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A B S T R A C T

This article presents OntoTracED, a comprehensive framework to represent, capture and trace ontology
development processes. It has three components: (i) a conceptual model that defines the framework
foundations, (ii) an ontological engineering domain model (OEDM), which specifies and describes design
objects, as well as those operations that are particular to a specific ontology development methodology, and (iii)
a computational support environment, named TracED(aaS). This contribution first offers an overview of the
ontology development process characteristics and then describes the main features of each OntoTracED
component. The framework capabilities are illustrated by means of a case study addressing the use of
TracED(aaS) throughout the development of an ontology of industrial interest. It is shown that this proposal
makes a strong contribution in the ontological engineering field since the whole ontology development process,
its history, rationale, and all the intermediate products can be captured in an integrated fashion.

1. Introduction

Ontologies are currently applied in many fields like medicine,
finance, education, and biology; similarly, its usage in the engineering
domain has grown in recent years. In manufacturing, for example,
ontologies have been developed to: i) formalize knowledge about
product data and production processes (Panetto et al., 2012, Vegetti
et al., 2011; Giménez et al., 2008, Marquardt et al., 2010); ii) define,
describe, and standardize vocabulary, concepts and relations between
system activities and components (Efthymiou et al., 2015; Borgo and
Leitão, 2007; Usman et al., 2013); iii) design multi agent and knowl-
edge based systems for process supervision, monitoring and control
(Darmoul et al., 2013; Elhdad et al., 2013; Natarajan et al., 2012). In
addition, several ontologies have been developed in order to reach
interoperability between multiple Information and Communication
Technologies (ITC) (Wu et al., 2013; Beydoun et al., 2014; Liao
et al., 2016).

Despite the fact that the number of ontologies developed by the
academic community has increased in the last decade, the adoption of
this technology by industry is still limited, as opposed to what happens
in other fields, like bioinformatics. In fact, there is an important gap
between scientific studies and real world applications, though there is a
consensus on the need for concrete applications in various engineering

fields. The development and usage of ontologies in engineering sciences
is particularly challenging due to various reasons:

(i) It requires the collaboration among experts in the specific field, as
well as specialists in knowledge engineering, ontology engineering
and computer science (Hai et al., 2011). However, these last ones
are not always available and domain experts demand for tools
helping them along the ontology development phases.

(ii) Ontologies are built to be reused or shared anytime, anywhere,
and independently of the behavior and domain of the application
that adopts them (Fernández-López et al., 1999). Building a
consensual and rich ontology in any engineering domain is,
however, not an easy task, as it requires the proper handling of
the compromise between usability and reusability (Marquardt
et al., 2010) and the agreement of different people on various
aspects. Particularly, in most engineering domains, in which there
are many pre-existing organizational information sources and
vocabularies, as well as rapidly changing requirements, reuse is
hard to achieve without appropriate methodological approaches
and support tools.

(iii) Given the complexity of most engineering domains, as well as the
numerous possible applications of a given ontology in a particular
domain, such ontology cannot be expected to be complete from
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scratch. On the contrary, its development must anticipate the
possibility of future extensions and reuse, thus adding an extra
difficulty. To our knowledge, with the exception of OntoCAPE
(Morbach et al., 2007, 2009; Marquardt et al., 2010; Hai et al.,
2011), a comprehensive ontology for the domain of computer-
aided process engineering (CAPE), there is hardly any ontology in
the engineering sciences which can be broadly used and which is
actually applicable. Even for the authors of OntoCAPE (Marquardt
et al., 2010), a project that took almost two decades, an ontology is
never ready for use in the sense that there will always be the need
for adaptations and refinements to match the requirements of an
envisioned application. In fact, they assert that the OntoCAPE
project exemplarily shows that ontologies are dynamic informa-
tion systems and that there is still a lot of room for more
elaborated ontology engineering support tools.

The previous statements, as well as the experience of our group in
developing ontologies in various engineering domains for about a
decade (Gonnet et al., 2007a; Giménez et al., 2008; Vegetti et al., 2011;
Vegetti and Henning, 2015), allow us to conclude that ontology
development needs to be properly supported. Ontology engineering is
a new field that focuses on both the ontology development processes
and the methodologies aimed at guiding such processes. An extensive
state-of-the-art overview of ontology engineering methodologies can be
found in Gómez-Pérez et al. (2004).

Depending on the scenario that is faced, different types of ontology
development processes can be identified. In fact, according to the NeOn
team (Suárez-Figueroa et al., 2012) there are nine scenarios for
collaboratively building ontologies and ontology networks. Scenario
number one considers the development of ontologies from scratch.
There are scenarios for reusing and reengineering non-ontological
resources and for reusing ontology design patterns. The other six
scenarios consider combinations of reusing, reengineering and merging
existent ontologies. These scenarios can be combined in different and
flexible ways. However, any combination of them should include the
scenario number one (ontology development from scratch) because it is
made up of the core activities that have to be performed in any ontology
development process.

In the last decade, ontology development processes devoted to build
ontologies from scratch have changed from old-fashioned ones,
performed by isolated knowledge engineers or domain experts, into
collaborative processes, executed by mixed teams (Bernaras et al.,
1996). In such teams, experts in knowledge acquisition and modeling,
domain specialists, and experts in ontology implementation languages
collaborate to build ontologies, according to well-established meth-
odologies. In general, once a given development process is finished, the
things that remain are mainly design products (e.g., requirements
specification, competency questions, ontology class diagrams, imple-
mentations in specific languages, etc.), without an explicit representa-
tion of how these products have been obtained. In other words, the
development process itself is not tracked and the design rationale (DR)
is not captured.

The expertise and knowledge of each ontology development team
member, the activities he/she executed, and the decisions made during
the development process might be of great importance in future
projects. In addition, provided the design of an ontology is an
incremental and iterative process, further issues need to be considered.
In an iterative evolution, design decisions, constraints and assumptions
made at a given iteration step must be taken into account in following
iterations. However, current tools supporting ontology development
processes do not capture this type of information. In consequence, the
process trace is lost and any new ontology development process would
start from scratch.

Design rationale is an explanation of why an artifact is designed the
way it is (Lee, 1997). In the ontology domain, DR encompasses
background information on the ontology development process, includ-

ing the justifications of design decisions, records of the design
alternatives that have been considered and tradeoffs that have been
evaluated. DR information is very important for the reuse of develop-
ment processes, as well as for the assessment of these processes. In
general, current ontology development methodologies do not ade-
quately document the DR. Therefore, most of this knowledge remains
hidden in the experts´ mind.

Research on DR capture, representation, and application has had
an extensive tradition in several engineering design domains. However,
few efforts have been made in the ontology engineering field and they
have only focused on the representation of argumentations during
design discussions. On the other hand, proposals coming from different
engineering fields still have some drawbacks, which are pointed out by
Zhang et al. (2013). An important one is the fact that the DR
representation lacks integration with the artifacts produced during
the design process. Furthermore, most representations do not provide
the ability to reason and intelligently retrieve knowledge. Additionally,
there are two issues that still need to be addressed: (i) how to capture
DR information during design processes without affecting the de-
signers´ activities, (ii) how to reuse the rationale that is captured.

In order to tackle the challenges presented above, this contribution
proposes ONTOTracED, a framework aimed at representing, capturing
and tracing those ontology development processes that start from
scratch. ONTOTracED takes into account the particular concepts of the
ontological engineering domain and the possible operations that can be
applied on the instances of these concepts. Its goal is to capture (i) the
requirements that are considered, (ii) the activities and actors that
generate each design product, and (iii) the rationale behind each
adopted decision, thus supporting ontology development and future
reuse. Furthermore, it also offers an explicit mechanism to manage the
different ontology versions that are created along a given development
process.

The remainder of this article is organized as follows. Section 2
presents a description of the ontology development process, the steps
and the methodologies that support the complete process. Section 3
introduces the OntoTracED framework, its components and funda-
mental characteristics, while Section 4 presents a computational
environment, named TracED(aaS), which implements the underlying
models. The application of the framework to a case study is addressed
in Section 5. Finally, Section 6 presents the conclusions and new lines
of research that are derived from this work.

2. Ontology development process

Ontology development processes have improved from the early
phases of non-systematic work to the current activities performed in
the framework of Ontological Engineering. This is a relatively new field
of study concerning ontology development processes, ontology life
cycles, methods and methodologies for building ontologies, as well as
tool suites and languages that support them (Gómez-Pérez et al., 2004).
A series of methods and methodologies for developing ontologies has
been reported in literature in the last two decades, of which an
extensive state-of-the-art overview can be found in Gómez-Pérez
et al. (2004). In addition, Cristani and Cuel (2005) have proposed a
framework to compare ontology engineering methodologies and have
evaluated the established ones accordingly.

