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Abstract
We present a detailed analysis of the electronic and optical properties of two-electron quantum
dots with a two-dimensional Gaussian confinement potential. We study the effects of Coulomb
impurities and the possibility of manipulating the entanglement of the electrons by controlling
the confinement potential parameters. The degree of entanglement becomes highly modulated
by both the location and charge screening of the impurity atom, resulting in two regimes: one
of low entanglement and the other of high entanglement, with both of them mainly determined
by the magnitude of the charge. It is shown that the magnitude of the oscillator strength of the
system could provide an indication of the presence and characteristics of impurities and,
therefore, the degree of entanglement.

(Some figures may appear in colour only in the online journal)

1. Introduction

Semiconductor quantum dots (QDs) are excellent candidates
for realizing qubits for quantum information processing
because of the potential for excellent manipulability and
scalability. In contrast to real atoms and molecules, in QDs
the electronic and optical properties are highly tunable.
Tremendous advances in semiconductor technology allow the
preparation of complex structures and give the possibility to
the experimentalists to have a great control on the parameters
that define the electrical and optical properties of these systems
[1].

It is known that the presence of impurity centres has a
great influence on the optical and electronic properties of
nanostructured materials. Since the pioneering work of Bastard
[2] many authors have investigated the effects of impurities
on different properties of artificial atoms and molecules. A
recent work [3] studied the effects of having unintentional
charged impurities in two-electron laterally coupled two-
dimensional double QD systems. They analysed the effects
of quenched random-charged impurities on the singlet–triplet
exchange coupling in two-electron double QDs. Although
there is an enormous interest in applying these systems in
quantum information technologies, there are few works trying

to quantify the effect of charged impurities on this kind of
task. The existence of unintentional impurities, which are
always present in nanostructured devices, seriously affects the
possibility of using these devices as quantum bits. Although the
distribution and concentration of impurities in these systems
result in unknown parameters, there are some recent works
that propose the possibility to experimentally control these
issues [9–11]. Impurity doping in semiconductor materials
is considered as a useful technology that has been exploited
to control optical and electronic properties in different
nanodevices.

It is worth mentioning that, due to environmental
perturbations, these systems lose coherence. For example,
confined electrons interact with spin nuclei through the
hyperfine interaction leading, inevitably, to decoherence [12].
Even having just one charged impurity could induce qubit
decoherence if this impurity is dynamic and has a fluctuation
time scale comparable to gate operation time scales [3].
Decoherence is a phenomenon that plays a central role
in quantum information and its technological applications
[13–19].

Entanglement, which is one of the most curious
phenomena in quantum mechanics, is being considered in
recent years as a physical resource that can be used for

0953-4075/13/065501+09$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-4075/46/6/065501
mailto:aferron@conicet.gov.ar
http://stacks.iop.org/JPhysB/46/065501


J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065501 D S Acosta Coden et al

quantum information processes as teleportation of quantum
states [20–22]. There exists the possibility of manipulating
the amount of entanglement in a QD molecule by controlling
the nanostructure parameters that define the nanodevice.
He and Zunger [23] studied the effect of interdot distance
and asymmetry on the spatial entanglement of two-electron
coupled QDs. They showed that the asymmetry in these
systems significantly lowers the degree of entanglement of
the two electrons. Two-electron entanglement of different QD
atoms and molecules have been studied by several authors
in the last decade [22–32]. The presence of nearby charged
impurities, as Das Sarma and Nguyen show, have an important
effect on the singlet–triplet coupling, with unwanted impact
in quantum information tasks. One of the main goals of this
paper is the calculation of the spatial entanglement [22, 25,
27] of the two electrons in a double QD molecule in the
presence of charged impurities. Experimentally, it is very
difficult to measure the amount of entanglement of two
electrons in a coupled QD directly. Several techniques exist
that allows one to measure the possibility of double occupation
[23] and the optical properties such as the dipole transition,
the oscillator strength and the photoionization cross section
[33–38] of these systems. If we know the relationship between
these quantities and the degree of entanglement, we can obtain
information about the amount of entanglement in our system.
The possibility of using this information in order to design
nanodevices according to the level of entanglement desired
is, as a result, quite difficult because the positions and the
strength of the impurities are unknown. Despite this, there are
some recent experiments which show the mechanism of dopant
incorporation and how the incorporation of impurity defects
can be controlled [9, 10, 39].

