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Surface  electromyographic  signals  provide  useful  information  about  motion  intentionality.  Therefore,
they  are  a  suitable  reference  signal  for control  purposes.  A continuous  classification  scheme  of  five upper
limb  movements  applied  to a myoelectric  control  of  a robotic  arm  is  presented.  This  classification  is  based
on features  extracted  from  the  bispectrum  of four  EMG  signal  channels.  Among  several  bispectrum  esti-
mators,  this  paper  is  focused  on  arithmetic  mean,  median,  and  trimmed  mean  estimators,  and  their
ensemble  average  versions.  All  bispectrum  estimators  have  been  evaluated  in  terms  of  accuracy,  robust-
ness  against  outliers,  and computational  time.  The  median  bispectrum  estimator  shows  low  variance
obust bispectrum
ontinuous classification
yoelectric control

and  high  robustness  properties.  Two  feature  reduction  methods  for the  complex  bispectrum  matrix  are
proposed.  The  first  one  estimates  the  three  classic  means  (arithmetic,  harmonic,  and  geometric  means)
from the  module  of  the  bispectrum  matrix,  and  the  second  one  estimates  the  same  three  means  from
the square  of the  real  part  of  the  bispectrum  matrix.  A  two-layer  feedforward  network  for  movement’s
classification  and  a dedicated  system  to achieve  the  myoelectric  control  of a  robotic  arm  were  used.  It

ficati
nteer
was found  that  the  classi
authors,  and  that  all volu

. Introduction

Surface electromyographic signal (EMG) is an electric manifes-
ation of muscular activity associated with muscle contraction and
orce level, which can be detected on the skin surface [1,2]. This
omplex signal is influenced by several physiological and anatom-
cal factors, as well as for recording situations. The EMG  signal
ontains rich information about muscular activity, neuromuscu-
ar disorders, and motion intentionality, and has the potential to
ecome a reference input signal to myoelectric control systems. For
his purpose, signal processing is required for conditioning the EMG
n two main steps, namely, feature extraction and classification.

The aim of feature extraction techniques is to reduce the
imensionality of the digitalized EMG  signals by mapping these

arge-dimension objects into a smaller-dimensional space. This
s done by selecting from the original EMG  signal a small set of
eatures (or characteristics) that are arranged in a feature vector.

deally, these features should be simple to extract, invariant to
rrelevant transformations, insensitive to noise, and useful for char-
cterizing and discriminating motion patterns. The information in
hese features represents the motion intention of the user. On this

∗ Corresponding author. Tel.: +54 02644286993; fax: +54 02644213672.
E-mail addresses: eorosco@inaut.unsj.edu.ar (E.C. Orosco),
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F. di Sciascio).

746-8094/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.bspc.2012.08.008
on  performance  in  real-time  is  similar  to those  obtained  off-line  by  other
s  in the  practical  application  successfully  completed  the  control  task.

© 2012 Elsevier Ltd. All rights reserved.

accounts, the correct selection and design of the feature vector is
more critical than the choice of the classification method [3].  The
abstraction provided by the feature-vector representation of the
EMG signals allows using of a well-developed domain independent
classification theory.

A wide variety of different features for EMG classification pur-
poses have been extensively reported in the literature [4].  Features
can be classified according to several criteria, e.g., their specific fea-
ture domain (time [5],  frequency [6],  or time-frequency domain
[7]); the linear or nonlinear nature of the feature extraction map-
ping [8,9]; or whether the feature extraction method is based on
second or high-order statistics.

High-order statistics (HOS), and the probabilistic models based
on them, allow modelling non-Gaussian and non-linear signals, as
pointed out by Nikias, Mendel and Swami [10–12] and in more
extensive theoretical works [13–17].  In past years, several authors
have proposed to use of HOS concepts to analyze and classify the
EMG  signals, e.g., high-order cumulant sequences, high-order spec-
tra or polyspectra, skewness, kurtosis, and other concepts [18–24].