The first contributions in the field, due to Gruber (1993), Grüninger
and Fox (1995), Uschold et al. (1998) and Uschold and Gruninger
(1996), introduced the grounds for many subsequent proposals.
Gruber's work discussed some basic ontology design criteria related
to ontology quality, as well as to the development methodology.
Gruninger and Fox introduced a development methodology based on
Competency Questions. Methontology (Fernández-López et al., 1999),
which is an ontology development process, introduced an ontology
lifecycle based on evolving prototypes and specific techniques to
address each activity in the methodology. Yure et al. (2009) proposed
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On-To-Knowledge, which emphasizes knowledge management. Other
approaches, often related to industry or research projects, include the
methods used for building CyC, SENSUS (Swartout et al., 1997) and
KACTUS (Bernaras et al., 1996). These methodologies mainly include
guidelines for the construction of single ontologies, going from their
requirements specification up to their implementations. On the other
hand, the Neon methodology (Suárez-Figueroa et al., 2015) suggests
pathways and activities for a variety of scenarios including, among
others, the development of ontologies from scratch, the reuse and
merge of ontological and non-ontological resources, as well as the reuse
of ontological design patterns.

Although many ontology development methodologies have been
proposed in recent years, no one is yet emerging as a clear reference
(De Nicola et al., 2009). In this proposal, the methodology introduced
by Uschold et al. (1998) has been adopted, since its phases –
specification, conceptualization and implementation – are included in
all the other methodologies. In fact, the first and second phases are
present in all the methodologies with the same or different names. On
the other hand, implementation may be a complete phase in itself in
certain methodologies, it may be executed together with the concep-
tualization step in others, or it can be totally absent. The scope of each
of these steps, schematically shown in Fig. 1, is briefly explained in the
following paragraphs..

The first phase, named requirements specification, identifies
the scope, purpose and intended use of the ontology. Additionally, in
some methodologies, this phase also refers to a first identification of
concepts and relationships existing in the domain, as well as the
possible ontologies to be reused. Some methodologies (Grüninger and
Fox, 1995, Sure et al., 2009, Suárez-Figueroa et al., 2015, De Nicola
et al., 2009) ground this phase on the definition of competency
questions that help identifying requirements and the scope of the
ontology. Thus, from each competency question the ontology developer
extracts the proper terminology. A first pre-glossary of terms is pulled-
out from competency questions and their answers.

The conceptualization phase is related to the capture of con-
cepts, relations and their semantics from the domain in order to build
the ontology from them. This stage organizes and converts an
informally perceived view of a domain into a specification using a set
of intermediate representations that can be understood by domain
experts and ontology developers. Assumptions and constraints in the
interpretation of such terminology are also defined in an informal way.
There are different approaches to represent concepts and relations at
this phase: i) natural language (Debruyne and De Leenheer, 2014), ii)
intermediate representations such as tables (Gómez-Pérez et al., 2004;
Yure et al., 2009) or UML diagrams (De Nicola et al., 2009), and iii)
predicates in first order logic (Grüninger and Fox, 1995). The first and
third approaches imply the absence of an implementation phase and
the addition of implementation-related activities to the conceptualiza-
tion one. In general, when a methodology considers an intermediate
representation language, a formalization step is required to obtain a
formal ontology.

Ontologies can be represented with different knowledge modeling
techniques and can be implemented in various kinds of languages.
However, not all of them can represent the same knowledge, with the
same degree of formality and granularity. Gómez- Pérez et al. (2004)
have stated that AI-based approaches combining frames with first
order logics or description logics are suitable for modeling heavyweight
ontologies, while software engineering approaches and databases allow
the representation of lightweight ontologies. In spite of their diversity,
techniques share structural similarities and have common modeling
elements, such as:

• Classes: They represent a collection of entities that share a common
set of characteristics. Certain languages call them concepts or
frames. Classes can be hierarchically organized by means of
subsumption relationships.

• Relations: They are associations between classes. Different lan-
guages call them properties, slots, roles, or associations.

• Individuals: They are entities that belong to a particular class. They
are also called instances or members of this class.

The activities at this conceptualization phase require close coopera-
tion between domain experts and ontologists, because both of them
need knowledge about the domain and important ontological distinc-
tion patterns (Neuhaus et al., 2013). In order to facilitate this task,
several authors proposed the use of Ontology Design Patterns (ODPs),
the ontological engineering version of software engineering design
patterns. ODPs identify and specify abstractions that are above the
level of single concepts and relations. These abstractions address a
recurring design problem that arises in specific design situations and
provide a solution for it (Buschmann et al., 1996). Ontology design
patterns in their current interpretation were introduced by Gangemi
(2005) and Blomqvist and Sandkuhl (2005). Blomqvist defines the
term as “a set of ontological elements, structures or construction
principles that solve a clearly defined particular modeling problem”
(Blomqvist, 2009). ODPs can be grouped into six types, each addres-
sing different modeling problems. Examples of these patterns are n-Ary
Relations, Value Partition (or just Partition), Normalization, Negative
Property Assertion, among others. A list of several proposed patterns
can be found in the ODPs public catalog (ODPsOrg, 2015; ODPS,
2015).

Once a conceptual model is built, it is necessary to transform it into
a formal one, which could be represented in an ontology implementa-
tion language. Such transformation is the objective of the implemen-
tation phase. It is important to notice that the same conceptual
model might result in several implementation models (Hartmann et al.,
2006), because distinct applications might require different kinds of
reasoning services, and special-purpose languages to support them.
Languages to specify ontologies can be classified into two groups: (i)
AI-based languages, such as KIF (NCITS, 1998) and Flogic (Kifer et al.,
1995), and (ii) Web-based languages. The knowledge representation
paradigm underlying the first group is based on first order logics,
frames combined with first order logics, and description logics.
Languages belonging to the second group, such as RDF (Gandon and
Schreiber, 2014), RDF- Schema (Brickley and Guha, 2014) and OWL
(W3C-OWLwg, 2012), have been developed by the W3C (World Wide
Web Consortium) and they have established the foundations for the
Semantic Web (Shadbolt et al., 2006).

Regardless of the adopted approach, the development of ontologies
is a challenging process that requires supporting tools. In the last
decade, such a process has been transformed from a one which has
been traditionally performed by isolated engineers or domain experts
into a process that has been collaboratively executed by mixed teams
(Palma et al., 2011). Creating and designing an ontology requires the
collaboration of domain and ontology engineering experts. In order to
arrive at a consensual model of a domain, expressed by means of an
ontology, the participants of the engineering project must discuss their
different viewpoints efficiently (Gangemi et al., 2007). So, discussions
are an important part of collaborative ontology engineering activities
and capturing them would reflect the design rationale behind the

Fig. 1. Ontology development phases.
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ontology. The captured design rationale might be useful for under-
standing the decisions made in previous activities when developing an
ontology from scratch, but it may also be important in other scenarios,
such as the reuse or the reengineering of ontological and non-
ontological resources, or the alignment with other ontologies.

The exchange of arguments and the capture of the design rationale
behind design decisions constitute a major part in collaborative
ontology building. The argumentation process is used in several
domains, like medicine (Doumbouya et al., 2015), social agents
(Heras et al., 2014), engineering design (Baroni et al., 2015; Gonnet
et al., 2007b), and ontology design (Hauagge Dall Agnol and Tacla,
2013), among others. In ontological engineering some proposals
capture the argumentation process using IBIS (Kunz and Rittel,
1970), which is the most accepted model of argumentation. Among
others, Human-Centered Ontology Engineering Methodology
(HCOME) (Konstantinos and Vouros, 2006), DIstributed Loosely-
controlled and evolvInG Engineering process of oNTologies
(DILIGENT) (Pinto et al., 2009) and Cicero (Dellschaft et al., 2008),
are examples of proposals that use IBIS model as part of the ontology
development process.

HCOME and its environment HCONE (Human-Centered Ontology
Engineering Environment) support the development of ontologies in a
collaborative decentralized way. Each ontology works (creates or
merges ontologies) in a private space. Private ontologies can be put
in a shared space, which is accessed by all involved ontologists, in order
to discuss ontological decisions. The discussion is captured using the
IBIS argumentation model. Once an agreement is reached, the ontology
is moved into an agreed space.

The DILIGENT methodology proposes an ontology that deals with
argumentation in collaborative workflows. This proposal incorporates
certain elements to the IBIS model in order to accelerate issue
resolution. This argumentation model, along with the one proposed
by Potts and Bruns (1988), constitutes the basis of the argumentation
model that underlies the Cicero tool. This tool is an extension of a
semantic mediawiki (Krötzsch et al., 2006) that combines the general
structure for representing discussions from the DILIGENT argumenta-
tion framework with the idea of annotating ontology elements and
changes with the corresponding discussions. The Cicero tool has been
developed within the scope of the NeOn project and it is integrated with
the NeOn toolkit ontology editor. Therefore, when a user working with
the editor adds a concept or a property into an ontology, he/she can
link this new concept or property with an element of the argumentation
framework. Although the Cicero tool gives support to capturing the
discussion during the ontology development, the discussion and the
generated ontology model run on different paths.

C-ODO is another tool developed as part of the NeOn project. It
consists of a framework formalized in OWL, which can be used as a
requirement language for describing social level aspects of ontology
design (Gangemi et al., 2007). The framework defines six layers,
including one for argumentation and another one for ontology design
rationale.

All the aforementioned proposals deal with the capture of argu-
ments supporting discussions among ontology developers.
Additionally, they provide support for capturing the decisions that
ontologists have made during the ontology development process. Some
of them, such as HCOME and DILIGENT, are independent from
methodologies or editor tools. Other ones were developed within the
scope of the development project of other tools, or were intended to be
integrated in an existent environment. However, none of them focuses
on the capture of fine-grained operations, such as the addition of
competency questions, addition/removal of concepts, relations or
individuals, and modification of properties of these ontological ele-
ments. Moreover, none of them provides a mechanism to capture and
trace how informal competency questions are formalized or which
group of concepts, individuals and relations are used to answer one of
these questions.

