–50 31–297 1216 898.51
MCP0.2f 1.9–50 17–248 1216 532.82
MCP0.3f 1.9–50 12–230 1216 346.50
MCP0.4f 1.9–50 9–219 1216 239.81
MCP0.5f 1.9–50 8–241 1216 200.00
BDDg 0.1–50 2–82 1160 26.87
BDg 0.1–50 2–79 1140 28.14
BGDg 0.1–50 14–464 1160 160.32
BKg 0.1–50 6–120 1140 92.62
BTIg 0.1–50 9–197 1150 98.71
BNWg 0.1–50 5–73 1110 64.02

a Cream (T = 20 �C) (Peralta and Meza, 2016).
b Condensed milk (T = 20 �C) (Peralta and Meza, 2016).
c Microparticulated whey protein suspension (T = 20 �C, C ¼ 30%) (Peralta and Meza,
d Glaze suspension (GXX, XX = 20, 30, 40, 50 �C) (Meza et al., 2015).
e Milk chocolate + lecithin (T = 20 �C, MCLX.X, X.X = 0, 0.1, 0.2, 0.3, 0.4, 0.5%) (Karnjan
f Milk chocolate + polyglycerol (T = 20 �C, MCPX.X, X.X = 0, 0.1, 0.2, 0.3, 0.4, 0.5%) (Kar
g Batter (T = 20 �C, C ¼ 50%, BDD = Dorothy Dawson, BD = Drakes, BGD = Golden dipt,
h MAPE using Eq. (31) for steady state viscosity data.
2.8. Validation

A partial experimental validation was carried out to test the
capabilities of the mathematical model developed in this work.
Experimental data (steady shear viscosity and average film thick-
ness values) of several representative fluids were obtained from lit-
erature. As the calculation of the film thickness must take into
account the correct representation of viscosity, the ability of Eq.
(9) to describe the rheological behavior of several type of materials
by fitting viscosity experimental data and the ability of Eq. (30) to
predict experimental average film thickness were tested.

2.8.1. Experimental data
Rheological properties, density, and average film thickness val-

ues of several food-grade fluids with coating capacity obtained
from literature were used (Table 1): (1) a commercial pasteurized
milk cream emulsion (substrate: glass plates, L = 40 mm, draining
times: 10 and 30 s) (Peralta and Meza, 2016), (2) a condensed
sweet milk suspension (substrate: glass plates, L = 40 mm, draining
times: 5, 10, 30, and 60 s) (Peralta and Meza, 2016), (3) a micropar-
ticulated whey protein suspension (MWPS) with 30% total solids
content (substrate: glass plates, L = 40 mm, draining time: 30 s)
(Peralta and Meza, 2016), (4) a commercial food glaze suspension
(substrate: glass plates, L = 40 mm, draining time: 30 s) (Meza
et al., 2015), (5) a milk chocolate with different percentages of
lecithin and polyglycerol (substrate: acrylic plates, L = 44.5 mm,
draining time: 20 s) (Karnjanolarn and Mccarthy, 2006), and (6)
six trademarks of deep-fat frying commercial batters (substrate:
polymethyl methacrylate plates, L = 40 mm, draining times: 60
and 120 s, mixing: 270–300 rpm for 3–4 min) (Lee et al., 2002).
The theoretical values of h and hhix were calculated at L and t cor-
responding to the draining times.
oating capacity obtained from the literature.

g1 [Pa s] _cc [s�1] a [–] b [–] Errorh [%]