The aim of this work is to present a detailed analysis of
the electronic and optical properties of a two-dimensional two-
electron coupled QD and the effect of impurities. In particular,
we show that the entanglement of the electrons is strongly
modulated by the position and charge of the impurity. We
also show that optical measurements would allow information
about the effect of the impurity in these kinds of devices to
be obtained. This paper is organized as follows. In section 2,
we introduce the model for the two-dimensional two-electron
coupled QD and briefly describe the method used to calculate
its electronic structure. In section 3, we calculate the spatial
entanglement in the presence of one impurity and discuss
its relation to the exchange coupling. Section 4 contains
calculations of the oscillator strength for a range of parameters
of the system that show the modifications of the optical
properties in the presence of a charged impurity, with the
aim of allowing optical measurements to be correlated with
the degree of entanglement of the system. Finally, in section 5
we summarize the conclusions with a discussion of the most
relevant points of our analysis.

2. The model and calculation method

We consider two laterally coupled two-dimensional QDs
whose centres are separated a distance d from each other,
and contain two electrons. In QDs electrostatically produced,

both their size and separation can be controlled by variable
gate voltages through metallic electrodes deposited on the
heterostructure interface. The eventual existence of doping
hydrogenic impurities, probably arising from Si dopant atoms
in the GaAs quantum well, have been experimentally studied
[4]. These impurities have been theoretically analysed with a
superimposed attractive 1/r-type potential [5, 6]. Furthermore,
some avoided crossing and lifted degeneracies in the spectra
of single-electron transport experiments have been attributed
to negatively charged Coulomb impurities located near to the
QD [7]. From fitting the experimental transport spectra to a
single-electron model of softened parabolic confinement with
a Coulomb charge q, a set of parameters are obtained; among
them, a radius of confinement of 15.5 nm, a confinement
frequency �ω = 13.8 meV and an impurity charge of
approximately 1 or 2 electron charges. Indeed, the uncertainty
in the parameters and the suppositions introduced in the model
does not allow one to precisely ensure the impurity charge, with
the screening probably reducing its effective value to less than
an electron charge. Therefore, we consider the charge of the
doping atom Ze as a parameter varying in the range 0 � Z � 1,
in order to explore its effect on the properties of the system.

In this work we model the Hamiltonian of the two-
dimensional two-electron coupled QD in the presence
of charged impurities within the single-conduction-band
effective-mass approximation [8], namely,

H = h(r1) + h(r2) + e2

4πεε0r12
, (1)

where ri = (xi, yi) (i = 1, 2) and

h(r) = − �
2

2m∗ ∇2 + VL(r) + VR(r) + VA(r), (2)

where h(r) is the single-electron Hamiltonian that includes the
kinetic energy of the electrons, in terms of their effective mass
m∗, and the confining potential for the left and right QDs VL

and VR, and the interaction of the electrons with the charged
impurities, VA.

The last term of the Hamiltonian, equation (1), represents
the Coulomb repulsive interaction between both electrons at a
distance r12 = |r2−r1| apart from each other, within a material
of effective dielectric constant ε. We model the confinement
with Gaussian attractive potentials

Vi(r) = −V0 exp

(
− 1

2a2
|r − Ri|2

)
, (i = L, R), (3)

where RL and RR are the positions of the centre of the left
and right dots, V0 denotes the depth of the potential and a can
be taken as a measure of its range. Along this work, we will
consider a single impurity atom centred at RA, and modelled
as a hydrogenic two-dimensional Coulomb potential

VA(r) = − Ze2

4πεε0|RA − r| . (4)

Since the Hamiltonian does not depend on the electron
spin, its eigenstates can be factored out as a product of a
spatial and a spin part

�i(r1, r2, ms1 , ms2 ) = �S
i (r1, r2)χS,M, (5)

where S = 0, 1 for singlet and triplet states, respectively, and
M = ms1 + ms2 is the total spin projection.
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The eigenstates of the model Hamiltonian can be obtained
by direct diagonalization in a finite basis set [40]. The
spatial part is obtained, in a full configuration interaction (CI)
calculation, as

�S
m(r1, r2) =

Nconf∑
n=1

cS
mn�

S
n(r1, r2) (6)

where Nconf is the number of singlet (S = 0) or triplet
(S = 1) two-electron configurations �S

n(r1, r2) considered,
and n = (i, j) is a configuration label obtained from the indices
i and j from a single electron basis, i.e.