HOS are more extensively used in EMG  analysis, to explore the
relationships between the bicoherence (normalized bispectrum)
and the force level [20], to estimate the amplitude and the num-

ber of newly motor unit action potential using the second and the
fourth-order moments [21] and using the third-order spectrum
[22–24]. However, few researchers have addressed the problem of
HOS-based feature classification. For example, Nazarpour et al. [18]
employ HOS of EMG  signal to classify four motions, based on the
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act that useful information can be extracted from the second, third
nd fourth-order cumulants using a K-nearest neighbor classifier.
nother bispectrum feature extraction method can be found in [19]

hat performs an off-line classification of EMG  signals, using seg-
ented matrix integration (axial and radial direction) and Fisher’s

inear discriminant analysis. They obtain the best classification rate
ff-line, without considering the transition between movements;
lthough they suggest the possibility of online implementation.

In this paper, a bispectrum (the double Fourier transform of
he third-order cumulant sequences) from multiple EMG  channels
s proposed as a HOS-based feature classification method applied
o the myoelectric control of a robotic device, as a hard real-time
pplication. The bispectrum is estimated from four EMG  channels,
orresponding to biceps brachii, triceps brachii, pronator and bra-
hioradialis.

The bispectrum is a bidimensional complex function repre-
ented by a complex matrix. Therefore, in order to perform the
lassification, it is necessary to reduce this 2D complex array into a
eal feature vector. To this aim, two feature vectors were proposed
nd analyzed under criterions of complexity, computational cost
nd feasibility of real-time implementation. The most adequate
eature vector is selected to be used as an input to an artificial neu-
al network to classify five movements of the upper limb: elbow’s
exion–extension, forearm’s pronation–supination and arm’s rest.
ith these results, a robotic arm is controlled in real time.
The paper is organized as follows: In Section 2, we  explain

he experimental procedure for EMG  signal acquisition, process-
ng, classification, and the myoelectric control of a robot arm. We
lso provide a brief overview of data segmentation, surface elec-
romyogram models, bispectrum definition and properties, and
ispectrum processing (estimation methods, feature extraction and
eduction). In Section 3, we present and discuss our results in rela-
ion to: (i) the statistical analysis of the proposed robust bispectrum
stimators, (ii) the classification performance of the bispectrum-
ased feature extraction, and (iii) the real-time implementation of
he myoelectric control of a robot arm. Finally, Section 4 states the
onclusions.

. Materials and methods

The myoelectric control system based on features extracted
rom the EMG signal bispectrum is described in this section. The
lock diagram of the overall myoelectric control scheme is shown

n Fig. 1. Following the sequence outlined in the block diagram, this
ection is organized as follows: First, the experimental protocol,
he front-end processing and EMG  acquisition, and data segmen-
ation are presented. Then, the conceptual subsections explain
he relevant concerns about the models of the surface EMG, bis-
ectrum, bispectrum estimation and, finally, feature extraction,
eature reduction, the classification and real time myoelectric con-
rol methods.
.1. Experimental protocol

A movement-based protocol is designed for recording the upper
imb EMG  signals for biceps brachii,  triceps brachii,  pronator and
rachioradialis muscles, as is shown in Fig. 2. The movements of

Fig. 1. Block diagram of the overall
sing and Control 8 (2013) 153– 168

interest in this work are flexion, extension, pronation, supination,
and rest position. The volunteers are encouraged to perform the
sequence of movements prompted by beepers. The database con-
sists of the records of six volunteers, three male and three females,
volunteers aged 28.6 ± 5.4, their height 1.77 ± 0.13 m and weight
66.2 ± 12.7 kg. All volunteers are healthy, with no history of mus-
cle weakness, neurological diseases or drug therapy. One of them
has a congenital malformation, i.e., unilateral phocomelia below
his elbow (Vol. 1). The volunteers have approved and signed an
informed consent form, according to the experiments to be per-
formed.

