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Nitric oxide accumulation is required to protect against iron-mediated
oxidative stress in frataxin-deficient Arabidopsis plants
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Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals,
frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants,
frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to
oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Ara-
bidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads
also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnor-
mally high NO production might be part of the defence mechanism against Fe-mediated oxidative
stress.
� 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Frataxin is a mitochondrial protein highly conserved in mam-
mals, yeast, bacteria and plants. This strongly suggests that fra-
taxin is an essential protein that could play similar roles in many
organisms. In humans, mutations in the frataxin gene are respon-
sible for the cardio-neuro degenerative disease Friedreich’s ataxia
[1]. Several functions for this protein have been proposed including
its participation in iron homeostasis [1,2], Fe–S cluster assembly
and biosynthesis [3–5], respiration and oxidative phosphorylation
[6,7], regulation of respiration and control of antioxidant defences
[8], iron chaperone modulating mitochondrial aconitase activity
[9], among others. Additionally, recombinant frataxin have been
shown to interact with the iron–sulphur (Fe–S) scaffold protein
IscU and the Fe–S proteins, ferrochelatase and mitochondrial acon-
itase [9–13]. In many organisms, frataxin deficiency is associated
with Fe accumulation in mitochondria and oxidative stress. Iron
detoxification seems to be an important function of frataxin rele-
vant in anti-oxidant defence. In that sense, frataxin deficiency in-
creases the sensitivity of yeast cells to oxidative stress [14,15].

In plants, one Arabidopsis homologous gene (AtFH) has been
identified [16]. This gene is able to complement null mutant yeast
chemical Societies. Published by E
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(Dyfh) strongly indicating functional similarities. Two knock-outs
and one knock-down T-DNA insertional mutants have been re-
cently analysed. The knock-out mutants (atfh-2 and atfh-3) present
an embryo lethal phenotype, indicating an essential role of frataxin
[17,18]. The knock-down mutant (atfh-1) plant has reduced fra-
taxin mRNA and protein levels. In this mutant, the activity of
two Fe–S containing enzymes, mitochondrial aconitase and succi-
nate dehydrogenase, is reduced whereas malate dehydrogenase
which does not contain Fe–S moiety remains almost unaltered,
indicating a role of frataxin in Fe–S cluster assembly and/or
insertion [17]. Recently, it was reported that AtFH can rescue
frataxin-deficient RNAi Trypanosoma brucei cells restoring activities
of Fe–S proteins [19]. Mutant plants exhibit also increased of both,
ROS formation and transcript levels of oxidative stress response
genes. These results indicate that frataxin is an essential protein
in plants, required for full activity of mitochondrial Fe–S proteins
and plays a protective role against oxidative damage [17].

In this work, it is shown that frataxin-deficient plants, atfh-1
show a hairy root phenotype, increased iron content and high NO
levels. Accumulation of NO mediates the hairy root phenotype
and is required for ferritin genes’ (FER1 and FER4) induction to
diminish free Fe. High NO content might thus be part of the
defence mechanism to counteract Fe-mediated oxidative stress.
Indeed, frataxin deficiency could at least be partially compensated
by an increase in NO content, which might help to enhance resis-
tance to oxidative stress.
lsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Plant materials and growth conditions

Frataxin-deficient Arabidopsis thaliana mutant (T-DNA inser-
tional mutant SALK_122008 termed atfh-1, [17]) seedlings were
grown in a growth room on AtS agar medium as described by Es-
telle and Somerville [20]. Plants were grown at 25 �C with 12 h.
daylight at 200 lmol m�2 s�1.

2.2. Preparation of enriched mitochondrial fractions and iron
quantification

All procedures were performed at 4 �C. Starting material for
mitochondrial preparations was �4 g of Arabidopsis roots of plants
grown in hydroponia during fifty days. Root tissue was processed
to obtain mitochondrial enriched fraction as described [21]. To as-
sess the enrichment of mitochondrial preparations, a western blot-
ting using an antibody against a known mitochondrial complex I
subunit (gamma Carbonic Anhydrase 2, CA2) was used (Supple-
mentary Fig. 1).