Although there are some initial proposals to capture argumenta-
tion, in general, once a specific ontology development process con-
cludes, the things that remain are isolated design products (e.g., the
requirements specification, competency questions, ontology class dia-
grams, the ontology implementation in a specific language, etc.).
However, these products are preserved without an explicit representa-
tion of how they were obtained; thus, the history and rationale behind
the development process have not been captured. In fact, there is no
trace of the activities that originated the products, the requirements
that were imposed, the actors performing each activity, or the rationale
behind each decision.

In order to overcome these drawbacks, this article introduces an
operational-oriented approach to represent and capture the ontology
development process. Some preliminary results of the proposal have
been presented in Vegetti et al. (2012), which considers an ontology
development process that is based on the ontological categories defined
by the Unified Foundational Ontology (UFO) (Guizzardi, 2005). In this
contribution we extend and generalize these preliminary results,
proposing a comprehensive framework based on the three-phase
methodology depicted in Fig. 1. The main differences between this
proposal and the one of Vegetti et al. (2012) are: i) the specification of a
new Ontology Engineering Domain Model (OEDM), which is based on
a general methodology, ii) the capability of extending the OEDM to fit
any particular ontology development methodology, iii) a new architec-
ture for the computational environment that implements the frame-
work, which was developed using cloud computing technologies. In
addition, new and more complex case studies, pertaining to the
engineering domain, are tackled in this contribution.

3. A Framework to capture and trace the ontology
development process

In order to override the limitations that were mentioned in Section
2, this contribution proposes a comprehensive framework to represent,
capture and trace ontology development processes.

Fig. 2 shows the main components of the ONTOTracED framework
that includes: (i) a Conceptual Model, which is able to represent
generic design processes; (ii) an Ontological Engineering Domain
Model (OEDM), which specifies the concepts that are required to
describe ontology development processes, and (iii) a computational
support environment, named TracED(aaS) (Trace Engineering Design
as a Service), that implements both the conceptual model and the
OEDM to enable the capture of specific ontology design processes,
along with their associated products..

The supporting Conceptual Model is based on an operational-
oriented approach that envisions the ontology development project as a

ONTOTracED Framework

Ontology Development Process

Conceptual Model

Process Representation Space

Activity

Product Representation Space

Repository Version

Domain Operation

Ontology Engineering Domain Model

TracED(aaS)

Versions Manager

Domain Editor

Captures 
and Traces

specifiedBy

implements

Specif ication 
Space

Conceptualization 
Space

Implementation 
Space

Design Rationale Space

Materialization Space

Fig. 2. Components of the proposed framework.
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sequence of activities that operates on the products of the development
process. The proposal defines two representation spaces to model
generic design process concepts: the Process and Product spaces. In
addition, a third component (the Materialization Space in Fig. 2) is
included to fully specify a flexible model that is able to represent and
capture design processes pertaining to specific engineering fields.

The Ontological Engineering Domain Model (OEDM) component
can represent and capture specific ontology development projects,
based on building blocks that define the products obtained, as well as
the activities carried out during this type of processes. This representa-
tion includes the modeling elements most commonly found in current
methodologies for guiding ontology development processes. Examples
of these modeling elements are the competency questions, concepts,
and relations. The OEDM component is organized in four different
representation spaces. Three of them specify building blocks and
activities related to the specification, conceptualization, and implemen-
tation phases of the ontology development process. The other one
allows representing design rationale objects and operations.

TracED(aaS) is the computational environment that implements
the conceptual model and enables to define the OEDM and incorporate
it to the framework. TracED(aaS) is based on TracED (Roldán et al.,
2010), which was conceived for capturing and tracing engineering
designs. The major components of TracED(aaS) are the Domain
Editor and Versions Manager. By using the Domain Editor, the
OEDM has been specified in TracED(aaS). Furthermore, the editor
allows this model to be further specialized, if required. On the other

hand, the Versions Manager keeps track of the execution of a design
project, as it will be shown in the following sections.

3.1. Conceptual Model

The Conceptual Model component provides the framework founda-
tions. This component is organized in Process Representation, Product
Representation and Materialization Spaces, which are explained in
this section. The Process Representation space models the activities
being performed during an ontology development process and it is
specified by the Activity package (Fig. 3). In particular, when tackling
the development of an ontology, typical tasks are: the incorporation of
concepts and relations into the ontology, the definition of constraints
on a specific concept, the analysis of whether a group of concepts,
relationships and constraints satisfies a formal competency question,
the evaluation of the ontology, decisions on alternative concepts and
relations, etc. As Fig. 3 shows, such activities are represented in the
model with the BasicActivity or CompositeActivity classes, depending
on whether the task is atomic or it can be decomposed into a set of
subactivities..

In the proposed model, the execution of an activity is guided by one
or more requirements, which specify the functional and non-functional
characteristics that a development product must satisfy (e.g., in the
ontology development domain, the concepts have to preserve the
ontological commitment of the domain being modeled). Therefore,
the ontology development process is interpreted as a series of activities

Fig. 3. Conceptual Model: process representation, product representation and materialization spaces.
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led by requirements that are performed by Actors. An Actor may be
either an Individual (a human being or a computational program) or a
Team. Teams allow representing composite skills that are needed for
carrying out activities. Each basic activity performed by an actor during
an ontology development process is represented by the execution of a
sequence of operations, which transforms the design objects. The
operations that can be applied are domain dependent. So, it is
necessary to define the allowed types of operations, as well as the
modeling elements, for each specific domain.

In this proposal, the execution of an activity (materialized through a
sequence of operations) transforms a design object, which thus may evolve
into multiple versions. In order to represent this evolution, each design
object is specified at two levels: the Repository and the Version packages
(Fig. 3), which constitute the Product Representation Space. The
Repository keeps a unique entity for each design object that has been
created and/or modified due to the natural progress that takes place during
a development project. Any entity kept in the repository is regarded as a
versionable object. Furthermore, relationships among the different ver-
sionable objects are also maintained in the repository (Association class in
Fig. 3). On the other hand, the Version level keeps the different versions
resulting from the evolution of each design object, which are called object
versions. The relationship between a versionable object and any of its
object versions is captured by the Version association. Therefore, for a
given design object, a unique instance is kept in the repository, and all the
versions it assumes along the design process belong to the version level.
Fig. 3 also includes the Design ObjectType class, which allows representing
the various kinds of modeling elements pertaining to particular domains.

The version package also includes theModelVersion concept, which
represents a set of design objects within the context in which a given
design activity is carried out. Its aim is to provide a snapshot
description of the state of a certain design process at a given moment.
According to the proposed representation, a new model version mn is
generated when a basic activity is executed. Since each basic activity is
materialized by a sequence of operations, named ϕ, the new model
versionmn is the result of applying such sequence to the components of
the previous model version mp. This predecessor model version mp

corresponds to the context where the activity was performed and the
successor one (mn) represents the resulting context. In order to

represent engineering design evolution, a model version has zero or
more successor model versions (noted by the * cardinality at successor
role of ModelHistory association shown in Fig. 3).

Each transformation operation applied to a model version incorpo-
rates the necessary information to trace the model evolution. This
information is represented by VersionHistory relationships between
the object versions to which the operation is applied (arguments) and
the ones arising as the result of its execution (results, Fig. 3).

The Materialization Space is defined by the Domain and Operation
packages (see Fig. 3), which permit ontological engineers to specify the
building blocks and operations of particular engineering design do-
mains. In the context of the OntoTracED framework, this space has
allowed defining the ontological engineering domain model. In addi-
tion, this space can be employed to specify different engineering design
domain models like chemical engineering (Gonnet et al., 2007b) and
software engineering (Roldán et al., 2010), among others.

The Design objects types (Fig. 3) represent the various products of
the development activities. Typical design object types are models of
the artifact being conceived (e.g., in the ontology development domain:
class diagrams, implementations in specific ontology languages, etc.)
and specifications to be met (i.e., competency questions, quality
attributes, etc.). Design object types may relate among themselves by
specific domain relationships (DomainRelationship association class in
Fig. 3), and they can be organized in generalization-specialization
hierarchies. Design object types are described by a set of properties.
Moreover, each design object type is related to a set of operation types
that may be used to transform such design object.

The Operation package enables the specification of operation types
and their implementations in a specific computational environment
(TracED(aaS) in this case). This package defines the primitive opera-
tions add, delete and modify and enables the specification of other
operations that are applicable into the specific design domains (the
ontology development domain in this work). When an operation is
specified, it is necessary to define both its parameters and its body. The
body comprises some already defined commands that are available for
being used in other operation specifications. They can be primitive
(such as add, delete, or modify), auxiliary function commands, or
previously defined operations.

Fig. 4. Partial view of OEDMah: specification and conceptualization spaces.
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The proposed conceptual model supports registering the design
decisions as they are made (by means of capturing the executed
operations), along with their impact on the ontology model in terms
of changes (the results of the operations). This is a fundamental step
towards the development of a knowledge base that guides the ontology
developer in the different activities of an ontology development
process, setting the grounds for learning, future reuse, and providing
means for detecting potential conflicts. This conceptual model is based
on the preliminary work of Gonnet et al. (2007b), which presents a
thorough formalization based on situational calculus and first order
logic. Due to limitations of space no further details on this issue are
included in this contribution.