The database was  collected in four experimental trials, com-
pleted on four different days, while avoiding the effects of muscular
fatigue [25]. Each trial consisted of five series of sequential move-
ments, holding each motion for three seconds and interspersing
the rest position. Each trial has 100 s maximum duration. The first
trial was used for data training for artificial neural networks. The
remaining sessions were used for data validation. The volunteers
performed an additional session for real-time myoelectric control
of a robotic arm in.

2.2. Front-end processing and EMG acquisition

Two data acquisition systems were used, both of which featuring
a front end processing stage and an EMG  acquisition stage. The front
end processing stage includes instrumentation amplifiers (Gain of
1000 (V/V) and CMRR > 100 dB), band pass filters (10–500 Hz) and
opto-isolated subsystems [1,2]. The EMG  acquisition stage has an
analog-to-digital converter and the digital processing software. The
EMG signals from four channels were registered by the two differ-
ent data acquisition systems with a sampling frequency fixed at
1 kHz.

The reasons for using these two systems were; first, the database
needs a precise and accurate high-resolution data acquisition sys-
tem, because the signals are used for features analysis and neural
network training. On the other hand, the real time control requires a
fast hardware and a fast communication link in order to effectively
control these devices.

The commercial data acquisition system, used for EMG  database,
is a 15LT – Grass Technologies®. Signals are sampled with a 16-bit
A/D converter (National Instruments DAQPad-6015®), and Matlab®

software.
The real time control was  developed with a data acquisition sys-

tem designed in our institute. The design of the front end processing
stage is explained with details in [26,27].  The EMG  acquisition
stage has a PIC16F876 microcontroller which samples the signals
through a 10-bit A/D converter. The QNX® real time operating sys-
tem records the signals and it executes the processing, classification
and control algorithm tasks. Also, in this stage, the EMG  data from
the database is statistically normalized in order to have zero mean
and unit variance EMG  signals.
2.3. Data segmentation

A time segment (time-slot or time-window) is a time inter-
val used to acquire myoelectric data needed for some kind of
signal processing, such as detection, estimation, filtering, feature

 myoelectric control system.
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ig. 2. Electrodes placement used with the experiments. The considered muscles are
xtension, pronation, supination, and rest position.

xtraction and classification (as in our case), and the like. The
dea behind data segmentation is that the signal can be consid-
red quasi-stationary during these time intervals; then, the data
an be batch-wise processed from segment to segment. This signal
rocessing mode is also known as real-time data processing over
liding time windows (with or without overlapping). Two impor-
ant parameters must be properly selected in order to design a good
ata segmentation strategy; namely, the segment length, and the
mount of overlapping between two consecutives segments.

The segment length (measured in the number of time samples),
etermines the trade-off balance between the accuracy of the clas-
ification and the response time. This is so because, on the one hand,
he segment length should be large enough to avoid a degradation
f the classification performance, because the bias and variance
f feature estimators increase as segment length decreases and,
n the other hand, the segment length should be small enough to
atisfy the hard real-time constraints of the myoelectric control
pplication [4,28].  The myoelectric control must supply the con-
rol commands in less than 300 ms,  so that the user does not feel
ny delay in the expected response from the system. In this work a
egment length of 256 samples was adopted.

The amount of overlapping is measured as a percentage of the
egment length. The degree of overlapping between two consec-
tives segments normally ranges from 0%, for non-overlapped or
djacent windowing, and almost 100%. This parameter affects the

ate with which class decisions will be made and can be adjusted to
ptimize the use of the computing resources. Here, a 50% overlap-
ing (128 samples) is adopted to obtain a continuous classification
cheme (see Fig. 3). The post-processing technique is explained in
ection 2.7.
s and triceps brachii, and pronator and brachioradialis. The movements are flexion,

2.4. Models of the surface electromyogram

The standard assumption about the surface EMG  signal recorded
during voluntary constant-force contractions is that it can be
modeled as a band-limited, correlation-ergodic, centered (zero-
mean) Gaussian process, modulated by muscle activity and
corrupted by additive Gaussian white noise [29]. The sum of these
two independent and centered Gaussian processes is a centered
Gaussian process. This assumption provides an adequate mathe-
matical tool for modelling and feature extraction, with acceptable
results. Nevertheless, some authors have proposed other represen-
tations of the EMG  signal, such as Laplacian process [30] or Gaussian
Mixture Models [31].

