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a b s t r a c t

A numerical method is proposed for the characterization of core–shell spherical

particles from static light scattering (SLS) measurements. The method is able to

estimate the core size distribution (CSD) and the particle size distribution (PSD),

through the following two-step procedure: (i) the estimation of the bivariate core–

particle size distribution (C–PSD), by solving a linear ill-conditioned inverse problem

through a generalized Tikhonov regularization strategy, and (ii) the calculation of the

CSD and the PSD from the estimated C–PSD. First, the method was evaluated on the

basis of several simulated examples, with polystyrene–poly(methyl methacrylate)

core–shell particles of different CSDs and PSDs. Then, two samples of hematite–

Yttrium basic carbonate core–shell particles were successfully characterized. In all

analyzed examples, acceptable estimates of the PSD and the average diameter of the

CSD were obtained. Based on the single-scattering Mie theory, the proposed method is

an effective tool for characterizing core–shell colloidal particles larger than their

Rayleigh limits without requiring any a-priori assumption on the shapes of the size

distributions. Under such conditions, the PSDs can always be adequately estimated,

while acceptable CSD estimates are obtained when the core/shell particles exhibit

either a high optical contrast, or a moderate optical contrast but with a high ‘average

core diameter’/‘average particle diameter’ ratio.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The particle size distribution (PSD) is a morphological
characteristic of primary importance in several particu-
late systems. For instance, the rheological behavior and
chemical stability of paints and inks, the film formation of
coatings and its optical properties (such as the gloss), the
mechanical properties of adhesives, and the burning rate
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of fuels and explosives, are all strongly influenced by the
PSD [1].

The particle morphology may depend on the specific
application of the colloid. Many applications, such as paints,
inks, toners and coatings, normally involve spherical homo-
geneous particles [1]. Nowadays, a growing number of
applications require particles with non-homogeneous core–
shell morphology. For example, polymeric core–shell parti-
cles have been developed as waterborne pressure-sensitive
adhesives (PSAs) that can compete with solvent-borne PSAs
in high-performance applications [2]. On the other hand,
core–shell particles with a core of Ni–Ag bimetallic and a
pH-responsive shell of poly(ethylene glycol-co-methacrylic
acid) have been synthesized for biomedical applications [3].
These particles convert pH changes within cancerous cell to
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fluorescent signals, and therefore they have the ability to
light up tumor cells. Additionally, due to their high porosity,
these particles might be used for simultaneously delivering
anticancer drug molecules into the cancerous cells. Also in
biomedical applications, colloids for immunoassays involve
spherical particles consisting of a polymeric core (normally
polystyrene) coated with a specific antigenic protein, thus
exhibiting core–shell morphology [4]. Particles with core of
poly(vinylidene fluoride) or poly(butyl acrylate) and shell of
polyaniline have recently received great attention due to
their ability to form thin films with porous structure for
application as gas sensors [5]. In all these applications, the
core and shell sizes can directly affect the colloid properties.

Main definitions concerning PSDs in colloids of homo-
geneous spherical particles were recently reviewed [1].
We shall call f(Dn) the discrete number PSD. The ordinates
of f(Dn) represent the number fraction of particles con-
tained in the diameter interval [Dn,DnþDD] (n¼1,y,N),
DD being a regular partition of the D-axis.

Static light scattering (SLS) is a fast, absolute, non-
destructive and highly repetitive technique that has been
widely used for characterizing PSDs of colloids [1]. In SLS,
the sample is irradiated with a monochromatic beam of
wavelength l0 and the intensity of the scattered light, I, is
measured at several angles, yr (r¼1,y,R). For homoge-
neous spherical particles and under single scattering
regime [6], the SLS measurement, I(yr), is related to the
PSD, f(Dn), through [1]

IðyrÞ ¼ kI

XN

n ¼ 1

CIðyr ,Dn,nm0,np0Þ f ðDnÞ ð1aÞ

where kI is a constant and the coefficient CI(yr, Dn, nm0, np0) is
the light intensity scattered at yr by a particle of diameter Dn

and refractive index np0 immersed in a non-absorbing
medium of refractive index nm0, which is calculated through
the Mie scattering theory [6]. SLS is an effective technique for
measuring large particles compared to the laser wavelength.
In fact, when the laser wavelength outside (lout¼l0/nm0) and
inside (lin¼l0/np0) the particles is considerably larger than
the particles diameter, then the light is scattered according to
the Rayleigh regime [6]. Thus, the scattered light intensity is
independent of the scattering angle [i.e., I(yr)¼constant], and
therefore no information content on the PSD is included in
the SLS measurement.