1.47 0.0426 2.00 0.46 1.29
3.05 0.1182 1.90 0.12 0.11
0.01 0.7354 1.30 0.26 1.67
0.79 0.0113 1.93 0.21 2.86
0.70 0.0118 1.94 0.20 3.37
0.62 0.0123 1.95 0.20 2.46
0.55 0.0127 1.96 0.19 5.38
11.48 0.0039 1.24 0.45 4.29
5.66 0.0072 1.41 0.46 2.36
4.23 0.0113 1.59 0.44 1.51
3.73 0.0184 1.78 0.42 1.30
2.98 0.0333 2.03 0.38 2.04
1.97 0.0417 2.30 0.36 2.09
9.61 0.0040 1.36 0.47 1.70
9.00 0.0041 1.48 0.51 1.99
7.47 0.0042 1.62 0.51 5.35
5.74 0.0043 1.77 0.49 7.42
4.14 0.0044 1.93 0.47 2.96
0.48 0.0435 1.17 0.37 1.41
0.50 0.0397 0.75 0.60 1.22
1.00 0.0540 1.00 0.43 0.94
2.10 0.0457 0.92 0.55 1.25
0.82 0.0533 0.96 0.42 1.00
0.68 0.0507 1.20 0.42 0.85

2016).

olarn and Mccarthy, 2006).
njanolarn and Mccarthy, 2006).
BK = Kikkoman, BTI = Tung-I, BNW = Newly wed) (Lee et al., 2002).
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2.8.2. Validation procedure
The five parameters of Eq. (9) were found simultaneously using

the viscosity data for each studied fluid by minimizing the mean
absolute percentage error (MAPE):

MAPE ¼ 100
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ai;theor

ai;exp

� �2
s

ð31Þ

where N is the number of steady state viscosity data points of each
food-grade fluid (Table 1) and ai;theor and ai;exp are the theoretical and
experimental values of g, respectively. Then, to conveniently dis-
play and compare experimental and theoretical viscosity values,
the viscosity data were rearranged as reduced viscosity g� using:

g� ¼ g� g1
g0 � g1

� �1=b

¼ 1
1þ ð _c= _ccÞa

¼ 1
1þ C

ð32Þ
Fig. 3. (a) Reduced viscosity data fitted to Eq. (32), and (b) comparison between experim
coating capacity (Table 1). Dashed lines correspond to an error of (a) 10% and (b) 15%.

Fig. 4. Dimensionless velocity profiles as a function of the dimensionless position y=h fo
reference condition with _cm= _cc ¼ 1; a ¼ 1; b ¼ 1=4, and g1=g0 ¼ 0:01.
where C is a dimensionless shear rate parameter defined as ð _c= _ccÞa.
Similarly, the prediction capability of the model to experimen-

tal values of hh ix was evaluated using Eq. (31). In this case, N is the
number of food-grade fluids (Table 1) and ai;theor and ai;exp are the
theoretical and experimental values of hh ix estimated with Eq.
(30), respectively.
3. Results and discussion

3.1. Theoretical range of validity

As stated above and following the rationale presented in previ-
ous works (Peralta et al., 2014a; Peralta and Meza, 2016), some
assumptions are necessary for obtaining simpler and useful forms
of Eqs. (5)–(7). First, a natural and conservative way to estimate U
ental (symbols) and theoretical (solid lines) values of hh ix for food-grade fluids with

r selected values of: (a) _cm= _cc , (b) a, (c) b, and (d) g1=g0. Dashed lines represent a
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is defining St ¼ 1 from Eq. (7) to get U ¼ qgxh
2
L=gref . That is, the

gravitational and viscous forces are equal in magnitude. Second,
for a shear-thinning fluid, the most conservative way to define
the reference viscosity could be gref ¼ g1 because it is the mini-
mum value that viscosity would adopt. Conversely, gref ¼ g0 can
be set for a shear-thickening fluid. Therefore, the range of validity
of the present model (shear-thinning) can be verified by checking
simultaneously Eq. (5) and:
gxq2h3
L

g2
1

6 1 ð33Þ

It is noteworthy to note that Eq. (33) was obtained from very
restrictive assumptions and the applicability of the model to data
that falls outside the range proposed by this equation should be
tested with Eqs. (5)–(7).
Fig. 5. Dimensionless flow rate as a function of the normalized and dimensionless she
represent a reference condition with a ¼ 1; b ¼ 1=4, and g1=g0 ¼ 0:01.