Based on the implicit assumption of ergodicity, several authors
have investigated the sample or empirical marginal probability
density function (pdf) of EMG  signal amplitudes [32–36].  It is
widely accepted that the Gaussian amplitude distribution is more
adequate to represent voluntary contractions above 50% of maxi-
mum  voluntary contraction (MVC), but the amplitude distribution
tends towards a Laplacian or a double exponential distribution as
the force level decreases (specially below 30% of maximum volun-
tary contraction) [33,35,36].

2.5. Bispectrum
In the following three subsections, the definitions of cumulant
sequences and bispectrum functions are presented and also the
influence of the symmetries of the joint and marginal density func-
tions of a random signal on their bispectrum are discussed. Finally,
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ig. 3. The EMG  channel is segmented into sliding windows of 256 samples with over
s  implemented to do a continuous feature extraction.

n Section 2.5.3, we explain several bispectrum estimation meth-
ds.

.5.1. Bispectrum definition and basic properties
The bispectrum is a third-order frequency-domain measure-

ent containing information that conventional spectral analysis
echniques cannot provide [10–12,37].  This is especially useful for
on-Gaussian signals. Its definition and some basic properties are
ecalled in the following.

Let {X(k)} , k = 0, 1, 2, 3, . . . a real stationary discrete time random
rocess whose first n-moment exists. Then the n-moment function
37] can be defined as

x
n(�1, �2, . . . , �n−1) = E{X(k)X(k + �1)· · ·X(k + �n−1)} (1)

here E {·} is the statistical expectation and �i is time shift.
he most widespread moment functions used are: the sec-
nd moment or autocorrelation function mx

2(�), the third-order
oment functions mx

3(�1, �2) and the fourth-order moment func-
ion mx

4(�1, �2, �3).
For a zero mean stationary random process and only for n = 3, 4,

he definition of cumulant functions is written as

cx
n(�1, �2, . . . , �n−1) = mx

n(�1, �2, . . . , �n−1) − mg
n(�1, �2, . . . , �n−1)

cx
n(�1, �2, . . . , �n−1) = E

{
X(k)X(k + �1)· · ·X(k + �n−1)

}
− E(g(k)g(k + �1)· · ·g(k + �n−1))

(2)
here {g(k)} is a Gaussian random process with the same auto-
orrelation function as {X(k)}. For a given random process, the
umulant functions provide a measure of the distance to Gaussian-
ty. If {X(k)} is a Gaussian process, cumulants higher than second
rder are zero.
g of 128 samples. Tree segments are shown with 50% overlapped. This configuration

For n = 1, 2 and 3 the general relationship
between moments and cumulant functions are
given by

cx
1 = mx

1 = E{X(k)} (3a)

cx
2(�1) = mx

2(�1) − (mx
1)2 = mx

2(−�1) − (mx
1)2 = cx

2(−�1) (3b)

cx
3(�1, �2) = mx

3(�1, �2) − mx
1[mx

2(�1)

+ mx
2(�2) + mx

2(�1 − �2)] − 2(mx
1)3 (3c)

where, cx
1 is the mean value of {X(k)} and cx

2 is the autocovari-
ance sequence. The third-order cumulant function is cx

3(�1, �2) and,
when the random sequence {X(k)} is zero mean, the cumulant func-
tion is equivalent to the moment function, that is,

mx
3(�1, �2) = cx

3(�1, �2) = E{X(k)X(k + �1)X(k + �2)} (3d)

Important properties justify the use of cumulants instead of
moments [10,11]. First, high-order cumulant functions extract
information deriving from deviations from Gaussianity. Second, the
polyspectra of the white noise is a multidimensional flat function.
Third, the cumulant functions of two statistically independent ran-
dom processes are equal to the sum of the individual cumulant
functions of each process. Therefore, the cumulant functions can be

treated as an operator and, consequently, the discrete time Fourier
transform is applicable.