Eq. (1a) represents a system of R linear algebraic
equations with N unknowns (the ordinates of the PSD),
which can be written in a matrix form as

I¼ kIKf ð1bÞ

where I (R�1) and f (N�1) contain the discrete heights
of I(yr) and f(Dn), respectively, and K (R�N) is a matrix
with elements given by K(r,n)¼CI(yr, Dn, nm0, np0).

To estimate the PSD from SLS measurements a linear
inverse problem must be solved. It consists of inverting
Eq. (1a) or (1b) to estimate the PSD, based on the knowl-
edge of the measurement of I(yr) and the Mie coefficients
CI(yr,Dn,nm0,np0). Unfortunately, such inverse problem is
ill-conditioned [7]; i.e., small measurement noises can
produce large deviations in the estimated PSD.

Several techniques are available for solving linear
ill-conditioned inverse problems. Regularization techniques
[7] basically involve a least-square minimization of the
differences between the measurements and their predic-
tions by Eq. (1), and try to improve the ill-conditioning of
the inverse problem by including some a-priori knowledge
and smoothness conditions on the sought solution. For
example, the second-order Tikhonov regularization method
[7] can be stated as the following optimization problem:

min
f̂

f:I�kIK f̂9:2
þa:H f̂:2

g subject to f̂Z0 ð2Þ

where the symbol ‘‘^’’ stands for estimated value, a is the
regularization parameter that can be calculated through the
L-curve method [8], H (N�N) is the discrete second
derivative operator, and : : represents the 2-norm of a
vector. Clearly, the solution of Eq. (2) will depend on the
selected a. While a strong regularization (a large a) pro-
duces an excessively smoothened and wide PSD, a weak
regularization (a small a) normally originates an oscillatory
PSD or the appearance of spurious erroneous modes. The
Tikhonov regularization method has been applied to esti-
mate the PSD of homogeneous particles from light scatter-
ing measurements [9–12]. To this effect, the optimization
problem of Eq. (2) has been solved through several numer-
ical tools, such as artificial neural networks [10], genetic
algorithms [11], and the Bayesian methods [12].

Several authors have estimated the sizes of sub-
micrometric homogeneous spherical particles and droplets
from SLS measurements [13–15]. For example, Finsy et al.
[13] successfully estimated unimodal and multimodal
PSDs of polymeric particles through either a maximum
entropy method or a constrained regularization technique.
Hofer et al. [14] estimated the size distribution of oil
droplets in a water emulsion by approximating the PSD
by a combination of cubic B-splines. Frontini and Fernan-
dez Berdaguer [15] proposed an iterative procedure for
simultaneously estimating the PSD and the refractive index
of colloidal particles.

Unlike the case of homogeneous particles, the estima-
tion of sizes in core–shell colloids from SLS measurements
has been scarcely studied [16,17]. For instance, Quirantes
et al. [16] estimated the PSD of core–shell particles by
assuming that the PSD presented a log-normal distribution
of mean diameter D and a standard deviation sD. Then, the
parameters D and sD were adjusted to reproduce the SLS
measurements. In that work, one of the following hypoth-
esis was utilized to reduce the number of unknowns in the
inverse problem: (i) particles with a unique core diameter X

(thus reducing the unknowns to three: X, D, and sD) or (ii) a
constant core-to-particle diameter ratio R¼X/D (thus redu-
cing the unknowns to three: R, D, and sD). The method
acceptably estimated the core and the particle average
diameters, but the PSDs resulted broader than those
obtained by transmission electron microscopy (TEM).
To estimate the PSD of colloidal particles involving a hollow
core and a glass shell, Lagasse and Richards [17] assumed a
constant ratio X/D, and approximated the PSD by a linear
combination of B-splines. The inverse problem was solved
through a linear regularization technique that produced
PSD estimates with erroneous spurious modes. The method
was only applied to the characterization of particles with
sizes of several microns. As far as the authors are aware,
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there was no attempt to develop a method for simulta-
neously estimating core and particle sizes without imposing
restrictions on the sought size distributions.

In this work, a numerical method is proposed for
estimating the core size distribution (CSD) and the PSD of
sub-micrometric core–shell spherical particles from SLS
measurements. The method is first evaluated through
simulated examples that involve CSDs and PSDs of different
average sizes and shapes. The incidence of the refractive
indexes of the core and shell materials on the estimated size
distributions is also investigated. Then, two experimental
examples are used for the validation of the method.