Enriched mitochondrial samples of roots were digested com-
pletely in 2 N HCl at 95 �C. Total and organellar iron was quantified
by the ferrozine method [22] which implies an initial treatment
with acid to release complexed iron, reduction and quantification
with ferrozine reagent. Experiments were repeated at least three
times with three samples each. Statistical significance of differ-
ences between mean values was determined using ANOVA on
ranks.

2.3. Root hair analysis

Analysis of root hair patterns was performed by light micros-
copy in a Nikon Eclipse E200 microscope. Roots were fixed with
FAA solution (ethanol:water:formaldehyde:acetic acid, 10:7:2:1,
v/v) for 48 h and stained with Toluidine blue and micrographs
were recorded with a Nikon Coolpix 990 digital camera attached
to the microscope. Statistical significance of differences between
mean values was determined using Student’s t test.

2.4. RT-PCR analysis

Total RNA was extracted from plant material using Trizol
reagent (Invitrogen). Two micrograms RNA was used to synthesize
cDNA, and semiquantitative RT-PCR analyses were performed on
the amplification products after 16 to 35 cycles to obtain data
during the exponential phase of the PCR reaction. The following
primers were used to amplify cDNAs: FER4fw: 50-ATGCTTCTCAA-
GACTGTTTCTTCAT-30 FER4rv: 50-AGCGAGTGAGAGATGAGAGCTG-30,
FER1fw 50-GAGTCGTGTTCCAGCCTTTC-30 and FER1rv 50-TCTCAG-
CATGCCCTCTCTCT-30. Primers amplify a fragment that spans across
one intron, allowing the detection of possible genomic DNA
contamination. Each PCR experiment was performed three times
with different cDNA sets from independent biological replicates.
PCR products containing 1/50 SYBR Gold nucleic acid stain were
analysed on agarose gels. Gels were scanned on a STORM 860 laser
scanner (GE Healthcare bio-Sciences, Uppsala, Sweden). The
fluorescent signal for each band was quantified using ImageQuant
software after background correction included in the software.

2.5. NO and NO2 (nitrite) measurement

NO was imaged using the permeable NO-sensitive fluorophore
4-amino-5-methylamino-20,70-difluorofluorescein diacetate (DAF-
FM DA) and epifluorescence microscopy as described [23].
NO-dependent fluorescence was quantified by two methods: (i)
densitometry analysis of the fluorescence signal of images ac-
quired from the microscope and (ii) fluorescence quantification
of root tip homogenates in a fluorometer. Both methods gave
similar results. For fluorescence quantification, roots were loaded
with DAF-FM DA for 1 h, washed, and approximately 50 mg of root
tips (1.5 cm behind the apex) were homogenized in 0.5 ml HEPES/
NaOH pH 7.5 buffer. The extracts were then centrifuged (15,000�g,
10 min) at 4 �C and the supernatants used for fluorescence quanti-
fication in a fluorometer (Fluoroskan Ascent, Labsystems, Helsinki,
Finland) using D480-40 and D525-30 filters (Chroma Technology
Corp, Rockingham, VT, USA) for excitation and emission, respec-
tively. Roots without DAF-FM DA addition were similarly pro-
cessed and the fluorescence value used as a blank. Where is
indicated AtS media was added with either 1 mM L-NAME,
100 lM sodium tungstate or 100 lM KCN or without addition
(control). Experiments were repeated at least six times with five
roots each. Data are presented as mean fluorescence intensity.
NO2 was measured using the Griess Reagent (Promega). Five hun-
dred milligrams from 5 day old seedlings were homogenized in
PBS buffer pH 7.4 following the manufacturer’s specifications. Sta-
tistical significance of differences between mean values was deter-
mined using ANOVA on ranks.