3.2. Ontological engineering domain model

As it was mentioned in Section 3.1, the Domain and Operation
packages (Materialization space) of the underlying conceptual model
let specify modeling elements and operations that are suitable for
particular domains. This section presents the use of these packages in
the specification of the Ontological Engineering Domain Model, which
is a description of the constructive elements, artifacts and operations
that arise during the execution of ontology design processes regarding a
specific ontology development methodology. It can be defined as
follows:

OEDM = {D , R , O DR }ii i i , i

where Di is the set of design object types used by the ontology
development team during the design of an ontology, regarding a
specific methodology i. Ri is the set of relationship types that enables
to link elements in Di and Oi is the set of operations that handle the
design object types in Di. Finally, DRi is the set of concepts that enables
the capture and tracing of the design process and its rationale.

As it has been previously introduced, there are several methodol-
ogies for building ontologies. However, there is no agreement on a
methodology for ontology development (Neuhaus et al., 2013). In spite
of their diversity, most methodologies share structural similarities and
have comparable modeling elements, which are considered to be part
of the proposed domain model.

The following paragraphs introduce OEDMah, which is the domain
model for the ad-hoc three-phase ontology development methodology
introduced in Section 2. OEDMah is organized into representation
spaces, one per each phase in the ad-hoc methodology that is shown in
Fig. 1, and one for representing the design rationale. The first part of
this section introduces the design object types (Di) and domain
relations (Ri) that belong to specification and conceptualization spaces.
Then, ideas about the possible implementation space are presented.
After that, design object types for representing design rationale (DRi)
are introduced. Finally, the last part of this section explains how the
operations (Oi) are defined in the OEDMah spaces.

Specification space's design object types

The left part of Fig. 4 presents the main building blocks of the
OEDMah specification space. In this figure, the DOT and DR stereo-
types are used to indicate that the elements are instances of the
DesignObjetcType (DOT) or DomainRelationship (DR) classes defined
in the Materialization space, respectively (Fig. 3)..

The Ontology design object type represents the ontology artifact
that is under design. Some attributes of this design object type are
creation date, last modification date, the domain described by the
ontology, and its type and formality level. This metadata is only an
example of the capabilities of the model for representing information
about an ontology. This metadata can be extended by taking concepts
from some existent vocabularies, such as the Dublin Core (DC)
metadata standard (ISO, 2009), the Ontology Metadata Vocabulary
(OMV) (Hartmann et al., 2005), among others.

A given ontology is built to address a set of requirements; in fact, it
is evaluated against its corresponding requirements specification.
Requirements can be defined through appropriate competency ques-
tions, which define the scope of the ontology (DefinesScopeOf relation-
ship in Fig. 4). Therefore, the OEDMah includes a set of design object
types relative to competency questions. The InformalCQ design object
type represents the competency questions that are written in an
informal way, using natural language, and that are defined by
ontologists during the specification phase. Informal competency ques-
tions can be specialized into atomic ones (AtomicCQ in Fig. 4), which
represent simple competency questions, and complex ones
(ComplexCQ in Fig. 4), which can be expressed in terms of simpler
ones.

Competency questions participate in most of the ontology design
methodologies and they are the starting point in the identification of
the ontology terminology. To represent the terms to include in the pre-
glossary derived from competency questions, the Term design object
type is defined in the OEDM domain. The definition of the OEDMah

should also specify possible relationships (Rah) among design object
types.

Conceptualization space's design object types

During the conceptualization phase, ontology developers build
and formalize the ontology. Two main design object types are pro-
posed in the conceptualization space: the OntologyElement and
FormalExpression, which allow ontology developers to represent the
ontology building blocks and the elements for formalizing ontologies,
respectively. Both object types are then specialized into more specific
types.

The OntologyElement object type is an abstract concept that
represents the different kinds of entities that define the terminology.
This abstract design object type is specialized (see Fig. 4) to represent
simple modeling entities, such as Concept, Individual and Relation, as
well as more complex ones such as OntologyDesignPattern. In
addition, the proposal includes the Assumption and Constraint object
types, which represent natural language expressions that impose
restrictions on concepts and relations.

OntologyDesignPattern is a composite design object type that is
defined in the conceptualization space to represent ontology design
patterns (ODPs). This object type can be specialized to represent
the diverse existent ODPs. In particular, Fig. 4 shows the
ValuePartitionODP, which describes how to model a partition; i.e., a
named concept which is divided into several disjoint concepts. Other
patterns can be defined according to the domain requirements.

Buschmann et al. (1996) state that a pattern is made up of a
context, where the pattern is useful or valid, a problem that arises
within such context, to which this pattern is connected, and finally, a
proven solution for the problem. In the Ontology Engineering field, the
problem is stated by means of competency questions, which define the
scope and the type of questions that the pattern could answer.
Therefore, each pattern is related to a set of competency questions by
means of the Answers association in Fig. 4. Since ODPs are general
reusable solutions to commonly occurring problems within a given
context, they constitute a tool for documenting well-proven and
reusable design experience. Therefore, it is interesting to codify these
patterns by means of a set of design object types and complex domain
operations that facilitate their application in ontology design processes,
in order to enable experience reuse.

An ontology can be a simple domain taxonomy or it can model the
domain in a deeper and formal way, thus imposing some restrictions on
the domain semantics. To represent this kind of formalization, special
design objects and operations should be incorporated into the
OEDMah. In particular, FormalExpression is an abstract concept that
generalizes the different kinds of formalizations that can be applied to
constraints, assumptions and informal competency questions.
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FormalExpression is specialized into Axiom, Rule and FormalCQ
design object types. Axiom and Rule represent formal expressions that
allow ontologists to: i) explicitly define the semantics of an ontological
concept by imposing constraints on its value and/or its interactions
with other concepts; ii) verify the consistency of the knowledge
represented in the ontology, and/or iii) infer new knowledge from
the explicitly stated facts. The Formal Competency Question
(FormalCQ) object type represents a specification in a formal language
of an informal competency question that was initially identified.

Implementation space

As it was previously mentioned, the model generated in the
conceptualization phase can be used to produce several alternative
implementations in different implementation languages. Non-func-
tional requirements such as decidability, completeness, computational
complexity, reasoning paradigms (open vs closed world), among
others, require a translation from the conceptual model of the ontology
to an implementation model. Such translation may produce a loss of
some domain knowledge (Gómez-Pérez et al., 2004).

The modeling elements used to describe the implementation model
of an ontology depend on the language chosen for its codification. The
Ontology Definition Metamodel (ODM) (OMG, 2014) can be used to
define the building blocks for the implementation models, if OWL is
selected as the implementation language. However, the extension of
object types to capture the design of implementation models is out of
the scope of this work.

Design rationale space's object types

The model introduced up to here is significant to capture ontology
design knowledge. The definition of a domain in terms of the design
objects and the operations that manipulate them makes explicit the
activities that can be executed during ontology development processes.
In addition, the “execution” of domain operations materializes the
design decisions of the ontologist at each point in the ontology
development process. All the decisions made during a design project
are captured by the model, which keeps the performed operations, their
effective arguments, and the resulting products, thus saving a great
portion of the applied development knowledge. In this way, both
sources of knowledge contribute partially to the explanation and
rationale of the ontology design process. However, to enrich and
extend the knowledge about the development process, it is necessary
to incorporate explicit design rationale elements into the domain
model. In this section, taking advantage of the flexibility of the
proposal, we enlarge the OEDM with a new set of design object types
and their applicable operations, which are aimed at capturing design

rationale. Fig. 5 presents the specific design object types that were
added to the OEDMah. They are associated with the design object types
that were already introduced in Fig. 4..

The proposal incorporates three concepts from the IBIS methodol-
ogy (Kunz and Rittel, 1970): Issue, Position and Argument. According
to this methodology, an issue represents a problem to be solved. A
position is an answer to an issue that helps solving the issue. Each issue
may have many positions. An argument (Argument in Fig. 5) is a
statement that supports or opposes a particular position. Every
argument points to at least one position and every position points to
at least one issue.

Within the scope of this proposal, competency questions are
issues; thus, they are the problems that the ontology should answer.
A Position represents a set of ontology elements (Concepts, Relations,
Individuals, Design patterns, etc.) that contributes to answer a
competency question. Each Position may be supported by (Supports
relationship in Fig. 5) or objected by (ObjectsTo association in Fig. 5)
one or more arguments.

During the development process, the ontology developers have to
decide which position is selected and which positions are rejected, as
answers to a competency question, based on the stated arguments. To
represent these decisions, the Decision class is linked to the supporting
argument and related to the selected or rejected position through
Selects or Rejects associations, respectively.

Operations definition

A domain model not only defines the type of products (design
objects) whose versions should be kept in a design project, but also the
design operations to manipulate them. Domain operations are in-
tended to transform the design products of the OEDM (generating new
versions, and maybe, eliminating other versions). When a sequence of
operations is applied to a given model version, it materializes a design
decision. Since the add, delete and modify primitives are not enough to
adequately represent high-level design decisions, it is necessary to
provide the model with capabilities for defining and executing complex
operations. Operations are defined by instantiating the operation
model described in Section 3.1.