�S
n(r1, r2) = 1√

2
[φi(r1)φ j(r2) + (1 − 2S)φ j(r1)φi(r2)] (7)

for i �= j, and �S=0
n (r1, r2) = φi(r1)φi(r2) for the doubly

occupied singlet states.
We chose a single-particle basis of Gaussian functions,

centred at the dots and atom positions RP (P = L, R, A), of the
type [41, 42]

φi(r) = Nxmi yni exp(−αi|r − RP|2), (8)

where N is a normalization constant, and 
i = mi + ni is the
z-projection of the angular momentum of the basis function.
The exponents αi were optimized for a single Gaussian well
and a single atom separately, and supplemented with extra
functions when used together. For our calculations a basis set
of 2s2p functions for the dots, and 5s5p1d1f for the atom was
found to achieve converged results for the energy spectrum.

The numerical results presented in this work refers to
those corresponding to the parameters of GaAs: effective
mass m∗ = 0.067me, effective dielectric constant ε = 13.1,
Bohr radius a∗

B = 10 nm and effective atomic unit of energy
1 Hartree∗ = 10.6 meV [7, 3]. The depth of the Gaussian
potentials modelling the dots are taken as V0 = 4 Hartree∗ =
40.24 meV, and its typical range a = √

2a∗
B = 14.1 nm.

3. Entanglement entropy and exchange coupling

The proposed applications of QDs for quantum computing
require a large exchange coupling between electrons along
separated regions of space. To some extent, both requirements
compete with each other. In a simple picture, one could have
a large exchange coupling for electrons doubly occupying
the same dot or atom. In such a case, the singlet state has
the form of a product wave function ϕ0(r1)ϕ0(r2) with the
corresponding singlet spin function; the lowest triplet state,
however, has the form of the antisymmetrized product of
two single-electron functions, ϕ0(r1)ϕ1(r2) − ϕ0(r2)ϕ1(r1),
of different single-particle energies ε0 and ε1. Thus, the triplet
state will have a quite higher energy than the singlet state,
thus giving a large exchange coupling. Nevertheless, such
a large coupling is not favourable for quantum computing
tasks because the states are localized in space. Using electron
states as qubits requires, for instance, the feasibility to detect
the single or double occupancy of two QDs, separated a
measurable distance, while keeping both electrons correlated.

As the interdot separation increases, the electron–electron
interaction diminishes and its relative importance with respect
to the confining potential tends to vanish. In the limit of
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Figure 1. Calculated ground-state energy of the two-electron double
QD, for an interdot distance d = 30 nm, with one impurity atom of
charge Z = 1 located along the interdot axis as a function of
impurity position. The black line (red dashed line) shows the singlet
(triplet) ground-state energy. The inset shows the singlet–triplet
exchange coupling J as a function of impurity position.

large interdot separations, the Coulomb repulsion is minimized
by singly occupying each of the QDs with an electron. In
such a limit, the energies of both the singlet (+) and triplet
(−) states, ϕ0(r1)ϕ1(r2) ± ϕ0(r2)ϕ1(r1) approach the sum of
singly occupied dots and their difference J tends to zero. In
other words, the best conditions for applications to quantum
information processing arises from a compromise between a
high spatial correlation of pairs of electrons at the longest
possible lengths where the exchange coupling J is still sizable.
This behaviour is illustrated in figure 1, assuming a positively
charged impurity of one electron charge (Z = 1).

Figure 1 shows the singlet and triplet ground-state
energies for the double QD, separated a distance d = 30 nm,
as a function of impurity position xA. The inset shows
the behaviour of the singlet–triplet exchange coupling as
a function of the impurity position. These results are in
qualitative agreement with those of [3]. The singlet–triplet
exchange coupling is strongly affected for the presence of the
charged impurity, it has the maximum value when the impurity
is centred in between the two dots, and it has a minimum close
to zero when the impurity is located at xA = d. Expectedly,
the splitting goes asymptotically to the impurity-free double
QD case when the impurity atom is located far away from
the double QD system. We shall show below that the impurity
positions that give high energy splitting, i.e. those near to the
middle of the interdot distance, correspond to a two-electron
ground state whose spatial wave function is highly localized at
the impurity atom, thus having a small spatial entanglement.