2.6. Oxidative stress

Cell death as an estimation of sensitivity to oxidative stress was
monitored by staining Arabidopsis roots with Evan’s blue dye
(Merck, Darmstadt, Germany). Wild-type and atfh-1 seedlings
were grown in AtS agar medium for 5 days and transferred to an
AtS liquid medium containing 0 or 1 mM cPTIO (2-(4-carboxy-
phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, potas-
sium salt) for 1 h. for sequestering NO. Afterwards, 0 or 20 mM
H2O2 was added for 1 h. After washing, roots were incubated with
Evan’s blue 0.5% for 30 min, washed with distilled water and pho-
tographed under a binocular (Nikon SMZ 800) for qualitative anal-
yses. For quantitative analyses, 1 cm of treated roots were
incubated with di-methyl sulfoxide (DMSO) for 30 min with shak-
ing at room temperature, centrifuged at 12,000�g and quantified
spectrophotometrically at 565 nm (Hitachi, U-1800). Determina-
tions were performed at least six times with 30 roots of wild-type
or atfh-1 seedlings. Statistical significance of differences between
mean values was determined using ANOVA on ranks.
3. Results

3.1. Frataxin-deficient plants accumulate iron

Frataxin-deficient yeast and mammals accumulate iron in mito-
chondria [1,2,14,15,24]. In order to study the AtFH gene
(At4g03240) function in plants, it was determined in total and in
mitochondrial enriched fractions, the Fe content of both, atfh-1
and wild-type root cells. As shown in Fig. 1A and B, the mutant line
displays�60% more total Fe/g of dry weight and �20% more organ-
ellar Fe than wild-type. Similar results were obtained using flower
and leaves (data not shown).

The Fe storage protein ferritin accumulates in response to in-
creased cellular Fe levels [25]. Even though the presence of ferritin
was demonstrated only for plastids [26,27], it is likely to be also
present in plant mitochondria [28,29]. Arabidopsis FERRITIN 4 gene
(At2g40300 – FER4) encodes a protein with a predicted signal pep-
tide being the only plant ferritin with high score for both, plastids
and mitochondria, although it was not found in mitochondrial pro-
teomes yet. Since a peptide recognized by an anti-ferritin antibody
is present in Arabidopsis mitochondria [29], FER4 could be a dual



Fig. 1. Increased iron in afth-1 root cells. Analysis of total (A) and mitochondrial (B) iron content in wt and atfh-1 roots. Plants grown in normal conditions were used to
determine mitochondrial iron content. The data (mean ± S.D.) are representative of three independent experiments. (C) FERRITIN1 (FER1) and FERRITIN4 (FER4) expression
levels are increased in atfh-1 roots. Wild-type and atfh-1 seedlings were grown for 15 days on AtS-agar medium. RNAs were prepared from roots and used to synthesize cDNA
to perform semiquantitative RT-PCR analysis. ACTIN 2 (ACT2) was used as control. FER1, FER4 and ACT2 signals were obtained during the exponential phase of the PCR reaction
(left panel). Quantification of FER1 and 4 signals in wild-type and atfh-1 roots relative to the ACT2 signal (right panel). Asterisks mean significant difference (P < 0.05).
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targeting protein. Thus, induced FER4 expression in atfh-1 roots
would reflect accumulation of iron in mitochondria and plastids
suggesting FER4 may have a protective role when iron is in excess.
FERRTIN1 (FER1) and FER4 transcripts in atfh-1 and wt roots were
analysed by semiquantitative RT-PCR. As shown in Fig. 1C, atfh-1
seedlings present higher (2.5-and 3-fold) FER1 and FER4 transcript
levels in roots compared to the wt. These results indicate that fer-
ritin genes indeed respond to an increased Fe level inside organ-
elles most likely to protect against free iron. These observations
further support that frataxin deficiency causes an accumulation
of intracellular Fe in plants.