The operation model is flexible enough for defining operations with
different abstraction levels. Therefore, they can be as basic as
addConcept, deleteConcept, and addCompetencyQuestion, or as com-
plex as the operations that apply an ontology design pattern. As an
example of the operations that are defined in OEDMah, the functional
specifications of some of them are presented in Appendix A. Functional
specifications provide an outline of how operations would be defined,
using a computational tool that implements the proposed model.

Fig. 5. Partial view of OEDMah: design rationale space.
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4. TracED(aaS)

TracED(aaS) (Trace Engineering Design as a Service) is the cloud-
based computational environment that implements the conceptual
model and enables the definition of the OEDMah domain model, thus
materializing the ONTOTracED framework. As its name indicates, it
provides services for tracing engineering design projects. The major
components of TracED(aaS) are the Domain Editor and Versions
Manager. By making use of the Domain Editor, a domain expert can
specify different engineering Ontological Engineering Domain Models.
The Versions Manager enables the execution of each ontology devel-
opment project, and captures its evolution based on the operations that
are accomplished and the instantiation of the design object types that
have been specified in the Ontological Engineering Domain Model.

Fig. 6 shows the main interface of TracED(aaS) and its main panes.
At the top of the interface the option menu is located. Next to it, the
title bar, which indicates the model that is being edited in the edition
pane, is placed. In this pane, the OEDMah domain model is presented
(see Fig. 6). On the left, it is possible to see the project tree. Each
project involves the definition of at least one domain model, using the
Domain Editor, and one or more design models, which are managed by
the Versions Manager component. In particular, in Fig. 6, the project
manager shows two projects: the private ontotraced project and a
public one. The edition pane presents some of the design object types
introduced in Fig. 4 and Fig. 5, along with their properties and
operations. Properties are defined and edited by working with the
properties tab of the design object type specification window, where the
designer can indicate whether a design object type is abstract or
concrete, assign a concept description and create or modify properties
(instances of the Property class, Fig. 3).

Additionally, the environment allows defining domain associations
as design object types. Hence, they can be reified, properties can be
defined for them, and their object versions can be maintained.
Specifically, designers can create binary links between design object
types, and these associations are instances of DomainRelationship
(Fig. 3). In each association, one end assumes the role of domain, and

the other one, the role of range. Both association roles are qualified by
multiplicity attributes. Furthermore, it is possible to define these links
as composition, aggregation, or association. They have the same
semantics as their respective relationships in UML (OMG, 2015).

The Domain Editor provides features for specifying operations
having implementations that are based on the Operation Model
(Fig. 3). Fig. 7 depicts the TracED(aaS) interface to define an operation.
This interface has two tabs, one that lets the user define the operation
arguments and another one that allows creating the body of the
operation. In particular, Fig. 7 shows the definition of the refineCQ
operation according to the functional specification that was presented
in Fig. A.2 of Appendix A.

The Version Manager component is the core of TracED(aaS). It
enables the execution of ontology design projects. When a new design
project is created, an existing domain has to be selected. The Version
Manager is the tool that the designer employs during the development
of a project, by considering design object types and operations defined
in the specific domain. Therefore, the evolution of a project is based on
the execution of these domain operations and the instantiation of the
selected design object types. Additionally, the Version Manager has
features that allow TracED(aaS) keeping information about: (i) pre-
decessor and successor model versions (if any exists) of each model
version; (ii) history links that save traces of the applied sequences of
operations, which originated new model versions; and (iii) references
to the set of object versions that arose as a result of each operation
execution. Furthermore, TracED(aaS) allows users reconstructing a
model version by applying the whole operation sequence, from the
initial to the current model version. This capability will show a view of
the ontology design decisions in a chronological order, to better
understand the decision-making process.

It is important to remark that TracED(aaS) was developed as a
proof of concept demonstration. Therefore, this tool is not meant to
replace traditional support environments. On the contrary, in the
future TracED(aaS) should be integrated with existing ontology devel-
opment tools. In this way, it would perform the capture of all the
applied operations by working in a background mode, without being

Fig. 6. TracED(aaS) main interface.
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noticed by the ontology development team.
We have already considered integrating the OntoTracED frame-

work with Stanford Protégé. Protégé is an extensible ontology editor
and framework based on Java, which provides a plug-and-play
environment that would make the integration possible. It has an open
architecture that allows programmers to integrate i) plug-ins, which
can appear as separate tabs, ii) specific user interface components
(widgets), or iii) perform any other task on the current model. The
Domain Editor and Versions Manager components of TracED(aaS)
could be converted in separated Tab plugins in order to interoperate
with the Protegé API. To make possible the integration, the following
aspects are to be taken into account:

(i) When defining the OEDM domain, the set of concepts (knowl-
edge-modeling structures) that Protégé implements (Class,
Property, Individual, Constraint and Axiom), should be included
as design object types. Additionally, suitable design operations are
to be defined for each of them, and be associated with a specific
Protégé user action (event). In this way, when a user selects an
option from the tool menu, it would trigger the execution of the
associated design operation, which is executed and captured in a
background mode.

(ii) In order to capture any Protégé action a Listener component has
to be included in the Versions manager plugin. This Listener
could monitor User Interface (UI) actions, as well as changes in
the OWL model. When any occurs, an event representing such a
change will be triggered.

(iii) At the Domain Editor Tab, users could specify additional
design object types that are not supported by
Protégé(CompetencyQuestion, Term, Decision, Argument etc.),
along with the design operations for managing them.

(iv) The Versions Manager Tab, would have a UI similar to the one
provided by TracED(aaS), in which the obtained model versions
are arranged in a hierarchical fashion. The UI of this Tab Window
would offer a menu with the applicable domain operations, like
addTerm, refineCompetencyQuestion, term2Concept, etc. This
Tab window would present decisions, models and design reason-
ing knowledge. The Versions Manager Tab will provide a more
complete view of the design ontology process by showing not only

the set of classes organized in a subsumption hierarchy, but also
other products generated during the ontology design process,
along with the ontologists’ design decisions that have originated
them.

The TracED(aaS) tool was employed to develop the case study that
is presented in the next section, proving to be a helpful environment.

5. Case Study. Development of an ontology to formalize and
integrate the ISA-88 and ISA-95 standards

This section describes the use of TracED(aaS) in the development of
a batch production planning domain ontology, a big and challenging
project undertaken by our group (Vegetti and Henning, 2015) that was
chosen to test TracED(aaS). Firstly, a brief description of project scope
is introduced and then, some highlights of the ontology development
process are presented.

ISA-88 and ISA-95 are two well-accepted standards in the indus-
trial domain that provide a set of models considered as best engineer-
ing practices for industrial information systems in charge of manufac-
turing execution and business logistics. They are of outmost interest in
the batch production planning domain. The main goal of ISA-88 is the
specification of batch recipes and the control of batch processes,
whereas the one of the ISA-95 standard is the development of an
automated interface between the enterprise functions and the manu-
facturing execution systems. In consequence, both standards should
interoperate. However, there are gaps and overlappings between their
corresponding terminologies, as well as additional problems, such as
semantic inconsistencies within each of the standards and the use of an
informal graphical representation in one of the ISA-88 models.
Therefore, there is a need for an ontology aimed at formalizing both
standards, integrating them and overcoming the problems already
pointed out.

In order to deal with the aforementioned semantic challenges, the
formalization of the ISA-88 and ISA-95 standards was performed by
defining an ontology per each one, and then, an ontology to integrate
them. The proposed approach avoids defining just one big ontology,
which would be very complex and rigid, by sticking to a “divide and
conquer” strategy. The development of each ontology has been carried

Fig. 7. Operations definition interface.
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out separately, starting with ISA-88, since it is the one that has the
major semantic inconsistencies in its term definitions. Due to space
limitations, this section just focuses on the development of one of the
ISA-88 standard modules, which is called Procedure Control module.
More details can be found in Appendix B.

For the development of the Procedure Control ontology, an ad-hoc
methodology based on well-accepted principles has been adopted. It is
based on the four phases described in Section 2: requirements
specification, Conceptualization, Implementation and Evaluation.
However, the order in which these phases were carried out was not
truly sequential; indeed, any ontology development is an iterative and
incremental process. If needs/weaknesses are detected during the
execution of a given phase, it is possible to return to any of the
previous ones to make modifications and/or refinements. In particular,
two iterations in the Specification phase and three iterations in the
Conceptualization one have been completed. Some highlights of the
methodological tasks that have been executed in the design process are
given in the remaining of this section.

Throughout the development process, the Version Manager pro-
vided support to the handling of the different ontology versions that
were reached during the design process, as well as the design decisions
that were made. Working with TracED(aaS)´s Versions Manager, the
first specification model of the ontology, called SpecificationModel1,
was created. The competency questions and the first identified terms
were added to this model version (see Table B.1 of Appendix B) by
means of the application of the addCompetencyQuestion, extractTerm
and linkCqToTerm operations, available to be used in the OEDMAH

domain model. Fig. 8 provides a snapshot of SpecificationModel1,
showing instances of the Ontology, AtomicCQ and Term design object
types, as well as instances of the ExtractedFrom and BelongsTo
domain relationships. In this figure, it is possible to observe that the
product and master recipe terms were identified (ExtractedFrom
associations) from competency question 1 (see Table B.1 in Appendix

B), labelled as icq1 in the figure. In addition, both terms are part of
isa88ontology (BelongsTo links)..