2. Core–shell particles: size distributions relationships
and SLS model

An arbitrary core–shell spherical particle (with core
diameter Xj and particle diameter Dn) is schematically
presented in Fig. 1. In general, a colloidal dispersion
exhibits a particle population with an ample variety of
core and shell sizes. We shall call F(Xj,Dn) the bivariate
core–particle size distribution (C–PSD). The ordinates of
F(Xj,Dn) represent the number fraction of particles with
particle diameters contained in the interval [Dn,DnþDD]
(n¼1,y,N) and core diameters contained in [Xj,XjþDX]
(j¼1,y, J), where the regular partition of the X-axis (DX)
can (in general) be different from DD. The CSD, g(Xj), and
the PSD, f(Dn), can be calculated from F(Xj,Dn), as follows:

gðXjÞ ¼
XN

n ¼ 1

FðXj,DnÞ ð3aÞ

f ðDnÞ ¼
XJ

j ¼ 1

FðXj,DnÞ ð3bÞ

Note that f(Dn) corresponds to the outer diameter
distribution.

The thickness size distribution (TSD) is defined as the
number fraction of particles with shell thicknesses Zk¼

(Dn�Xj)/2, for Dn4Xj, contained in the interval [Zk,ZkþDZ]
Fig. 1. Schematic representation of a spherical particle with a core–shell

morphology.
(k¼1,y,K), where DZ is a regular partition of the Z-axis.
Note that particles with different pairs {Dn, Xj} can produce
the same Zk. In general, each jth subpopulation (i.e. those
particles with a common core diameter Xj) will have a
different jth TSD, hj(Zk).

By assuming that the core sizes and the thickness sizes
follow independent distributions, then the C–PSD, the
TSD, and the CSD are interrelated through

FðXj,DnÞ ¼ gðXjÞ hj
ðZkÞ ¼ gðXjÞ hj

½ðDn�XjÞ=2� ð4Þ

The SLS model of Eq. (1a) can be generalized for
particles with core–shell morphologies as follows [16]:

IðyrÞ ¼ kI

XN

n ¼ 1

XJ

j ¼ 1

CIðyr ,Xj,Dn,nm0,np0,X ,np0,ZÞFðXj,DnÞ ð5Þ

where CI(yr, Xj, Dn, nm0, np0,X, np0,Z) is obtained through the
Aden and Kerker theory [6], and represents the light
intensity scattered at yr by a particle with a core of
diameter Xj and refractive index np0,X, an outer diameter
Dn and a shell of refractive index np0,Z, immersed in a non-
absorbing medium of refractive index nm0.

3. The proposed method

In general, Eq. (5) can be used for estimating F(Xj,Dn)
from SLS measurements without requiring any a priori

assumption on its shape. To estimate F, the following
generalization of the second-order Tikhonov regulariza-
tion method [7] is proposed

min
F̂

f:I�Î9:2
þa

XN�1

n ¼ 2

XJ�1

j ¼ 2
9L½F̂ðXj,DnÞ�9

2
g;

subject to
F̂ðXj,DnÞZ0

F̂ðXj,DnÞ ¼ 0 for Xj4Dn

8<
: ð6Þ

where Î (R�1) contains the measurements ÎðyrÞ obtained
by injecting the estimated bivariate size distribution
F̂ðXj,DnÞ into Eq. (5); the restriction [F̂ðXj,DnÞ ¼ 0 for
Xj4Dn] is used because the core size Xj cannot be larger
than the outer particle diameter Dn; and L½F̂ðXj,DnÞ�

(J�2�N�2) is the discrete Laplacian of F̂ðXj,DnÞ, which
is defined as follows:

L½F̂ðXj,DnÞ� ¼ F̂ðXj�1,DnÞþ F̂ðXjþ1,DnÞþ F̂ðXj,Dn�1Þ

þ F̂ðXj,Dnþ1Þ�4F̂ðXj,DnÞ ð7Þ

Note that the regularization term of Eq. (6) is only
defined for 2rnr(N�1) and 2r jr(J�1), to avoid
ambiguities in the calculation of L½F̂ðXj,DnÞ�.

The regularization parameter, a, can be selected
according to the L-curve method [8], as follows: (1)
Eq. (6) is solved for a large set of a values, (2) for each
a, the corresponding C–PSD estimate, F̂a, is used to
evaluate the two terms of Eq. (6): T1,a ¼ :I�Î9:2

and
T2,a ¼

PN�1
n ¼ 2

PJ�1
j ¼ 2 9L½F̂aðXj,DnÞ�9

2
, (3) a cubic spline is

used to fit T2,a vs. T1,a, which produces an L-shaped curve
when plotted in a log–log scale, and (4) the final a is
chosen as the value corresponding to the maximum
curvature point of the L-curve.