In what follows we shall restrict ourselves to the impurity
located along the interdot x-axis, RA = (xA, 0).

We shall study now how the degree of spatial quantum
correlation of two electrons in the coupled QD is modified
by the position and charge of a screened atomic impurity.
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Figure 2. von Neumann entropy of the reduced density matrix for
the two-electron coupled QD as a function of the interdot distance.
The black dashed line shows the entropy when there is no impurity
present in the sample, the red line corresponds to the entropy when a
single impurity Z = 0.1 is located at x = y = 0 and the blue
dotted–dashed line corresponds to Z = 1.0.

As mentioned above, the eigenstate wave functions can be
factorized in its orbital and spin part. For the ground state,
the spin part is a singlet wave function, which is maximally
entangled and constant. Therefore, throughout this work, we
will only consider the spatial entanglement [22, 25, 27–29].

The von Neumann entropy of the reduced density matrix
quantifies the entanglement for a bipartite pure state and can
be calculated using [25, 27–30]

S = −Tr(ρ̂red log2 ρ̂red), (9)

where ρ̂red = Tr2|�〉〈�| is the reduced density operator, � is
the two-electron wave function and the trace is taken over one
electron. The von Neumann entropy could be written as

S = −
∑

i

λi log2 λi, (10)

where λi are the eigenvalues of the spatial part of the reduced
density operator∫

ρred(r1, r′
1)φi(r′

1) dr′
1 = λiφi(r1), (11)

where

ρred(r1, r′
1) =

∫
�∗(r1, r2)�(r′

1, r2) dr2. (12)

Figure 2 shows the von Neumann entropy for two electrons
in the double QD as a function of its interdot distance, in
the absence of impurity (black dashed line) and with atomic
charges Z = 1 (blue dashed–dotted line) and Z = 0.1 (red solid
line) located at the centre of the double QD. In all of the cases
it is observed that, for small interdot separations, the entropy
is small, smoothly increasing with the interdot separation.
The increase of the spatial entanglement is due to a gradual
delocalization of the ground state wave function. For interdot
distances between 20 and 40 nm, there is a large increase of

0 20 40 60
x

A
 [nm]

0.4
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0.6

S
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x

A
 [nm]

0

0.5

1

(a) (b)

Figure 3. von Neumann entropy of the reduced density matrix for
the two-electron coupled QD as a function of the impurity position
(along the interdot axis) for d = 30 nm and different impurities
strengths: (a) Z = 0.1 and (b) Z = 1.0.

the entanglement entropy, signalling a qualitative change of the
ground state wave function from an atomic doubly occupied
state to a state with both dots singly occupied, reached at large
interdot separations (d � 50 nm), where the entropy saturates
to its maximum S = 1. The variation of S is similar for all
of the cases, although the presence of the impurity decreases
the entanglement for every interdot separation, due to the fact
that the atomic potential contributes to the localization of the
electronic density at the centre of the system.

The effect of the charge and location of the impurity on the
spatial entanglement, for fixed QDs geometry, can be observed
in figure 3, where the entropy is depicted as a function of the
impurity position. The separation between the two QDs is kept
fixed at 30 nm, and two limiting cases are considered: a highly
screened atomic charge Z = 0.1 and an unscreened charge
Z = 1. In both cases, the entanglement entropy increases as
the impurity moves off the centre of the double QD until a
position where S reaches a maximum, finally decreasing to
a value S = 0.53, when the atom is distant from the dots
(x � 40 nm).