Fig. 6. Local film thickness as a function of the space-time variable x=t for selected valu
condition with g1 ¼ 10�2 Pa s, g0 ¼ 1 Pa s, a ¼ 1; b ¼ 1=4; q ¼ 1000 kg m�3, and _cc ¼ 1
3.2. Experimental validation

The agreement between experimental and theoretical reduced
viscosity values predicted by Eq. (32) for the food-grade fluids with
coating capacity is shown in Fig. 3a. Good correspondence is
observed for a wide range of ð _c= _ccÞa (i.e. dimensionless shear rate),
withMAPE values (Eq. (31)) showing errors less than 10% (Table 1).
This feature exhibits a great description capability of the Carreau-
Yasuda model (Eq. (9)) when applied to several type of dispersions
(i.e. suspensions, emulsions, aerated suspensions, etc.) at different
operational conditions (temperature, ingredient concentrations,
mixing, etc.) and for a wide range of shear rates (Osswald and
Rudolph, 2014). Also, it is noteworthy to mention that the signifi-
cance of the experimental validation carried out in this study can
be considered acceptable due to the wide range of the rheological
parameters obtained by Eq. (9): 0.31 Pa s 6 g0 61147.98 Pa s,
ar rate parameter for selected values of: (a) a, (b) b, and (c) g1=g0. Dashed lines

es of (a) g1 , (b) g0, (c) a, (d) b, (e) q, and (f) _cc . Dashed lines represent a reference
s�1.
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0.01 Pa s 6 g1 6 11:48 Pa s, 0.0039 s�1 6 _cc 6 0:7354 s�1, 0:92 6
a 6 2:30, and 0:12 6 b 6 0:60. Table 1 shows that in general, g0

and g1 decreased as temperature and plasticizer concentration
(i.e. lecithin and polyglycerol) increased. The opposite behavior is
observed for _cc . In the case of g0 and g1, an increase in temperature
produces an increase in the thermal energyofmolecules giving them
more chance tomove. Also, an increase in the plasticizer concentra-
tion dilutes the dispersion and produces a less viscous continuous
phase, resulting in a less viscous dispersion (Osswald and Rudolph,
2014; Rao, 2014). In the case of _cc and for dispersions, the Peclet
number gives the following relation _cc / T=gf , where gf is the vis-
cosity of the continuous phase. Therefore, an increase in T would
produceadecrease ingf , resulting in an increase in _cc . Theprediction
capability of Eq. (30) to experimental average film thickness can be
seen in Fig. 3b. Again, good and consistent agreement (MAPE < 15%)
is observed for values ranging from 0.1 mm to 10 mm. All the data,
from very thin to very thick films, were reasonably predicted by
the model. This level of agreement was also observed in previous
works (Peralta et al., 2014b; Peralta and Meza, 2016).
3.3. Sensitivity analysis

Briefly, a sensitivity analysis is performed to show a representa-
tive response of Eqs. (18)–(22), (24), (27), and (30) to selected val-
ues of the main physical and model parameters. All profiles were
obtained for a shear-thinning fluid (i.e. g0 > g1). New evaluations
would be needed assuming a shear-thickening fluid, as an irregular
response of the effect of the parameters on the main variables can
be expected.
3.3.1. Velocity profiles
Fig. 4 shows dimensionless velocity profiles (v�

x ¼ 2vxqgx=

ðg0 _c2c Þ) as a function of y=h for selected values of _cm= _cc; a; b, and
Fig. 7. Averaged film thickness as a function of draining time for selected values of (a) g1
g1 ¼ 10�2 Pa s, g0 ¼ 1 Pa s, a ¼ 1; b ¼ 1=4; q ¼ 1000 kg m�3, and _cc ¼ 1 s�1.
g1=g0. First, an increase in _cm= _cc produces an increase in velocity
(Fig. 4a). That is, the lower boundary of the range of local viscosity
values adopted by the film approaches to g1. Therefore, the fluid is
overall and relatively less viscous and drain more easily. Also, due
to the range that _cm= _cc can vary is practically large, its effect on g
can be also important. Second, an increment in a produces an
increment in v�

x (Fig. 4b). In this case, the effect is less pronounced
compared to _cm= _cc. This is partially due to the range of a selected
for the analysis (range that a usually varies) and also to the fact
that this fitting parameter produces smaller changes in the viscos-
ity profile. Third, an increase in b produces smaller velocity profiles
(Fig. 4c). That is, the thinning effect of the shear rate on viscosity
(Eq. (9)) is increased. An increase in b does not only produce more
stepped viscosity (as in the case of a) profiles but also contributes
to shift the position of the transition from g0 to g1 more markedly
than a. Fourth, as g1=g0 decreases, the film becomes relatively
more viscous and tends to flow less (Fig. 4d). This parameter, along
with _cm= _cc , is the most important to explain changes in velocity
profiles.
3.3.2. Flow rate
The effect of the normalized and dimensionless shear rate

parameter evaluated at the plate wall (Zm) on the dimensionless

flow rate per unit with Q � ¼ 3ðqgxÞ2Q=ðg2
0 _c3mÞ for selected values

of a; b, and g1=g0 is shown in Fig. 5. Here, Q � is calculated relative
to the flow rate obtained when g ¼ g0, so profiles show concave
shapes and change from Q � ¼ 1 at Zm ¼ 0 to Q � ¼ g2

c at Zm ¼ 1. This
leads to calculate, at the extremes of profiles (i.e. Newtonian pla-

teaus in Eq. (9)), dimensional flow rates as Q ¼ qgxh
3
=ð3g0Þ and

Q ¼ qgxh
3
=ð3g1Þ. On one hand, an increment in a produces less

concave profiles and consequently lower values of Q � (Fig. 5a).
The same overall effect is observed in the case of b (Fig. 5b). How-
ever, same increments in a and b produce larger changes in profiles
, (b) g0, (c) a, (d) b, (e) q, and (f) _cc . Dashed lines represent a reference condition with
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for the later parameter. On the other hand, increments in g1=g0

produces more concave profiles and higher values of Q � (Fig. 5c).
At extreme cases, Eq. (24) predicts Q � ! 1 as g1=g0 ! 1 and

Q � ¼ ð1 � ZmÞ2b2F1 1; 2b; 1 þ 3
a ; Zm

� � � 3ab
3þa Zmð1 � ZmÞ2b2F1 1; 1 þ 2b;ð

2þ 3
a ; ZmÞ when g1=g0 ! 0.

3.3.3. Local film thickness
Profiles of local film thickness h, predicted by Eq. (27), as a func-

tion of the space-time variable x=t for selected values of
g1;g0; a; b;q, and _cc are shown in Fig. 6. An increase in both g1
(Fig. 6a) and g0 (Fig. 6b), produces an increase in local values of
h. The effect of g0 on the development of profiles is more pro-
nounced than is the case of g1. This behavior occurs because the
range of local viscosity values in film ranges from g0 at the air-
film interface (i.e. _c ¼ 0) to gm at the wall-film interface. The value
of gm is always greater than g1 and may or may not be close to g1
depending on the value of _cc (Fig. 2). For the value of _cc considered
as reference (i.e. 1 s�1), changes in g1 under 10�2 Pa s produce a
negligible effect on h. The effect of a and b on h is similar in sign
and magnitude (Fig. 6c,d). An increase in those parameters pro-
duces thinner films due to the corresponding relative less viscous
fluids. Inversely proportional increments in local film thickness
are observed in the case of q (Fig. 6e). As the film is denser, it
becomes heavier per unit volume draining faster from the plate
and producing thinner coatings. Finally, an increase in _cc results
in thicker films (Fig. 6f). Higher values of this parameter produces
relatively more viscous fluids that drain slower from the plate.