The best C–PSD estimate, F̂ðXj,DnÞ, is assumed to be
obtained as the solution of Eq. (6) with the above-selected



Fig. 2. Schematic data treatment paths for estimating the CSD and the PSD from (simulated or experimental) SLS measurements.
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a. Then, the CSD estimate, ĝðXjÞ, and the PSD estimate,
f̂ ðDnÞ, are calculated from F̂ðXj,DnÞ through Eqs. (3a) and
(3b), respectively. Note that the TSDs, hj(Zk), and the
Eq. (4) are not involved in the estimation procedure;
however, they are required in synthetic examples for
simulating the C–PSD from the knowledge of both the
CSD and the TSD.

In principle, steepest-descent optimization algorithms
such as the sequential quadratic programming (SQP)
method [18] could be used for solving the linear inverse
problem described by Eq. (6). However, the problem
involves a huge number of unknowns (the N� J ordinates
of the bivariate size distribution), and the use of a SQP
typically requires a high computing time. For this reason,
the employment of a stochastic method can be more
adequate for obtaining the optimum of Eq. (6) in shorter
computing times. In a particle swarm optimization (PSO)
algorithm [19], the optimum searching strategy uses a
large population of ‘particles’ (the term ‘particle’ corre-
sponding to the PSO algorithm will be indicated between
apostrophes). Then, in the context of a PSO algorithm, a
‘particle’ corresponds to an individual; i.e., each ‘particle’
is a candidate C–PSD to represent the sought solution to
the optimization problem.

During the execution of a PSO algorithm, each ‘particle’
continuously moves through the search space until some
relatively stable state is reached [19]. Thus, the lth
‘particle’ Fl (J�N) describes a given trajectory in a
(J�N)-dimensional space. The best position reached by
the ‘particle’ Fl (i.e., the point on its trajectory that
minimizes Eq. (6)) is represented by Pl (J�N). Similarly,
the best position on the whole trajectory set described by
the complete ‘particle’ population is represented by G
(J�N). The position change rate (or velocity) of any
‘particle’ Fl is represented by Vl (J�N). Then, the ‘particles’
are manipulated according to the following model [20]:

Vlðkþ1Þ ¼wðkÞ VlðkÞþc1 R1ðkÞ½PlðkÞ�FlðkÞ�

þc2 R2ðkÞ½GðkÞ�FlðkÞ� ð8aÞ

Flðkþ1Þ ¼ FlðkÞþVlðkþ1Þ ð8bÞ

where k represents the iteration number, c1 and c2 are two
positive constants, R1(k) and R2(k) are two random num-
bers in the range (0,1), and w(k) is the inertial weight [20].
Eq. (8a) is used to calculate the updated ‘particle’ velocity,
Vl(kþ1), according to (i) its previous velocity, Vl(k), (ii) its
current distance to its best historical position, [Pl(k)�Fl(k)],
and (iii) its current distance to the best position found by
the whole group, [G(k)�Fl(k)]. Then, the ‘particle’ moves
from its old position, Fl(k), to its new position, Fl(kþ1),
according to Eq. (8b). This process is iteratively repeated
until reaching the algorithm convergence, which is
assumed to occur when G does not exhibit significant
changes. The solution obtained by the PSO is the G value
at the last iteration. Since the PSO is a stochastic optimiza-
tion algorithm, the obtained solution is normally an
approximation of the global optimum of Eq. (6). Then,
starting from the last G, a steepest-descent SQP algorithm
is utilized to reach an improved solution.

The proposed method will be validated with both
simulated and experimental examples. Fig. 2 summarizes
the calculation paths. In simulated examples, g(Xj) and
hj(Zk) are assumed to be known and Eq. (4) is used to
calculate F(Xj,Dn). Then, the simulated PSD, f(Dn), is
obtained through Eq. (3b); and the noisy measurement,
~IðyrÞ, is calculated by adding a random noise e to the
noise-free SLS measurement, I(yr), calculated with Eq. (5).
In experimental examples, the SLS equipment directly
produces ~IðyrÞ. From ~IðyrÞ the proposed method based on
the PSO–SQP algorithm is used to estimate the C–PSD
with the regularization parameter a calculated through
the L-curve method. Finally, the estimated CSD and PSD
are obtained through Eqs. (3a) and (3b), respectively.

4. Validation of the proposed method through simulated
examples

Four simulated examples (EX 1, EX 2, EX 3, and EX 4)
were implemented for evaluating the performance of the
proposed method. All examples aimed at estimating the
CSD and the PSD of core–shell particles immersed in
water, with a polystyrene (PS) core and a poly(methyl
methacrylate) (PMMA) shell. For simplicity, in each exam-
ple it was assumed that all particles exhibited a common
TSD [i.e., hj(Zk)¼h(Zk)], independently of their core sizes.
In all simulated examples, the Xj-axis was regularly
spaced each 5 nm in the range 200–600 nm, and the
Zk-axis was regularly spaced each 2.5 nm in the range
5–100 nm.