The minimum and maximum of entanglement produced
by the small charge Z = 0.1 are less pronounced than those due
to the highly charged impurity Z = 1. This modulation of the
entanglement by the impurity position reflects the existence
of two regimes: one of low entanglement for impurities at (or
near to) the centre of the interdot distance, and another of
higher (but not maximum) entanglement for atomic positions
external to the interdot segment. In figure 3, these two regions
are the ones to the left and the right of the bell-shaped peak
of S, respectively. The peak position itself depends on the
magnitude of the charge. For small charges, the maximum
degree of entanglement occurs at xA ≈ 17 nm, that is, close to
the centre of the dot to the right. For the large charge Z = 1,
however, the peak of S occurs at x ≈ 30 nm. The rationale
for it is that, for low charged impurities, the atomic potential
is a weak perturbation to the QDs potential wells. Therefore,
the entropy varies in a small range (0.47 � S � 0.56) around
the impurity-free case S = 0.53. For large impurity charges,
nevertheless, the atomic potential is strong and the position
of its centre greatly determines the spatial wave function. The
range of atomic positions (0 � xA � 20 nm) along which S
remains low, can be understood to be due to the localization of
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Figure 4. Ground state one-electron density along the interdot axis.
Left panels show the weak impurity limit Z = 0.2 and right panels
the strong impurity limit Z = 0.8: (a) and (d) d = 15 nm, (b) and (e)
d = 25 nm and (c) and (f) d = 40 nm. Red circles show the impurity
position xA = 15 nm.

the electrons close to the atom. When the atom is inside one of
the dots (QDR), the atomic potential reinforces that of the dot
well and the electron density localization, thus giving a low
degree of entanglement. When the atom moves towards outside
the double QD, the strength of the double well competes with
the large atomic potential until an atom-double QD distance
of about 30 nm, where it becomes energetically convenient to
delocalize the electron wave function, resembling the double
QD bond in the absence of impurity.

To show the influence of the atomic charge on the wave
function clearly, let us consider two slightly less extreme
situations: Z = 0.2 and Z = 0.8. Figure 4 shows the ground
state electron density along the interdot axis when the impurity
atom is located at xA = 15 nm, for three different interdot
separations, d = 15, 25 and 40 nm. The panels to the left show
that for the small charge, as the QDs separate from one another,
the electron density develops peaks located at the potential well
centres. For the large charge Z = 0.8, however, the density is
always peaked at the impurity position. Therefore, in this last
case, the presence of the impurity could spoil the performance
of the device for quantum computing tasks due to the fact
that the high localization of the electron density entails a low
degree of entanglement.

Figure 5 shows the dependence of the von Neumann
entropy on the impurity charge and interdot distance for a given
position of the impurity atom: xA = 15 nm. Ideally, provided
that the value of the impurity charge could be measured in
a given sample, one would be able to choose the optimal
interdot distance for a given degree of entanglement. The figure
clearly shows the aforementioned regimes of weak (Z � 0.6)
and strong (Z � 0.6) impurity potentials, corresponding to
a low and high degree of entanglement, respectively. For a
given (fixed) small impurity charge Z, the entropy increases
monotonically as the interdot distance d increases. On the
other hand, for a given large Z, by increasing the distance d,
the entropy increases for small distances d up to a maximum

Figure 5. Contour map for the von Neumann entropy of the reduced
density matrix for the two-electron coupled QD as a function of
impurity strength and interdot distance for xA = 15 nm.
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Figure 6. von Neumann entropy of the reduced density matrix for
the two-electron coupled QD as a function of the interdot distance
for xA = 15 nm ((a) and (c)), x = 20 nm ((b) and (d)) and different
values of the impurity strength. (a) and (b) The weak impurity limit
(Z = 0.1 and Z = 0.5) while in (c) and (d) we observe the strong
impurity limit (Z = 0.7 and Z = 1.0). The black dashed line shows
the behaviour of the entropy when there are no impurities in the
sample.

value, diminishes to a minimum and sharply increases again
until its asymptotic impurity-free value S = 1.

Figure 6 shows the dependence of the entropy on the
interdot distance, for different impurity positions (xA = 15
and 20 nm) and charges (Z = 0.1, 0.5, 0.7 and 1). The
corresponding variation in the absence of impurity is also
represented by dashed lines for reference. Two qualitatively
distinct behaviours for small (Z = 0.1, 0.5) and large (Z = 0.7,
1) charges can be seen. The monotonic increase of S with
d is characteristic of the weak atomic potential; separating
the QDs with a small atomic charge between them, produces
little changes in the electron distribution as compared with the
impurity-free double QD. On the other hand, strong atomic
potentials induce a modulation of the entropy as d increases;
for small values of d, all three potentials are close to each other
and the electron density localizes around their centres. For
large interdot distances, the energy of the system is minimized
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Figure 7. J as a function of the interdot distance d with an impurity
centre located at xA = 15 nm. On the left panel (a) we observe the
singlet–triplet coupling for Z = 0.1 (red circles) and Z = 0.5 (blue
squares). In (b) we show the singlet–triplet coupling for Z = 0.7
(green up triangles) and Z = 1.0 (orange down triangles). The black
dashed line represents the singlet–triplet with no impurity.

by decreasing the electronic repulsion, i.e. by delocalizing the
wave function and, hence, increasing its entanglement.