From this point, this work will focus on the third-order cumulant
sequence and assume that cx

3(�1, �2) is absolutely summable [37],
the third-order spectra or the bispectrum can be defined as the
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wo-dimensional discrete time Fourier transform of the third-order
umulant cx

3(�1, �2) as follows.

x
3(ω1, ω2) =

∞∑
�1=−∞

∞∑
�2=−∞

cx
3(�1, �2) exp{−j(�1ω1 + �2ω2)} (4)

here |ω1| ≤ � ; |ω2| ≤ � ; |ω1 + ω2| ≤ � and cx
3(�1, �2) is the third-

rder cumulant function of the random sequence {X(k)}.
The properties of symmetries in third-order cumulants function

nd the corresponding bispectrum function can be found in [10,37],
n example;

x
3(�1, �2) = cx

3(�2, �1) = cx
3(−�2, �1 − �2) = cx

3(�2 − �1, −�1)

= cx
3(�1 − �2, −�2) = cx

3(�1, �2 − �1) (5)

nd;

x
3(ω1, ω2) = Bx

3(ω2, ω1) = Bx
3(−ω2, −ω1) = Bx

3(−ω1 − ω2, ω2)

= Bx
3(ω1, −ω1 − ω2) = Bx

3(−ω1 − ω2, ω1)

= Bx
3(ω2, −ω1 − ω2) (6)

.5.2. Bispectrum and symmetry of probability density functions
The bispectrum of a random process is identically zero when

heir joint probability density functions are symmetric. Only for the
pecial case where the process is white (i.e., an independent and
dentically distributed sequence), the bispectrum vanishes when
heir marginal probability density functions are symmetric [38,39].

The following equalities between joint PDF’s must be satisfied
n order to verify that a zero-mean, stationary random process X(k)
as identically zero third-order statistics [39]:

X(k),X(l),X(m)(xk, xl, xm) = fX(k),X(l),X(m)(xk, xl, −xm)

= fX(k),X(l),X(m)(xk, −xl, xm)

= fX(k),X(l),X(m)(−xk, xl, xm) (7)

here k, l, and m are distinct integers.
The above equalities are much more restrictive symmetry con-

traints than the one expressed in terms of just the marginal PDF.
urthermore, it would be more difficult to verify the symmetry con-
itions in terms of the joint PDF’s, than to directly investigate when
he bispectrum is zero (or nonzero).

Because it is well-known that the EMG  signal is not white, the
receding paragraphs mean that the symmetry of the marginal
amplitude) probability distribution of the EMG  signals by itself
s not sufficient to conclude that the third-order statistics are zero.
his clearly justifies the use of EMG  bispectrum features for move-
ent classification task.

.5.3. Bispectrum estimation methods
The problem of estimating the bispectrum from a single finite

ime realization of a stochastic process has been largely addressed
n the literature. There are basically two approaches that have
een used to estimate the bispectrum, namely, the paramet-
ic approach (which is based on linear parametric models, e.g.,
utoregressive, moving average, and ARMA models), and the
onventional or ‘Fourier type’ approach [37]. A review of the com-
only used techniques can be found in [40–44],  and references

herein.
Considering the real-time application of myoelectric control,
his paper is focused in three estimators, members of the family of
ndirect class of conventional bispectrum estimators, that is, esti-

ators based on the approximation of bispectrum definition given
y (3d) and (4).  It follows from this definition that the accuracy
f bispectrum estimation depends mainly on the accuracy of the
sing and Control 8 (2013) 153– 168 157

third-order cumulant estimates. It is also well known that for a
fixed number of data samples, the variance of these estimates is
greater than the second-order cumulant estimates (autocorrelation
function).

In the following subsections, three third-order cumulant esti-
mators are presented, based on different approximations of
the expectation operator E(·) in Eq. (3d): the arithmetic mean,
the median or second quartile, and the truncated or trimmed
mean.