The CSDs were selected as asymmetrical log-normal
distributions given by

gpðXjÞ ¼
DX

XjsX,p

ffiffiffiffiffiffi
2p
p exp �

½lnðXj=XpÞ�
2

2sX,p
2

" #
ðp¼ 1,2Þ ð9Þ
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with X1¼300 nm, sX,1¼0.04, X2¼450 nm, and sX,2¼0.035.
The simulated TSDs were also represented by asymmetrical
log-normal distributions, as follows:

hmðZkÞ ¼
DZ

ZksZ,m

ffiffiffiffiffiffi
2p
p exp �

½lnðZk=ZmÞ�
2

2sZ,m
2

" #
ðm¼ 1,2Þ ð10Þ

with Z1¼15 nm, sZ,1¼0.25, Z2¼30 nm, and sZ,2¼0.35. The
simulated CSDs and TSDs (Fig. 3) exhibit different widths
and size ranges, and were selected to evaluate the ability of
the proposed method to deal with different size distribu-
tions. Then, the four simulated C–PSDs, F1, F2, F3, and F4

(Fig. 4a, c, e, and g), were built by combining the CSDs with
the TSDs, according to Eq. (4), and define the corresponding
simulated examples, as follows: EX 1: F1(Xj,Di)¼g1(Xj)h1(Zk);
EX 2: F2(Xj,Di)¼g1(Xj)h2(Zk); EX 3: F3(Xj,Di)¼g2(Xj)h1(Zk); and
EX 4: F4(Xj,Di)¼g2(Xj)h2(Zk).

Simulation of the SLS measurements assumed a
vertically-polarized Argon laser of wavelength l0¼488 nm.
At such l0, the refractive indexes were nm0¼1.3368, for the
disperse medium (pure water) [16]; np0,X¼1.5887, for the
PS core [21]; and np0,Z¼1.4972, for the PMMA shell [22]. The
measurement angles were selected at regular intervals of 51,
in the range 20–1501 (then, R¼27). These parameters
were used to evaluate the CI kernel of Eq. (5) through the
Aden–Kerker theory [6]. The noisy SLS measurements, ~I1, ~I2,
~I3, and ~I4 (Fig. 4b, d, f, and h), were obtained by contam-
inating the noise-free measurements, I(yr), with an additive
Fig. 3. Simulated (log-normal) CSDs (a) and TSDs (b), used to build the

bivariate C–PSD. All distributions were normalized to equal area.
noise, e, similar to that observed in experiments [11,12],
as follows:

~IðyrÞ ¼ IðyrÞþe¼ IðyrÞþ0:0025max½IðyrÞ�e0 � ðr¼ 1,. . .,RÞ

ð11Þ

where e0 is a Gaussian random sequence of mean zero and
variance one.

To implement the estimation procedure, wide enough
ranges for the Xj and Dn axes must be selected to ensure
that they completely contain the simulated CSD and PSD.
A common diameter range of 100–800nm (regularly-
spaced each 20 nm) was adopted for Xj and Dn.

A PSO with 50 ‘particles’ was utilized to solve the inverse
problem. The usual parameters c1¼c2¼2 [Eq. (8a)] were
directly adopted from literature [20]. The inertia function
w(k) was selected as a decreasing linear function from 0.5
(for k¼1) to 0.1 (for k¼25,000). The PSO algorithm was
initialized by assigning to each ‘particle’ a random bivariate
size distribution of components sampled from a uniform
distribution. After several runs, it was verified that the PSO
reached an acceptable convergence of the objective function
in about 25,000 iterations. For this reason, a maximum of
25,000 iterations was adopted as a reliable criterion for
stopping the PSO procedure. Then, the approximate solution
obtained by the PSO was utilized as the initial guess for
obtaining an improved solution of Eq. (6) after application of
a SQP algorithm [18].

For each example, the proposed inversion method was

applied to estimate the C–PSD, F̂i (i¼1,y,4), from the

knowledge of its corresponding noisy measurement, ~I i

(i¼1,y,4). Then, the estimated CSDs, ĝpðXjÞ, (p¼1,2), and

PSDs, f̂ iðDnÞ, (i¼1,y,4), were calculated from Eqs. (3a)
and (3b) (see Fig. 2).