Figure 7 shows this effect on the exchange coupling
corresponding to situations of figures 6(a) and (c), having the
atom at xA = 15 nm. It can be observed that S and J have,
roughly, opposite variations; whence the atomic potential is
weak, S increases and J decreases as the QDs separate from
each other. In the regime when the atomic potential is strong,
the maximum of S occurs at the minimum of J and reciprocally;
furthermore, at large QD separations, as the entropy goes to
its asymptotical value S = 1, the exchange coupling tends to
zero. Then, for specific quantum information applications, it
could be desirable to tune the interdot distance for harnessing
one or both properties.

The variety of behaviours of the degree of spatial
entanglement with the various parameters of the system,
described in this section, is rooted in the spatial distribution of
the electron wave function. We shall discuss in the next section
a relation with an optical property, like the oscillator strength,
in order to provide a feasible connection with measurable
magnitudes.

4. Impurity effect on the optical properties

The optical susceptibility of a system depends on its transition
amplitude for the interaction of its dipole moment with the
optical electric field between two singlet states �i and � j, say
the ground and excited states, and the corresponding energy
differences. The oscillator strength for an electric field applied
along the interdot axis

fi j = 2m∗

�
(Ej − Ei)|〈�i|x1 + x2|� j〉|2, (13)

takes both magnitudes into account and provides information
on the feasibility of such optical excitations.

We study here how the impurity affects the oscillator
strength of the double QD. The dots are kept 30 nm separated
from each other and the position of the impurity xA is varied
from the centre of the interdot segment (xA = 0) to a large
separation from the dots (xA = 70 nm), including the case of
the impurity centred in one dot (xA = 15 nm). The charge Z
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Figure 8. von Neumann entropy of the reduced density matrix
(upper panel) and oscillator strength f12 (lower panel) between the
ground and first excited singlet state of a double QD with an
impurity of charge Z as a function of the impurity position xA, for
different values of Z.

of the atom is varied from Z = 0.1 (highly screened impurity)
to Z = 1 (low screening). For the system considered, the
oscillator strength between the ground and the first excited
singlet states, f12, is the dominant contribution with respect to
all others fi j. The precision of the calculation was checked by
verifying the Thomas–Reiche–Kuhn sum rule,

∑
i j fi j = N,

with N = 2 being the number of electrons in the system. The
results are shown in figure 8 together with the entanglement
entropy for the same atomic positions and charges.

The cases of weak and strong electron–atom Coulomb
interaction are clearly distinguishable. In the regime of small
impurity charge (Z � 0.6), the oscillator strength f12 varies
approximately with a quadratic dependence on xA; i.e. it starts
from f12 ≈ 2, reaches a minimum around xA = 15 nm, and
finally increases up to a value of 2, at nearly xA = 30 nm.
The larger the impurity charge Z, the more pronounced the
minimum of f12. Placing the atom further away from the double
dot system (xA > 30 nm) does not change f12.

On the other hand, in the regime of high impurity charge
(Z � 0.6), the oscillator strength f12 exhibits richer features
as compared to the small charge case. The most remarkable
behaviour corresponds to Z = 1 which successively shows a
similar decreasing, from f12 = 1.4 at xA = 0, to f12 = 0.6
at xA = 15 nm, followed by an increase up to xA = 25 nm, a
small plateau around 30 nm, a peak at xA = 33 nm, a minimum
of f12 ≈ 1 at 40 nm, finally approaching the saturation value
f12 = 2 for xA � 50 nm. For intermediate 0.5 � Z � 1
values, a gradual transition between both regimes is observed;
namely, by decreasing Z from 1 to 0.5, the minimum of the
region xA ≈ 40 nm becomes shallower, the peak is softened,
and the plateau merges with the minimum occurring at 15 nm,
thus giving the flat minimum of the weak impurity regime.