The main Fe uptake system in plants consists in an Fe (III) che-
late reductase encoded by FRO2 gene, the plasma membrane trans-
porter encoded by IRT1 gene and their regulator FRU/FIT [30–32].
These genes were shown to be induced by Fe deficiency conditions
and repressed by Fe overload [33,34]. The atfh-1 roots show
slightly reduced steady state of FRO2 and IRT1 transcript levels
compared to wild-type roots (data not shown) which is consistent
with increased iron content in atfh-1 roots.

Taken together, these results suggest that frataxin may be an
important component to keep iron homeostasis in plants.

3.2. afth-1 roots show abnormally high nitric oxide levels

Early reports support a biological action of NO on the availabil-
ity and/or delivery of metabolically active Fe within the plant [35].
Moreover, it was demonstrated that NO levels are increased in re-
sponse to either iron deprivation or overload suggesting that NO is
a key component of the regulatory mechanisms that control plant
iron uptake and homeostasis [23,36]. Since atfh-1 plants show in-
creased iron levels, endogenous NO content was determined using
DAF-FM DA probe in roots of atfh-1 and wt seedlings. As shown in
Fig. 2A and B, atfh-1 roots display higher (1.5-fold) NO-dependent
fluorescence than control wt roots. Fluorescence is not observed in
atfh-1 roots incubated with the NO scavenger cPTIO indicating the
specificity for NO of the fluorescent signal (data not shown). To
confirm fluorescent data, nitrite (NO�2 ), which is one of two pri-
mary, stable and non-volatile breakdown products of NO was mea-
sured by a diazotization reaction [37]. It was found a significant
increase (1.8-fold) in nitrite content in atfh-1 compared to that in
wt plants. Incubation with cPTIO decreases 80% the nitrite content
indicating the specificity of the obtained product (see Supplemen-
tary Fig. 2).

Morphological analyses indicate that atfh-1 roots present more
abundant root hair formation than wild-type roots (Fig. 2C). Root
hair density was then quantified showing a �60% increased in the
mutant. Since high NO levels mediate root hair development [38],
it was analysed if the high root hair density present in atfh-1 roots
relies on the observed higher NO content. atfh-1 seedlings treated
with the NO scavenger cPTIO showed a reduced root hair density
(Fig. 2C). The cPTIO-dependent reduction of root hair density was
dose-dependent attaining the levels observed in wt seedlings
(Fig. 2C). It was reported that high production of NO is required
for FER1 induction [39]. atfh-1 roots show both FER1 and FER4



Fig. 2. High NO levels mediate the hairy root phenotype and FER4 induction. (A) NO production shown as a green fluorescence from the NO-sensitive dye DAF-FM DA in roots
of wild-type and atfh-1 seedlings. Roots of 13-day-old seedlings were incubated with DAF-FM DA for 1 h. Images from the root hair zone from primary root were acquired
from the microscope. (B) Photographs were analysed with the Gel Pro Analysis 4.0 software and fluorescent molecules were extracted from root tip homogenates and was
quantified in a fluorometer. Data are from six independent experiments (n = 30 ± S.D.). Asterisks mean significant difference (P < 0.05). (C) Ten-day-old atfh-1 seedlings were
transferred to AtS media in the presence of 0.5 and 1 mM cPTIO or without addition (control) for 3 days. Root hair density (root hairs per mm of primary root) was
determined. Wild-type seedlings were used as a control. Data are representative from three independent experiments (n = 15 ± S.D.). (D) Wild-type and atfh-1 seedlings were
grown for 10 days on AtS-agar medium and transferred to AtS medium containing cPTIO or GSNO as indicated for additional 3 days. Roots were used to prepare total RNA,
synthesize cDNA to perform semiquantitative RT-PCR analysis. ACT2 was used as control. FER4 signals were obtained during the exponential phase of the PCR reaction (left
panel). Quantification of FER4 signals in wild-type and atfh-1 roots relative to the ACT2 signal (right panel).
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induction. It was thus analysed if FER4 induction was also depen-
dent of NO levels. Incubation with cPTIO reduces FER4 levels in both
wild-type and atfh-1 roots (Fig. 2D, upper panel). Moreover, GSNO, a
NO donor, induces FER4 transcript in a dose-dependent manner
(Fig. 2D, lower panel). This was not assayed in atfh-1 roots because
a higher concentration of NO could be toxic [40]. Thus, it is con-
cluded that NO is also required for FER4 induction. These results
indicate that NO production is increased in atfh-1 roots which medi-
ates the hairy phenotype and induction of ferritin gene expression.