The following indexes (Jg and Jf), the number average
diameters (Xg and Df ), and the percentage errors (EX and ED),
were defined to evaluate the performance of the estimation
method:

Jg ¼

PJ
j ¼ 1 ½gðXjÞ�ĝðXjÞ�

2PJ
j ¼ 1 ½gðXjÞ�

2

0
@

1
A

0:5

ð12aÞ

Jf ¼

PN
n ¼ 1 ½f ðDnÞ�f̂ ðDnÞ�

2PN
n ¼ 1 ½f ðDnÞ�

2

 !0:5

ð12bÞ

Xg ¼

PJ
j ¼ 1 Xj gðXjÞPJ

j ¼ 1 gðXjÞ
ð12cÞ

Df ¼

PN
n ¼ 1 Dn f ðDnÞPN

n ¼ 1 f ðDnÞ
ð12dÞ

EX ¼ 100
9Xg�X̂g9

Xg

ð12eÞ

ED ¼ 100
9Df�D̂f 9

Df

ð12fÞ

Indexes Jg and Jf evaluate the ability of the proposed
method to estimate the ‘true’ CSD and PSD, respectively.
Note that in a real measurement, it would be impossible



Fig. 4. Four simulated examples: (a, c, e, and g); the bivariate C–PSDs; (b, d, f, and h) the noisy SLS measurements calculated from the C–PSDs and Eq. (5)

with particles of moderate ð~IÞ and high ð~I
0
Þ optical contrast. The optical contrast is the difference between refractive indexes of core and shell materials.
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to calculate Jg and Jf because the ‘true’ distributions, g(Xj)
and f(Dn), are unknown; however, this criterion was
adopted for the simulated examples to investigate the
limitations of the estimation method. The errors E

X
and E

D

evaluate the estimation errors of Xg and Df , respectively.
The main results are presented in Fig. 5 and in Table 1.
Fig. 5 shows the simulated CSDs, gp (p¼1,2); the ‘true’
PSDs, fi (i¼1,y,4), obtained by inserting the simulated C–
PSDs, Fi, into Eq. (3b); and the estimated CSDs, ĝp, and
PSDs, f̂ i, obtained by inserting the estimated C–PSDs, F̂i,



Fig. 5. Estimation results for the four simulated examples with particles of moderate (ĝp and f̂ i) and high (ĝp
0

and f̂ i

0

) optical contrasts (p¼1, 2; i¼1,y,4).

(a, c, e, and g); the simulated CSDs and their estimates; (b, d, f, and h) the simulated PSDs and their estimates.
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into Eqs. (3a) and (3b). Table 1 shows the resulting
performance indexes.

In all the analyzed examples, the estimated PSDs
resulted close to the ‘true’ PSDs (Fig. 5b, d, f, and h).
According to Table 1, the following is observed: (i) the
average diameters, Xg and Df , were accurately estimated
in the four examples, with a maximum percentage error
of 3% in Xg and only 1.3% in Df ; (ii) slightly improved PSD
estimates (smaller Jf) were obtained for samples of
increasing average diameters; (iii) in samples with a
common CSD (EX 1 and EX 2, or EX 3 and EX 4), better
CSD estimates (smaller Jg) were obtained when the
particles exhibited a small average shell; and (iv) in
samples with a common TSD (EX 1 and EX 3, or EX 2



Table 1
Simulated examples. Capability of the numerical method to estimate CSDs and PSDs of core/shell particles with moderate (MC) and high (HC) optical

contrastsa (numbers between parentheses indicate the true average sizes).

EX 1 EX 2 EX 3 EX 4

MC HC MC HC MC HC MC HC

Jg (dimensionless) 0.55 0.19 0.65 0.31 0.26 0.07 0.55 0.24

Jf (dimensionless) 0.40 0.43 0.24 0.30 0.22 0.26 0.20 0.17

Xg (nm) 291 (300) 299 (300) 300 (300) 300 (300) 449 (450) 451 (450) 440 (450) 451 (450)

Df (nm) 333 (332) 329 (332) 359 (364) 363 (364) 481 (482) 482 (482) 517 (514) 506 (514)

E
X

(%) 3.0 0.3 0 0 0.2 0.2 2.2 0.2

E
D

(%) 0.3 1.2 1.3 0.2 0.2 0 0.6 1.6

a The optical contrast is the difference between refractive indexes of the core and the shell materials.

Table 2

Simulated examples. Influence of the Xg=Df ratio on the quality of the

estimated CSDs and PSDs.

Xg=Df
0.94 0.93 0.91 0.90 0.88 0.87

Jg 0.26 0.36 0.39 0.53 0.57 0.59

Jf 0.22 0.18 0.16 0.26 0.24 0.27
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and EX 4), better CSD estimates (smaller Jg) were obtained
when the particles exhibited a large average core.