3.3.4. Average film thickness
Fig. 7 shows the area-averaged film thickness as a function of

time for a plate length of x ¼ L and selected values of
g1; g0; a; b ;q, and _cc . Generally, Eq. (30) (combined with Eq.
(27)) predicts a hyperbolic functionality of the type hhix ¼ ct�d

where c; d P 0. This feature was observed in previous studies using
other rheological models for pseudoplastic fluids and dispersions
(Peralta et al., 2014a; Peralta and Meza, 2016). The effect of g1
and g0 on hhix is similar to that observed for h (Fig. 6a,b). That is,
higher values of these parameters produce a more viscous fluid
and thicker films. Also, profiles were more affected by g0 and val-
ues of g1 greater than 1 Pa s. Fig. 7c,d show similar inverse effect of
a and b on thickness profiles. In case of density, heavier (high val-
ues of q) films produce thinner films with even distribution.
Finally, as in the case of h, higher values of _cc results in thicker
films. In this case, an asymptotic behavior is observed for values
_cc P 100.

Film uniformity was calculated as hhix=h and is shown in Fig. 8
as a function of Zm for selected values of a; b, and g1=g0. In general,
Fig. 8. Film uniformity (hhix=h) as a function of the normalized and dimensionless she
represent a reference condition with a ¼ 1; b ¼ 1=4, and g1=g0 ¼ 0:01.
an increase in Zm produces more uniform (i.e. leveled) films. That
is, higher values of _cm may indicate (1) thicker films, (2) less vis-
cous films or (3) a combination of both. On one hand, parameters
a and b shown similar effect on uniformity profiles. An increase
in both of them produced more uniform films. Nevertheless, for
any given value of Zm, more leveled films are obtained by an incre-
ment in b compared with a. In general, higher values of a and b pro-
duce relative less viscous fluids for a given film thickness, resulting
in higher _cm and consequently more uniform films. On the other
hand, an increment in g1=g0 results in less uniform films. That
is, the film is less likely to comply to stresses due to a relatively
higher viscosity.

A presence of extrema is observed in the profiles of Fig. 8 for
high values of Zm. These extrema can be found by differentiating
Eq. (30) with respect to Zm and equating to zero to yield:

1� gcð Þ 1� Zmeð Þb2F1 1;2b;
3
a
þ 1; Zme

� �	

þ2gc2F1 1; b;
3
a
þ 1; Zme

� �


1� gcð Þ 1� Zmeð Þb 2abZme � 3ð Þ � 3gc

h i
þ 9gc 1� gcð Þ 1� Zmeð Þb

þ 3 1� gcð Þ2 1� Zmeð Þ2b þ 2g2
c 3þ abZmeð Þ ¼ 0

ð34Þ

where Zme is the normalized and dimensionless shear rate parame-
ter that produces a maximum in uniformity (hhix=h) through Eq.
(30). Briefly, the existence of these extrema is mainly due to the dif-
ferent impact that changes in g have on the relative growth of the
hhix and h profiles as a function of Zm. As can be inferred from Eq.
(30), Zme can be found for _c values in the range associated with
the beginning of the second Newtonian plateau (i.e. g ! g1). Prior
to this zone, increments in _c reduce largely the viscosity (see
Fig. 2) producing a flattening effect on thickness profiles due to
the increased fluidity. This phenomenon affects first h and second
hhix, giving a positive slope in hhix=h. After Zme, the viscosity tends
to be a constant and the growth of both profiles stabilizes, recover-
ing the tendency of a Newtonian behavior (hhix=h ! 2=3).

3.4. Carreau model

As stated before, Eq. (9) can be simplified into several well-
known rheological models. Analytical solutions to the main fluid-
dynamic variables were already found and presented for some of
these models in previous studies (i.e. Cross, Bingham, and
Ostwald-deWaele) (Peralta et al., 2014a; Peralta and Meza, 2016).
Those solutions were found by using some of the helpful equalities
(or a combination of them) presented elsewhere (Weisstein,
ar rate parameter for selected values of: (a) a, (b) b, and (c) g1=g0. Dashed lines
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2016a; Weisstein, 2016b). Nevertheless, no analytical solutions for
a draining system using a Carreau fluid (i.e. a ¼ 2 in Eq. (9)) were
found in the literature. This model is extensively used in a wide
range of disciplines, from technicians to researchers. Thus, taking
into account the importance of the Carreau model, the following
novel expressions correspond to the main fluid-dynamic variables
using that model:

w _cmð Þ ¼ Zm

1� Zm
gc þ 1� gcð Þ 1� Zmð Þb 2� 1� Zmð Þb þ Zm � 1

1� bð ÞZm 1� Zmð Þb
" #( )