Once the competency questions were identified, a new iteration in
the specification phase was carried out. During it, the refinement of the
competency questions was performed. The supporting tool captured
these refinements in the execution of a sequence of refineCQ opera-
tions. As a result of its application, a new version of the specification
model was obtained, called SpecificationModel2.

The second main step in the development process comprised the
identification and capture of the concepts and relationships proposed
to satisfy the requirements that were specified as competency questions
in the previous phase. Three model versions were generated during this
step in TracED(aaS)´s Version Manager, one per each completed
iteration: ConceptualizationModel1, ConceptualizationModel2 and
ConceptualizationModel3.

The ConceptualizationModel1 model version was obtained by
applying a sequence of operations to SpecificationModel2, including
those for refining terms into ontology elements (concepts, relations,
individuals and/or ontology design patterns, among others). The
ontologist detected that the most frequent term in the competency
questions was “master recipe”; therefore, decided to proceed in the first
iteration of the conceptualization phase, by focusing on the modeling of
the master recipe. Thus, the first conceptualization model was enriched
by adding new concepts, relations, individuals and ontology design
patterns that were discovered during the analysis of the ISA88 standard
and the industrial domains in which it is employed. Among others, the
main concepts that were identified are RecipeEntiy, and its compo-
nents: ProceduralStructure, Formula and EquipmentRequirements
(See Fig. B.2 of Appendix B).

The second iteration of the conceptualization phase was devoted to
the refinement of the ProceduralStructure concept. The procedural
structure of a recipe depicts the procedural logic for all levels of the
recipe: recipe procedure, recipe unit procedure, and recipe operation.

Fig. 8. A snapshot of the specificationModel1 model version in TracED(aaS).
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ISA-88 suggests the use of Procedural Function Charts (PFC) to
describe the procedural structure of a recipe. Therefore, the elements
of the informal PFC diagrams were added into the ontology (see Fig.
B.3 of Appendix B).

The Formula is a category of recipe information that includes
process inputs, process parameters, and process outputs. The ontology
engineer made a series of decisions that involved the refinement of the
Formula concept. They were materialized in the execution of a
sequence of operations that gave rise to the ConceptualizationModel3
version, which was the result of the third iteration (see Fig. B.4 of
Appendix B). Similarly, the fourth iteration focused on the decisions
related to the refinement of the EquipmentRequirement concept.

At each iteration of the conceptualization phase, the members of the
team that carried out the development process tried to answer a set of
competency questions. For each of them, a position, involving a set of
concepts, relations, individuals and/or design patterns, was stated to
answer it. As an example, Fig. 9 illustrates the definition of a position,
named Icq2Position, which was created to answer competency ques-
tion 2 (icq2, see Table B.1 of Appendix B). The Icq2Position position,
which is supported by the RecursiveStructureofRecipe argument, is
linked by means of instances of the Involves relationship to each
concept and relation proposed to define the ontology. In addition, this
position is related to the icq2 competency question by the RespondTo
relationship. For the sake of simplicity, the associations that link each
ontology element with the ontology are not shown in this figure..

Fig. 10 presents the conceptual interpretation of a fragment of the
ontology design process corresponding to the case study. The project
evolves from the Root Model Version, which was empty, to the
SpecificationModel1 model version by applying the sequence of
operations named CQsAndTermDefinition. This sequence was cap-
tured by the tool from the operations performed by the ontologist
during the first phase of the design process. Such sequence materi-

alized the decisions related to the definition of competency questions
and the derivation of concepts from them. Capturing these decisions let
reconstruct the ontology design process. Fig. 10 also shows the
evolution from the SpecificationModel1 model version to the
SpecificationModel2 one, obtained by applying a new sequence of
operations, named CQRefinement, which materialized the design
decisions related to the refinement of competency questions.

Fig. 10 shows the CQsAndTermDefinition sequence of operations
that includes the addOntology operation and the set of addInformalCQ
and deriveConcept operations. To execute them, specific argument
values were given; as the result, a set of ontology elements that
are represented at both the Repository and Versions levels, has
been obtained. In particular, the ontology is represented as
isa88OntologyVO in the Repository and isa88Ontologyv1 at the
Versions level. Similarly, the competency questions and the first
identified terms have been generated with a double representation.
For simplicity reasons, the figure only shows those versionable objects
corresponding to competency questions 1 and 8 (icq1VO and icq8VO,
respectively), and two terms (productVO and masterRecipeVO), but it
should be noted that their corresponding first versions have also been
created at the Versions level (icq1v1, icq8v1, productv1 and
masterRecipev1, in Fig. 10). In turn, the second sequence of operations
that was captured by TracED(aaS) comprises the set of refinesCQ
operation executions, which have been applied to refine specific
competency questions into simpler ones. In order to understand the
effects of the execution of these operations on the SpecificationModel2
model version, let us consider only the operations that were applied to
refine competency question 8 (represented by the icq8VO and icq8v1
objects in Fig. 10):

(i) a version of ComplexCQ (ccq8v1) was added,
(ii) icq8v1 is deleted from the model,

Fig. 9. Definition of the position associated with competency question 2 (icq2, see Table B.1 of Appendix B).
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(iii) two new atomic competency questions (AtomicCQs, icq8-1v1 and
icq8-2v1) were added,

(iv) associations between the complex competency question (ccq8v1)
and the ones that refine it (icq8-1v1 and icq8-2v1), as well as links
between the new competency questions and the isa88Ontology
ontology, were included.

Each time a sequence of operations was performed, the Version
Manager created a model history link to maintain the association
between the predecessor and the successor model versions. This allows
tracking the design operations and the decisions behind them.
Moreover, a version history link was created for each executed
operation in the sequence, in order to save the trace among the

Fig. 10. Representation of a fragment of the ontology development process captured by TracED(aaS).

Fig. 11. Version manager history windows.

M. Vegetti et al. Engineering Applications of Artificial Intelligence 56 (2016) 230–249

242



performed operation, its argument values, and its resulting object
versions. It is possible to see an example of these links in Fig. 10.
For clarity reasons this figure only shows the version history links
that relate the icq8v1 object versions in SpecificationModel1 with
the ccq8v1, icq8-1v1, and icq8-2v1, object versions in
SpecificationModel2.

By means of the history links it is possible to reconstruct the history
of a given model version starting from the root one. The Version
Manager presents such information in the so-called History Window,
shown in Fig. 11.

It can be seen that TracED(aaS) allows keeping knowledge about
the development evolution of isa88ontology, from which it is possible
to identify:

(i) the predecessor and successor model versions of
SpecificationModel2;

(ii) the applied sequences of operations that originated each model
version;

(iii) the object versions that were generated (such as ccq8, icq8-1 and
icq8-2), or that were deleted (icq8) as a result of a given operation
execution (refinesCQ in SpecificationModel2 model version).

In addition, the Version Manager History Window (Fig. 11)
presents detailed data about each applied operation, such as the time
point at which a given operation was executed and the resulting object
versions. In this example, the history window shows that a refineCQ
operation was executed on SpecificationModel2 on date 04/09/2014.
The execution of this operation also implied the addition of an instance
of the ComplexCQ design object type (ccq8), two instances of
AtomicCQ (icq8-1 and icq8-2) and some associations (one instance of
DefinesScopeOf, four instances of ExtractedFrom and two instances of
Refines).

6. Conclusions and future work

This contribution presented ONTOTracED, which is a framework
aimed at capturing and tracing ontology development processes. The
framework is based on a conceptual model of generic engineering
design projects, an Ontological Engineering Domain Model (OEDM),
which specifies design objects and operations according to a methodol-
ogy that guides ontology development processes. It relies on a
computational environment, named TracED(aaS), which implements
such model. The capabilities of TracED(aaS) have been presented and
afterwards illustrated by means of a case study that addresses the
development of an ontology of industrial interest. The example shows
that it is possible to keep track of the development process along with
its associated products and to store its history, by allowing the future
retrieval of knowledge and experience.

Although the OEDM represents design objects and operations of
the adopted ad-hoc methodology, the proposed framework is flexible
enough to be used in the development of ontologies that rely on other
development methodologies or on approaches that address particular
fields. In such a case, it would only be necessary to define a new
Ontological Engineering Domain Model representing the design objects
and particular operations of the required methodology. If needed, the
TracED(aaS) domain editor can be used to extend the proposed
Ontological Engineering Domain Model or to create a new one.

This contribution shows that ONTOTracED is a comprehensive
framework. It has been extensively validated and verified in actual
applications, though only a partial view of such testing experience is
presented in this contribution. Since the whole ontology development
process, its history and rationale, as well as all the intermediate
products can be apprehended in an integrated fashion, it can be
concluded that ONTOTracED makes an important contribution to the
ontological engineering field.

Regarding future work, it is important to remark that TracED(aaS)

needs to be extended with features like a query processor in order to
facilitate the easy retrieval of more history information. As examples of
relevant queries, please consider the following ones:

(i) Given a concept, which requirement originated its addition to the
ontology?