6



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065501 D S Acosta Coden et al

Figure 9. Contour plot in the (x1, x2)-plane of the two-electron ground state singlet wave function, �1(x1, x2), along the interdot axis x for
the ground state of the doped double QD. Gaussian wells are centred at RL = (xL, 0) and RR = (xR, 0) and the impurity atom of charge
Z = 1, at RA = (xA, 0). The vertical and horizontal dashed lines xi = xL, xR or xA (i = 1, 2), signals the condition where one electron
(electron 1 or 2, respectively), is at the centre of the dot to the left, to the right or at the impurity atom. The centres of the dots
xR = −xL = 15 nm are held symmetrical with respect to the origin of coordinates. The atom is successively placed at xA = 0, 15, 20, 25, 30,
33, 40 and 50 nm.

It should be noted that the range 0 � x � 15 nm
corresponds to an impurity atom located in between the dots,
while for xA � 15 nm, the atom is outside the segment
defined by the interdot centres. Consequently, the existence
of an impurity in the system would cause f12 to diminish and,
therefore, the light absorption or emission of the double dot
device. This effect is stronger the closer the atom is to one
dot. The most favourable situation for optical excitation (high
f12) corresponds to an impurity centred in between the dots or
outside the interdot separation, far away from any of them.

In the following we shall discuss the behaviour of the
oscillator strength as being due to changes in the electronic
structure induced by the variation of the position of the
impurity, starting with the most striking case of a highly
charged impurity Z = 1. We displace the atom along the
line joining both dots, which we take as the x-axis; therefore,
we consider the two-particle wave function along the x-axis
for the coordinates x1 and x2 of each electron

�i(x1, x2) = �i(r1, r2) = �i(x1, 0; x2, 0), (14)

for the two lowest singlet states �i(r1, r2), i = 1 (ground
state) and i = 2 (first excited state). The function �(x1, x2),
represented as a two-dimensional plot in the (x1, x2)-plane,
allows one to visualize the most relevant configurations
contributing to the total wave function. Because of the
permutation symmetry, the spatial wave function satisfies
�(x1, x2) = �(x2, x1), thus becoming symmetric under
reflection with respect to the diagonal x1 = x2. Large
values of �(x, x), along this diagonal, correspond to ionic
or doubly occupied configurations. In contrast, large density
values �(x,−x) along the x1 = −x2 diagonal, corresponds to
configurations where the electrons are mostly in opposite (left
and right) half-planes.

In the present calculations, the x coordinates of the centres
of the left and right dots xL = −15 nm, xR = 15 nm are

held fixed while that of the atom, xA = x, varies. Large
values of �(xL, xL), �(xR, xR) or �(xA, xA) entail a doubly
occupied configuration at the left dot, the right dot or the
atom, respectively.

On the other hand, a configuration of one electron in the
atom and the other in a bond (antibond) between the left and
right dots, would be represented by

�(x1, x2) = [cLϕL(x1) ± cRϕR(x1)]ϕA(x2) + (x1 ↔ x2), (15)

where the last term represents a term similar to the first one
with the variables interchanged, and ϕa is a wave function
centred around xa (a = L, R, A). Then, �(x1, x2) will have
large values close to (xL, xA) and (xR, xA) with the same or
opposite sign for a bond or antibond, respectively.

Figures 9 and 10 show the plot of the ground state
�0(x1, x2) and the first singlet excited state �1(x1, x2) from
our calculations.

For a single-electron symmetric double dot system
without impurity, the ground and first excited states are
the bonding and antibonding states formed from the linear
combination of orbitals centred at each dot. For the two-
electron symmetric double dot system, figures 9 and 10 show
that when the atom is at the centre of the line joining both dots
(x = 0), the two-particle wave function of the ground state
(excited state) roughly corresponds to one electron in the atom
and the other in the bond (antibond) of the double dot system,
equation (15). Therefore, the matrix element 〈�0|x1 + x2|�1〉
roughly correspond to the sum of those for the atom and the
double dot separately.