To gain insight about the main source of NO generated in atfh-1
roots, inhibitors of NO-synthesizing pathways were used. The two
most studied enzymatic sources of NO in plants are a NO synthase
(NOS)-type enzyme and nitrate reductase (NR) [41]. NOS catalyzes
the conversion of L-arginine to L-citruline and NO; the L-arginine
analogous L-NAME has been extensively used to inhibit NOS activ-
ity in plants [42] even if a NOS homologous enzyme was not found
in plants yet. NR is a molybdenum-containing enzyme that, besides
its activity of nitrite generation from nitrate, catalyzes the forma-
tion of NO through nitrite reduction. Tungstate is a molybdate ana-
log that inhibits the formation of an active NR in vivo [43] and was
also shown to block NR-dependent NO generation [44]. In addition,
it was demonstrated that roots are able to reduce nitrite to NO via
mitochondrial electron transport [45]. KCN was then used to inhi-
bit mitochondrial electron transport. NO production was examined
with the DAF-FM DA probe in atfh-1 and wt roots treated with L-
NAME, KCN or tungstate. L-NAME and KCN substantially sup-
pressed NO accumulation in afth-1 roots while 1 mM tungstate
did not (Fig. 3A and B). In conclusion, the increased NO production
in atfh-1 roots seems to proceed by a NOS-like activity and the
electron transport chain.

Null mutant yeast lacking the frataxin gene (Dyfh) shows in-
creased mitochondrial iron content, making this strain hypersensi-
tive to oxidative stress [14]. A chimeric construct containing a
mitochondrial signal peptide and the plant homolog to frataxin
(Dyfh + AtFH) restores normal phenotype [16]. To study if the in-
creased NO production observed in atfh-1 plants is a general re-
sponse to the frataxin deficiency, endogenous NO content was
determined with the DAF-FM DA probe in wt, Dyfh and Dyfh + AtFH
restored yeast cells. As was observed in Arabidopsis roots, frataxin
deficiency produces higher NO levels (inhibited as well by L-NAME
and KCN) than control wt yeast. Restored Dyfh cells expressing
AtFH show normal NO content (data not shown). The observed in-
crease in NO content is then dependent on frataxin deficiency.

3.3. High NO content protects from oxidative stress

Increased NO levels in atfh-1 roots could protect from oxidative
stress and reduce ROS-mediated cell death. To test this hypothesis,



Fig. 3. Source of NO in atfh-1 seedlings. NO production in the root-hair zone of atfh-1 seedlings in the presence of the NOS inhibitor L-NAME (atfh-1 + L-NAME), the NR
inhibitor tungstate (atfh-1 + tungstate) or the mitochondrial electron transport inhibitor KCN (atfh-1 + KCN). Ten-day-old seedlings were transferred to AtS media in the
presence of either L-NAME, tungstate, KCN or without addition (control) for 72 h and incubated with DAF-FM DA for 1 h. Images from the young root hair zone were acquired
from the microscope. (B) Photographs were analysed with the Gel Pro Analysis 4.0 software. Data are representative from three independent experiments (n = 15). Wild-type
seedlings without addition are shown. Asterisks mean significant difference (P < 0.05).
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seedlings were incubated with or without hydrogen peroxide in
the presence of cPTIO to scavenge NO. To monitor cell viability,
treated roots were stained with Evan’s blue dye, which is a mole-
cule retained only in dead cells. Quantification of this molecule
retained by roots is then a way to estimate cell death and sensitiv-
ity to oxidative stress. As shown in Fig. 4A and B, atfh-1 roots show
enhanced cell death under oxidative stress than the wild-type
does. Interestingly, cell death (Fig. 4) and H2O2 content (Supple-
mentary Fig. 3) significantly increased when nitric oxide was
sequestered by cPTIO, even without incubation with hydrogen
peroxide, suggesting that elevated endogenous NO in atfh-1 roots
might protect against endogenous oxidative damage and may help
to survival.