(ii) Which argument supported the inclusion of a given concept into
the ontology?

(iii) Which argument rejected the inclusion of a given concept into the
ontology?

(iv) Given a competency question, which were the different positions
that have been proposed to answer it? Which one has been
selected and why?

(v) Given a competency question, which is the position that was
selected to answer it? And which is the argument that supports
this decision?

Currently, the answers to all these questions can be found in an ad-
hoc fashion by tracing the history information that is described in the
history windows. Therefore, the development of new TracED(aaS)
capabilities to automate knowledge retrieval from the captured in-
formation would be very useful and will be tackled in the future.

Finally, another task that will be addressed in the future is related
to accomplishing the final steps of the integration of TracED(aaS) with
Protégé according to the guidelines provided in Section 4.
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Appendix A. Functional specifications of operations in
OEDMah

In OEDMah, the proposed operations are classified into four
categories: Basic, Refinement, ODP Application, and Design
Rationale. Operations in the first group are related to the addition or
removal of certain object versions from a model version. Operations in
the second and third group are more complex and are associated with
the refinement of design activities and the application of ontology
design patterns, respectively. The last group considers operations
related to the capture of design rationale. Figs. A.1–A.3 show the
functional specification of operations in each of these groups.
Functional specifications provide an outline on how operations would
be defined, using a computational tool that implements the proposed
model. Fig. A.1 presents functional specifications of three basic
operations (addTerm, addCompetencyQuestion and addRelation
ones). The body of each operation is defined in terms of primitive
operations, such as add(nt, Term, lprops) in the addTerm operation,
and auxiliary functions, such as addAssociation(o, r, BelongsTo) in the
addRelation operation. The addAssociation is a predefined auxiliary
function included in the operation model to establish associations
between versionable objects at the repository level. In addition, the
operation’s body can contain other non-primitive operations already
defined in the proposed OEDM....

The signature of an operation indicates its name and its required
parameters (name and types enclosed in brackets). For example (see
Fig. A.1.), the parameters of the addTerm operation are o (the ontology
in which the term is going to be added), nt (the name of the term to be
included), lcq (a list of competency questions in which the term
appears), and lProps (a collection having the values of the properties
of the new term), which could be empty. The operation aims at
incorporating a new term nt to the o ontology. To achieve this, firstly,
a version of the t term is added (t:=add(nt, Term, lprops)). After that,
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associations between t and each competency question version in lcq,
are inserted, by employing loop functions for iterating on the collection
elements. To instantiate loop commands in the functional specification,
the special syntactic element “for each … in …” is used. Finally, the
added term version t is linked to the o ontology to which it belongs
(addAssociation(o, t, BelongsTo)).

Fig. A.1 also illustrates the addCompetencyQuestion, which in-
cludes an informal competency question version (add(ncq,
InformalCQ)) and links it to the ontology that is indicated as its scope
(addAssociation(o, icq, DefinesScopeOf)). The AddRelation operation
(Fig. A.1) inserts a new version of a relation between two concepts,
which are passed as parameters to the operation. In order to do that, a
Relation version is added (add(nr, Relation, lprops)); then, it is linked

to the ontology to which it belongs (addAssociation(o, r, BelongsTo))
and to the concepts that correspond to the extremes of the inserted
relation (addAssociation(r, fc, From) and addAssociation(r, tc, To)).

As it was previously mentioned, the second group is related to
refinement operations. This group contains operations to split a
competency question into simpler ones, to transform a given term
into a concept, relation or individual, and to formalize an informal
competency question, constraint or assumption. Fig. A.2 presents the
functional specification of some operations that are included in this
group: refineCQ, term2Concept, term2Individual, and formalizeCQ.
These operations consist of the refinement of certain design objects
existing in the predecessor model version. Some relations in which the
original ontology element took part, such as the ontology to which it

Fig. A.2. Functional specification of some complex operations.

Fig. A.1. Functional specification of some basic operations.
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belonged, or the terms extracted from a competency question, should
be maintained by the resulting design objects. For this reason, the
operations shown in Fig. A.2 use get functions to retrieve such
individuals from the previous model version and then, new associations
between the added design object version and the retrieved ones are
defined in the new model version by the corresponding operations.

As an example, consider the refineCQ operation, which aims at
splitting off a competency question into more specific ones. This
operation transforms a version of an atomic informal competency
question into a complex one and creates new competency questions
that are the refinement of the original one. The competency question to
be refined (rcq) and the names/descriptions for the new ones (lcq) are

passed as parameters. The RefineCQ operation starts by obtaining the
ontology o, whose scope is defined by the competency question to be
refined (o:=get(rcq, Ontology)). Then, the next action is to establish a
new relation between o and the refined competency question (add(o,
ncq, DefinesScopeOf)), and to get those terms that are linked to rcq
by the ExtractedFrom associations. Then, the operation sets new
links between each term and the new competency question
(addAssociation(t, ncq, ExtractedFrom, in the first for each state-
ment). Moreover, specific competency questions are added (add(acq,
AtomicCQ, null)) and linked to the refined one (addAssociation(acqv,
ncqv, Refines)) and to the ontology (addAssociation(o, acqv,

Fig. A.3. Functional specification of some design rationale related operations.

Fig. B.1. Modules of the Isa88ontology.

Table B.1
Some competency questions and identified terms.

Competency question Identified terms

Given a product P, which is the Master Recipe (MR) of a batch of such product? Product, batch master recipe
Which are the candidate resources for a given MR? Resource, master recipe
Given a Master Recipe, which are the Control Recipes (CR) that have been created from it during a specific period? Master recipe, control recipe, created from
Given a Control Recipe, which is the MR from which it has been generated? Control recipe, master recipe, generated from
Which are the materials and their corresponding quantities associated with the specification of a given batch at the

Master Recipe level?
Material, quantity, batch, master recipe, level

Which are the candidate equipment items that can be assigned to each of the Unit Procedures belonging to a given
MR?

Equipment, assigned to, unit procedure, master recipe

Which are the procedural elements associated with a given MR? Procedural element, master recipe
Which are the material inputs and outputs associated with a given procedural element? Material, input, output, procedural element
Which are the conditions that should be fulfilled to start a given Unit Procedure? Condition, fulfilled, start, unit procedure
Which are the conditions that should be fulfilled during the execution of a given Unit Procedure? Condition, fulfilled, execution, unit procedure
Which are the Operations comprised in a given Unit Procedure? Operation, comprised in, unit procedure
Given an operation O, which other operations have to be finished before O can start? Operation, be finished, start
Given an operation O, which operations require the end of O to begin their execution? Operation, end, begin, execution
Which operations are executed in parallel with a given operation O? Operation, execution, parallel
Which equipment units are capable of executing a given operation? Equipment unit, capable of, execution, operation
Which are the conditions that should be fulfilled to start a given operation? Condition, fulfilled, start, operation
Which are the phases comprised in a given operation? Phase, comprised in, operation
Given a set of master recipes associated with various product batches, which are the materials that they have in

common?
Master recipe, material, in common

Given a set of master recipes associated with various product batches, which are the required equipment units that they
have in common?

Master recipe, requirement, equipment, in common

In which unit of measure is expressed a given parameter? Unit of measure, parameter
Given a Master Recipe which is its current version? Master recipe, version
…

Table B.2
Refined competency questions and identified terms.

Competency question Identified terms

Which are the material inputs associated with a
given procedural element?

Material, inputs, procedural
element

Which are the material outputs associated with a
given procedural element?

Material, outputs, procedural
element
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DefinesScopeOf)). Finally, the original atomic competency question
(rcq) is deleted from the current model version. Refinement operations
involve refining the terms that are identified during the specification
phase, into concepts, individuals or relations, in the next phase of the
ontology development. Two of these operations are illustrated in Fig.
A.2. The term2Concept and term2Individual operations allow de-
signers to refine a given term t into a concept or individual, respec-
tively. Both operations start by obtaining the name that identifies the
term, the ontology to which it belongs and its properties. Then, a
concept/individual is added to the ontology and linked to it and to the
refined term by means of the BelongsTo/isRefinedInto association,
respectively.

Formalization operations also belong to the second group of opera-
tions. Their objective is to capture expressions that formalize competency
questions, assumptions or constraints. An example of this type of
operations is shown in Fig. A.2. The FormalizeCQ operation adds a
version of FormalCQ that represents the formal expression of the informal
competency question that is passed as a parameter, and links the formal
competency question to the informal one and to the ontology.

The third group of operations is related to the application
of ontology design patterns. As an example, Fig. A.2 presents the
applyValuePartitionPattern operation, which allows ontologists
to apply the Value Partition ontology design pattern
(ValuePartitionODP). This pattern describes how to model a partition;
i.e., a given concept that is divided into several disjoint concepts. The
mail parameters of this operation are: (a) the concept to be partitioned

(cp), and (b) the names of the partitions (lparts). The operation adds
the new pattern to the model and links it to the ontology. Then, it
creates a new concept, which is also associated with the cp concept,
representing the union of the partitions, and associates it with the
partitioned concept by means of the EquivalentConcept relation. The
operation also creates a new concept for each element of lparts
(np:=add(p, Concept, null)) and links each of them to the unionOf
concept (addRelation(o, "UnionOf", uof, np, null)), as well as to the
design pattern version (addAssociation(np, odp, Contains), which the
operation also creates (odp:=add(vpp, ValuePartitionODP, null)). The
relations that are created are also associated with the design pattern
version (addAssociation(r, odp, Contains). Finally, all the new added
concepts are linked, as subclasses, to the partitioned concept and all of
them are associated among themselves by a disjoint relation by means
of the operation addDisjoiness(np, lp), whose implementation is not
shown in this article due to space limitations.