Observations (iii) and (iv) basically indicate that the
CSD is better estimated when the ratio ‘average core
diameter’/‘average particle diameter’, Xg=Df , is large.
Although rather intuitive, this final observation was
reaffirmed through several ad-hoc simulations. In fact,
based on EX 3, five additional auxiliary examples were
generated by successively increasing its average shell
thickness. To this effect, five log-normal TSDs, with average
shell thickness and standard deviations: {15, 0.50}, {22.5,
0.25}, {22.5, 0.50}, {30, 0.25}, and {30, 0.50}, were combined
with the CSD g2 of EX 3. Then, the method described in Fig. 2
was applied, and the results are summarized in Table 2. The
almost constant Jf indicates that the PSD is acceptably
estimated independently of the Xg=Df ratio. However, the
monotonically increasing Jg confirms that the CSD estimate
is deteriorated for decreasing Xg=Df ratios.

4.1. Influence of the core/shell optical contrast

In all analyzed examples, the core/shell optical con-
trast (i.e., the difference between refractive indexes of
core and shell) is moderate (np0,X�np0,Z¼0.0915). To
analyze the effect of the core/shell optical contrast on
the quality of the estimated distributions, the following
noisy SLS measurements were simulated (see Fig. 4b, d, f,
and h): (a) ~I i

0 , as obtained from particles with np0,X¼2.0
and np0,Z¼1.4972 (i.e., with a high optical contrast:
np0,X�np0,Z¼0.5028), and (b) ~I

n

i , as obtained from homo-
geneous PMMA particles with np0¼1.4972. While ~I i and ~I

n

i

are practically coincident, large differences are observed
between ~I i and ~I i

0 . These results suggest that improved
information on the CSD can be retrieved when the
particles exhibit a high core/shell optical contrast.

In order to evaluate the effect of the optical contrast on
the estimated size distributions, the proposed method was
applied to the noisy measurements, ~I i

0. The estimated CSDs,
ĝp
0 , and PSDs, f̂ i

0 , are also shown in Fig. 5, and the correspond-
ing performance indexes are indicated in Table 1. In all cases,
the CSD estimates ðĝp

0 Þ obtained at high optical contrast (HC)
are better than those obtained at moderate optical contrast
(MC). Thus, in the more difficult cases of particles with a low
Xg=Df ratio, acceptable CSD estimates can even be obtained if
the particles exhibit a high core/shell optical contrast. On the
other hand, the estimated PSDs were close to the ‘true’ ones,
and no meaningful influence of an increased optical contrast
was detected from the analysis of indexes Jf and Df (Table 1).

Note that all analyzed examples assumed np0,X4np0,Z.
Even though not shown, similar results were obtained when
the four examples were investigated with np0,Xonp0,Z.

5. Application to experimental data

The proposed method was also applied to estimate the
CSD and the PSD of two samples (S1 and S2) that involve
core–shell particles dispersed in water, with cores of hema-
tite (Fe2O3) and shells of Yttrium carbonate [Y(OH)CO3].
The samples were obtained in two-steps [16]: (i) the synth-
esis of a colloid of hematite particles (core), and (ii) the
addition of two different amounts of Yttrium carbonate
(shell) onto the hematite particles. According to the described
procedure, both samples exhibit a common CSD and two
different TSDs. The CSD and the PSDs were first measured by
transmission electron microscopy (TEM); and then accepta-
bly adjusted with a zero-order normal-logarithmic distribu-
tion (ZOLD), as follows:

gTEMðXjÞ ¼
DX

XsXes
2
X
=2

ffiffiffiffiffiffi
2p
p exp

�½lnðXj=XÞ�
2

2sX
2

" #
ð13aÞ

f s,TEMðDnÞ ¼
DD

DsDes
2
D
=2

ffiffiffiffiffiffi
2p
p exp

�½lnðDn=DÞ�
2

2s2
D

" #
ðs¼ S1,S2Þ

ð13bÞ

The adjusted distributions gTEM, fS1,TEM, and fS2,TEM are
shown in Fig. 6, and their average diameters are indicated
in Table 3. The sample S1 (Fig. 6c) exhibits a narrow PSD, with
a mean diameter of 84 nm; while the sample S2 (Fig. 6f)
exhibits a broader PSD, with an average diameter of 147 nm.
Since both samples involve a common CSD (Fig. 6b,e), with
an average diameter of 56 nm, Fig. 6c,f reveal that S2 presents
a broader TSD than S1, with a larger average thickness.



Fig. 6. Experimental samples S1 and S2. (a,d) the SLS measurements, IS1, IS2, and their estimates, ÎS1, ÎS2; (b,e) the ‘true’ CSD obtained by TEM, gTEM, and its

estimates, ĝS1, ĝS2; (c,f) the PSDs obtained by TEM, fS1,TEM and fS2,TEM, and their estimates, f̂ S1, f̂ S2.