4. Discussion

In this study, it was analysed the connection between the mito-
chondrial protein frataxin, iron homeostasis and nitric oxide pro-
duction in Arabidopsis roots and yeast. The atfh-1 roots show
1.6-fold increased Fe content respect to wt roots. Iron content in
heart mitochondria of frataxin-deficient mouse was reported to
reach almost 2-fold the normal iron content at the end of time life
[24]. Moreover, null mutant Dyfh yeast accumulates 10 times Fe in
their mitochondria than wt strain does [14]. These differences in
magnitude of metal accumulation when compared yeast, mam-
mals and plants, could be related to the amplitude of the frataxin
deficiency and intrinsic characteristics of the organisms. Neverthe-
less, the tendency to accumulate Fe into organelles is common to
all organisms defective in frataxin analysed so far.

Part of the Fe increment observed in atfh-1 roots is due to metal
accumulation in mitochondria and possibly plastids as indicated by
ferritin induction. Iron seems not to be abnormally accumulated in
vacuoles since the expression of the well-known iron transporters
NRAMP3/4 is almost unaltered in atfh-1 roots (data not shown). In
agreement with these results, mitochondrial ferritin is accumu-
lated in human tissues affected by frataxin deficiency [46,47]. Both,
FER-1 and FER-4 gene inductions are mediated by NO [39, and this
work]. It is therefore proposed a circuit where NO production is in-
creased by an increased Fe levels and in turns, high NO levels
would induce ferritin proteins that contributes to diminish free-
Fe concentration. High NO contents may also have a futile effect
inducing an increment in root hairs that would contribute to Fe up-
take by expanding root surface although iron uptake system is
slightly down-regulated consistent with increased Fe content.

Frataxin-deficient Arabidopsis show abnormally high ROS levels
and up-regulation of several known proteins involved in response
to oxidative stress [17, and this work]. This is most likely due to the
observed Fe accumulation. Recently, Anderson et al. [48] reported
that ectopic expression of peroxide scavenging enzymes rescues
frataxin deficiency in Drosophila. The atfh-1 roots present in-



Fig. 4. High NO content in atfh-1 roots protects from oxidative stress. Five-day-old
seedling were transferred to AtS media in the presence of either 1 mM cPTIO,
20 mM H2O2 or both for 1 h, or without additions (control). After washings, roots
were incubated with Evan’s blue dye for 30 min and photographed (B). Colorant
was extracted and measured at 565 nm in a spectrophotometer (A). Data are
representative from six independent experiments (n = 30 ± S.D.).
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creased NO levels. NO has been shown to be a potent antioxidant in
plants. It was reported that this molecule could capture superoxide
to reduce peroxide production [40,49]. Indeed, it was found that
increased NO content in atfh-1 roots protects from endogenous
oxidative stress since scavenging NO significantly increases H2O2

content and cell death. This situation is more evident when incu-
bated with exogenous hydrogen peroxide.

Taken together, these results indicate that decreased frataxin
levels causes Fe accumulation. Excess of iron produces hydroxyl
radicals (ROS) via the Fenton’s reaction [50]. This abnormally high
iron and ROS contents is paralleled by an increased NO production
that protects from oxidative stress possibly by two ways: directly
by scavenging peroxide and indirectly by NO-mediated induction
of ferritin proteins that contributes to diminish free-Fe levels with-
in the organelles, ROS formation and thus protecting from oxida-
tive stress and cell death. In conclusion, higher NO production in
atfh-1 roots might be part of the response to counteract Fe-medi-
ated oxidative stress caused by deficiency of frataxin.
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