At x = 15 nm, the atom is at the centre of the dot
to the right, the system becomes very asymmetric, with the
potential of the dot to the right deeper than the one to the left
due to the contribution of the attractive impurity. The bond
becomes a doubly occupied state localized close to the centre
of the combined potential (QDR and impurity), while the
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Figure 10. Same as figure 9 for the first excited two-electron singlet wave function �2(x1, x2).

antibond becomes more localized around QDL, due to the
orthogonality condition, which lowers f12. The behaviour in
the range 0 � x � 15 nm reflects this gradual change.

From 15 to 30 nm, the effect of the impurity turns weaker
as the atom moves away, and the two dots become more
symmetric again; this redistributes the charge towards QDL,
recovering some bonding and antibonding character for �1 and
�2, respectively. Such a configuration favours an increase of
f12. Furthermore, as one electron remains in the atom, which
is farther from the origin, the matrix element of x becomes
larger than the one corresponding to the atom at the origin.
The oscillator strength has a peak at 33 nm roughly increasing
quadratically with the position of the atom as a consequence
of the stretching of the charge.

After 33 nm, the electron in the atom cannot be retained
by the impurity potential, thus �1 approaches a configuration
with one electron in each dot. Nevertheless, the excited state
�1 still has a configuration where the atom is occupied, which
lowers f12.

For atom positions further than 40 nm, the excited state
also releases its electron and the double QD becomes even
more symmetric, approaching its behaviour in the absence
of impurity, thus approaching its value f01 = 2. The limit
of isolated dots is clearly seen in figures 9 and 10, where
for x � 50 nm, the ground and first excited states are,
approximately, �0 ≈ [ϕL(x1)ϕR(x2)+ϕR(x1)ϕL(x2)]/

√
2 and

�1 ≈ [ϕL(x1)ϕL(x2) − ϕR(x1)ϕR(x2)]/
√

2.
As seen from figure 8, the oscillator strength for impurity

charges smaller than Z = 1, has simpler features. Basically,
they start from a value f12 slightly less than 2, decreases
until a minimum as the atom approaches one dot, say QDR,
and increases again smoothly until reaching the asymptotic
impurity-free value of 2.

The oscillator strength is a highly sensitive property to
the presence of the impurity. A value of f12 close to 2, occurs
either when the impurity is weak wherever it is located, or
when a highly charged impurity atom is far away from the
double QD. Both cases are situations where the impurity is
a perturbation for the coupled QDs and, therefore amenable
for use in quantum computing. In contrast, deviations of the

oscillator strength from a value of 2, provides an indication
of a breakdown of the possibility to consider the system as a
double QD.

5. Conclusions

In this work, we have studied the influence of a Coulomb
atomic impurity on the entanglement entropy of two-
dimensional two-electron double quantum dots. The electronic
structure was calculated by using a configuration interaction
method with a Gaussian basis set expansion. The degree of
entanglement becomes highly modulated by both the location
and charge screening of the impurity atom. Two regimes are
clearly identified: one of low entanglement and the other of
high entanglement, with both of them mainly determined by
the magnitude of the charge. The exchange coupling between
the electrons, being proportional to singlet–triplet exchange
coupling, has an opposite behaviour with respect to the one of
the entropy. The efficient use of double QDs with impurities, in
particular quantum information processing tasks could require
the tuning of the interdot separation or the quantum well
depths, for optimizing the harnessing of the entanglement,
the exchange coupling or both. Finally, the magnitude of the
oscillator strength of the system could provide an indication of
the presence and characteristics of impurities that could largely
influence the degree of entanglement of the system. It is clear
that experimentally obtained optical properties can help in the
design of double QDs with desirable properties in order to use
them in quantum information tasks.

The quantum control of these kinds of systems can be
implemented using pulses of external fields. This issue is of
great importance in quantum computation and a future work
about the interaction of electromagnetic fields with the system
presented here is in progress. Of course the decoherence,
not considered in these works, plays a very important role
in the quantum dynamics of these kinds of devices. Studies in
Markovian scenarios suggested that the entanglement vanishes
due to decoherence, while the decoherence process in non-
Markovian regimes sometimes gives rise to an interesting new
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effect: entanglement sudden revival [19, 43–45]. We think that
it is very interesting and useful to study the non-Markovian
dynamics of these systems in the low and high entanglement
regions depicted in this paper.
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