Additionally, it would be important to rely on operations that can be
applied to design rationale concepts. These operations embody those
ontologist’s decisions which have a fundamental impact on the
ontology conceptual model, and which are to be documented in order
to enable the future evolution of the ontology. Some examples of these
operations are shown in Fig. A.3. The operation addPosition is
intended to link a competency question with a set of ontology elements.
A position is added as an object version (add(pname, Position, null))
and it is related to the competency question to which the new position
responds (addAssociation(icqv, pv, RespondsTo)) and to the ontology
elements that are added to the ontology to answer such question
(addAssociation(pv, e, Involves)). In addition, the position is sup-
ported by an argument (see operations add(aname, Argument, null)
and addAssociation(pv, argv, Supports) in Fig. A.3).

The addSupportingArgument and addRejectingArgument opera-
tions are intended to make explicit the reason that supports or rejects a
position, by adding it as an object version (add(aname, Argument,
null)). In both operations, an instance of a relationship concept
indicates the argument that is supporting (addAssociation(av, pv,
Supports)) or rejecting (addAssociation(av, pv, ObjectsTo)) the posi-
tion. In addition, the selectPosition and rejectPosition operations
enable capturing the ontology decision about the best answer to a
competency question among all the alternative possible positions. This
operation also captures the argument that supports the decision.

Fig. B.2. Recipe entity definition.

Fig. B.3. Procedural structure definition.
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Appendix B. ISA-88 procedure control model ontology

This appendix aims at describing the ontology that formalizes the
control model of the ISA-88 standard. The development of this
ontology module was supported by the framework presented in this
article. Firstly, a brief description of the ISA-88 ontology is provided.
Then, an overview of the ontology is introduced.

The ISA-88 standard originally addressed batch process control
issues, and was later extended to tackle discrete manufacturing and
continuous processes. Its original purpose was to solve problems which
were widely acknowledged by the batch control community: (i) no
universal model for batch control, (ii) user difficulties to communicate
requirements, (iii) problems to integrate informatic applications com-
ing from different vendors, (iv) troubles to configure control systems.
To overcome these problems, the developers of the standard set the
goal of separating product knowledge, which is kept in recipes, from
the equipment capabilities. In addition, recipes are defined at different
levels of abstraction in order to augment portability. Due to these
features, recipes can be created and easily modified, without requiring
changes in the control system. Therefore, recipes turn to be more
flexible, reusable, and maintainable, their validation is simplified and
can be moved from one manufacturing system to another. The ISA-88
standard organizes knowledge along three different perspectives: the
physical model, the process model, and the procedural control model.
These representations, which are hierarchical and are related among
themselves, are employed to specify recipes.

The physical model organizes the enterprise into sites, areas,
process cells, and units, as well as equipment and control modules.
The process model provides a high level representation of a batch
process, and it is the basis for defining equipment independent recipe
procedures, i.e. the so-called General and Site Recipes. The ISA-88
process model prescribes that a batch process is comprised by an
ordered set of process stages, which in turn are comprised by process
operations, and, finally, these ones by process actions. The procedural
control model is a hierarchical model that depicts the orchestration of
procedural elements to carry out process-oriented tasks associated with
Master and Control Recipes. This model describes recipe procedures,
each of which consists of an ordered set of unit procedures, which in
turn are comprised by an ordered set of operations, each of which
consisting of an ordered set of phases. In the proposed ontology, these
models are organized in different modules, as shown in Fig. B.1..

The remaining of this appendix provides some additional highlights

of the ad-hoc development process that was proposed and adhered to
during the construction of the ontology. It was captured with the aid of
TracED(aaS), as it is presented in Section 5. These highlights just cover
two iterations of the requirements specification phase, as well as three
iterations of the conceptualization one.

Procedure control module – requirements specification phase

Iteration one (Table B.1).
Iteration two (Table B.2).

Procedure control module - conceptualization phase

Iteration one
The RecipeEntity is the combination of a procedural element with

associated recipe information. A Recipe is a RecipeEntity, which is
defined at the highest level of the procedural control model. Each
Recipe is built up of lower-level recipe entities. These levels are
hierarchically organized according to the procedural control model
(Procedure, UnitProcedure, Operation and Phase). A MasterRecipe is
a RecipeEntity at the ProcedureLevel, which is the highest one.
Similarly, a ControlRecipe is also a RecipeEntity defined at the highest
level of the procedure control model and it is derivable from a
MasterRecipe. Fig. B.2 also shows the relation of a RecipeEntity
with its components: Header, EquipmentRequirement,
ProceduralStructure and Formula..

Iteration two
The ISA-88 standard suggests the use of Procedural Function

Charts (PFC) to describe the procedural structure of a recipe. The
ontology proposed in this contribution formalizes the elements in-
cluded in this informal diagram. A ProceduralStructure is a set of
procedural elements (PSElement in Fig. B.3) that depicts the proce-
dural logic for all recipe levels: recipe procedure, recipe unit procedure,
and recipe operation..

A Procedural Element may be a Link or a Node. A Node is a
procedural element that represents an action (procedure, unit proce-
dure, operation or phase) or a symbol that controls the transition
between steps. A Link defines a relation between two nodes.

Different types of links and nodes are defined in order to formalize
all PFC symbols. The links that were included in the ontology are:

Fig. B.4. Formula Definition.
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• Transition: a direct link between nodes.

• ImplicitTransition: transition having a single condition that states
that the directly preceding step has to finish its execution.

• ExplicitTransition: transition having a condition that has to evaluate
to true in order to activate the step that follows the transition.

• Synchronization: link that relates recipe elements among which
there is a certain form of synchronization.

• MaterialTransfer: link that represents material transfer from a step
to another.

• Interaction: kind of synchronization that does not involve material
movement.

The proposed ontology defines the following concepts to represent
the different types of Nodes in PFC:

• Step: a node that represents a recipe procedural element: procedure
recipe entity, unit procedure recipe entity, operation recipe entity or
phase recipe entity.

• ProcedureStep: step defined at the highest level of the Procedure
Control Model, called Procedure.

• UnitProcedureStep: step belonging to the Unit Procedure level of
the Procedure Control Model.

• OperationStep: step that is defined at the Operation level of the
Procedure Control Model.

• PhaseStep: step belonging to the lowest Phase level of the Procedure
Control Model.

• ControlNode: node that controls the intended thread of execution of
the recipe procedural elements.

• BeginNode: identifies the start of each procedural structure and/or
each subordinate structure.

• EndNode: indicates the conclusion of a procedural structure and/or
a subordinate structure.

• ForkNode: defines the start of independent threads of execution of
certain recipe elements, which are executed in parallel.

• JoinNode: indicates the end of independent threads of execution.

• DecisionNode: specifies the beginning of alternative threads of
execution.

• MergeNode: shows the joining of alternative threads of execution.

Valid diagrams have to follow consistent rules for the execution
threads. Therefore, the formalization of the procedural structure allows
defining constraints that help building valid procedural structures. For
example, the specialization of the Step concept in order to represent
steps at different levels of the Procedural Control Model facilitates the
definition of constraints that avoid the construction of a PFC in which
UnitProcedures, Operations or Phases could be mingled in the same
diagram.

Iteration three
As it is shown in Fig. B.4, a Formula is modeled as a set of

Parameters, which may be categorized as process inputs, process
outputs, or process parameters. Parameter values may be simple
values, expressions, or references to parameters that are defined at
the same level or at higher levels in the procedural hierarchy. Values
that are expressions may include references to other parameters
(ReferenceTo association in Fig. B.4)..

An input parameter represents the identification and quantity of a
resource required to make a batch of product. These resources may be
raw materials, energy, manpower or utilities. Moreover, the Resource
class may be specialized to take into account other supplies pertaining
to specific industrial domains. Similarly, an output parameter specifies
a certain material and the quantity that is expected to result from the
execution of a certain recipe. A process parameter details information
such as temperature, pressure, or time that is pertinent to the
manufacture of a batch of product, but which does not fall into the
input or output categories.

Each parameter is associated with a value type, a unit of measure, a
scaling factor and a reference type. The corresponding definitions are
introduced in the following paragraphs:

• Value type: specifies how the parameter value is interpreted. It
includes: basic data types, data sets that define material transactions
(transfer, consumption, generation of material); or data series (e.g.,
a temperature profile that needs to be tracked).

• UnitofMeasure: identifies the engineering units of measure for the
Value (e.g., kg , pounds).

• ReferenceType: specifies the way parameters are related if the
associated parameter has references to others. The types of relations
may be: Algebraic or Boolean equations, Product specific entry
forms that work on one or more parameters, Deferral of parameters
to different recipe entities (at the same or another level), among
others.

• Scaling Factor: defines the scaling rule, which indicates how the
parameter should be scaled with the batch size.
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