Table 3
Experimental examples. Capability of the numerical method to estimate

the CSDs and PSDs (numbers between parentheses indicate the average

sizes obtained by TEM).

S1 S2

Jg (dimensionless) 0.11 0.59

Jf (dimensionless) 0.23 0.15

Xg (nm) 56 (56) 64 (56)

Df (nm) 86 (84) 149 (147)

E
X

(%) 0 14.0

E
D

(%) 2.4 1.4
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The SLS measurements were acquired with a Malvern
4700 PCS spectrometer (Malvern Instruments) fitted with a
vertically polarized Argon laser (l0¼488 nm). For this l0,
the refractive indexes are as follows: nm0¼1.3368, for the
disperse medium (pure water); np0,X¼3.086þ0.491 i, for
the hematite core; and np0,Z¼1.650, for the Yttrium carbo-
nate shell [16]. The nonzero imaginary component in np0,X

indicates that the core material absorbs radiation at l0. For
the measurement process, the particle concentration was
low enough to avoid multiple scattering. The measurement
angles were selected at regular intervals of 51, in the range
20–1501 (then, R¼27). The obtained SLS measurements, IS1

and IS2, are shown in Fig. 6a and d, respectively.
To implement the estimation procedure, a common

diameter range of 20–500 nm regularly-spaced each
20 nm was adopted for Xj and Dn. As prescribed in Fig. 2,
the following steps were implemented: (1) from IS1 and IS2,
the C–PSD of samples S1 and S2 were obtained through the
PSO–SQP algorithm, and (2) the estimated CSDs and PSDs
were calculated from Eqs. (3a) and (3b), respectively. The
main results are presented in Fig. 6 and in Table 3.
The estimated SLS measurements, ÎS1 and ÎS2, were
obtained by replacing the estimated C–PSD into Eq. (5),
and are practically superimposed with the measurements
IS1 and IS2 (Fig. 6a,d). In Fig. 6b,e, the estimated CSDs, ĝS1

and ĝS2, are compared with their TEM distribution, gTEM.
In Fig. 6c,f, the estimated PSDs, f̂ S1 and f̂ S2, are compared
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with their TEM distributions, fS1,TEM and fS2,TEM. The per-
formance indexes of Table 3 were calculated by assuming
that gTEM, fS1,TEM and fS2,TEM are the ‘true’ distributions.

As in the case of the simulated examples, the best CSD
estimate (smallest Jg) was obtained for the sample S1 that
exhibits the highest Xg=Df ratio (Fig. 6b,e and Table 3).
In contrast, the sample S2 involved a smaller Xg=Df ratio,
and the CSD estimate shows more important deviations
with respect to gTEM. In both analyzed samples, the CSD
average diameters were acceptably estimated (Table 3).
Fig. 6c,f indicates that the proposed method produced
acceptable PSD estimates. In the case of the sample S1, an
erroneous mode of size 250 nm and number concentration
of 6% was estimated as a consequence of the small
regularization parameter produced by the L-curve method.
This spurious mode could be eliminated by using a
stronger regularization (a higher a), but would lead to an
artificially-broader PSD estimate.

6. Conclusions

A numerical method was proposed for simultaneously
estimating the CSD and the PSD of spherical core–shell
particles from SLS measurements. The generalized second-
order Tikhonov regularization method together with the
PSO–SQP algorithms were effective to solve the ill-
conditioned inverse problem. The proposed strategy
(Fig. 2) presents the following advantages: (i) no a-priory

assumption on the shape of the CSD or the PSD is required;
(ii) the numerical procedure is of easy computational
implementation (routines for the light scattering process,
PSO, and SQP are all of public domain); (iii) the estimation
procedure can be automated because the L-curve method
provides the a regularization parameter without interven-
tion of the user; and (iv) the estimates are practically
independent of the selected diameter range. In a standard
desktop PC (Intels CoreTM Duo processor), the numerical
procedure requires typical computing times of around
5 min to produce the estimated distributions.

For particles beyond the Rayleigh regime, the PSD
estimates are always acceptable and the CSD can be
adequately estimated when the core/shell particles exhi-
bit either a high optical contrast, or a moderate optical
contrast and a high Xg=Df ratio. For instance, in the
experimental examples, the huge difference between the
refractive indexes of core and shell enabled an acceptable
CSD estimate in spite of the small Xg=Df ratio. For
Rayleigh particles, acceptably estimates of the CSD or
the PSD are not possible, due to the lack of information on
the CSD and the PSD in the SLS measurements.
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