ð35Þ

w _cð Þ ¼ Z
1� Z

gc þ 1� gcð Þ 1� Zð Þb 2� 1� Zð Þb þ Z � 1

1� bð ÞZ 1� Zð Þb
" #( )

ð36Þ

y
h
¼ 1�

gc þ 1� gcð Þ 1� nZmð Þb
h i

n1=2 1� Zmð Þ1=2

gc þ 1� gcð Þ 1� Zmð Þb
h i

1� nZmð Þ1=2
ð37Þ

Q ¼ g2
0 _c3m

3 qgxð Þ2
g2
c þ

2gc 1� gcð Þ
1� Zmð Þ�b 2F1 1; b;

5
2
; Zm

� �"

þ 1� gcð Þ2
1� Zmð Þ�2b 2F1 1;2b;

5
2
; Zm

� �

� 6
5
bgc 1� gcð ÞZm

1� Zmð Þ�b 2F1 1; bþ 1;
7
2
; Zm

� �

�6
5
b 1� gcð Þ2Zm

1� Zmð Þ�2b 2F1 1;2bþ 1;
7
2
; Zm

� �#
ð38Þ

h2 þ x=tð Þ2
_c2c

" #b
qgxh

2

x=tð Þ � h2 þ x=tð Þ2
_c2c

" #b

g1 � g0 � g1ð Þh2b ¼ 0 ð39Þ

hh ix
h

¼ 1

gc þ 1� gcð Þ 1� Zmð Þb
h i2
2
3
g2
c þ

4
3
gc 1� gcð Þ
1� Zmð Þ�b 2F1 1; b;

5
2
; Zm

� �"

þ 2
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1� gcð Þ2
1� Zmð Þ�2b 2F1 1;2b;

5
2
; Zm

� �

� 2
5
b 1� gcð Þ2Zm

1� Zmð Þ�2b 2F1 1;2bþ 1;
7
2
; Zm

� �

�2
5
bgc 1� gcð ÞZm

1� Zmð Þ�b 2F1 1; bþ 1;
7
2
; Zm

� �#

ð40Þ

To calculate vx, Eqs. (35)–(37) should be used with Eq. (18).

4. Conclusions

A mathematical model and its analytical solutions for the fluid-
dynamic variables of a free-draining flow during a dip-coating
draining stage of a finite vertical plate were obtained in this study.
A fluid whose rheological behavior is described by the Carreau-
Yasuda model was considered as part of the theoretical approach.
The proposed expressions have been obtained assuming a
monophasic, isothermal, and nonevaporative system, where the
highest forces are viscous and gravitational. The studied phenom-
ena occur far away from the meniscus formed at the surface of the
fluid reservoir. The main operative variables estimated are the
velocity profile (Eqs. (18)–(21)), flow rate (Eq. (24)), local thickness
(Eq. (27)), and average thickness (Eq. (30)) of the film. Finally, a
validation was performed (prediction errors < 15%) by using exper-
imental data of average film thickness values of several represen-
tative food-grade fluids with coating capacity (cream, condensed
sweet milk, microparticulated whey protein suspension, glaze sus-
pension, milk chocolate, and deep-fat frying batters) obtained from
the literature (Table 1).

The information published in this work will be useful for
researchers and technicians to control and predict both film char-
acteristics (such as thickness and uniformity) and operational vari-
ables (velocity, flow rate, etc.) during laboratory and industrial
coating processes where free-draining flow takes place. This way,
a practical application by decreasing trial-and-error predictions is
also expected.
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