2.5.3.1. Third-order cumulant estimators. Arithmetic mean third-
order cumulant estimator: The standard unbiased estimator of the
third-order cumulant sequence is equivalent to using the sample
mean estimator,

ĉx−MEAN
3 (m, n) = 1

N − max(m, n)

N−max(m,n)∑
l=1

x(l)x(l + m)x(l + n) (8)

where, in our case XN = {x(k), k = 1, 2, . . .,  N} is the EMG  sequences
(time segment) of N = 28 = 256 samples, l = 1, 2, . . . is the index of
the sample segment, and m = 0, 1, 2, . . . , n = 0, 1, 2, . . . are the
time lags. Evidently, between l, m,  n and N it must be satisfied the
relation 1 ≤ max(l + m,  l + n) ≤ N. Therefore index l varies from 1 to
N − max(m, n). A slight modification of Eq. (8) leads to a biased (but
asymptotically unbiased) estimator of the third-order cumulant
sequence.

ĉx−MEAN-B
3 (m, n) = 1

N

N−max(m,n)∑
l=1

x(l)x(l + m)x(l + n) (9)

Eqs. (8) and (9) can be written in a compact form as:

ĉx−MEAN
3 (m, n) = 1

K

N−m∑
l=1

zm,n(l) (10)

where zm,n(l) = x(l)x(l + m)x(l + n) is defined for fixed values of m and
n over the triangular region m = 0, 1, 2, . . . and 0 ≤ n ≤ m ≤ N − 1,
the index l ranges from 1 to N − m,  and K takes the values
N − m or N for unbiased or asymptotically unbiased estimator
respectively.

In what follows, only unbiased estimators are considered,
because our estimation task is actually a small sample estimation
problem, and, as G.W. Brown pointed out as early as 1947 [45] “To
ensure, in small-sample estimation, that an estimate bears some rela-
tion to the parameter it is estimating, it has become the custom to
require that an estimate be unbiased”.

Median third-order cumulant estimator: The sample median is
a classical method for estimating the middle of a data set. This
estimator provides a robust alternative to sample mean when the
underlying distribution of zm,n(l) is approximately Laplacian or dou-
ble exponential, which is indeed our case. Fig. 4 shows the plots
of nearly Laplacian empirical density functions for several zm,n(l).
In this case the cumulant estimates is bias robust in the pres-
ence of outliers, and with less variance than the sample mean
estimator.

The sample median third-order cumulant estimator is repre-
sented compactly by:

ĉx−MED
3 (m, n) = Med(zm,n(l)) (11)

where Med(·) is the sample median operator and, likewise above,

zm,n(l) = x(l)x(l + m)x(l + n) is defined for fixed values of m and n
over the triangular region m = 0, 1, 2, . . .,  0 ≤ n ≤ m ≤ N − 1, and
1 ≤ l ≤ N − m. If the data zm,n(1), . . .,  zm,n(N − m) are arranged
in ascending order from smallest to largest and written as
zm,n[1] ≤ · · · ≤ zm,n[N − m],  then zm,n[i] is the ith order statistic and
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ĉx−MEAN-D

3 (m, n) = 1
D

D∑
i=1

1
M − m

M−m∑
l=1

z(i)
m,n(l) (16)
ig. 4. The estimated probabilistic density functions of the several EMG  windows o
robabilistic density functions are based on a normal kernel function.

he values zm,n[i] are called the order statistics. Using this notation,
he sample median is defined as:

ˆx−MED
3 (m, n) = Med(zm,n(l))

=

⎧⎨
⎩

zm,n

[
N − m + 1

2

]
if N − m is odd

zm,n[(N − m)/2] + zm,n[[(N − m)/2] + 1]
2

if N − m is even

(12)

Symmetric trimmed mean third-order cumulant estimator: The
runcated or trimmed mean estimator given by (13) is another
pproach to robust estimation of third-order cumulant. The sensi-
ivity to outliers is reduced by removing the smallest ks and largest
l values from the data set.

ˆx−TRIMM
3 (m, n, ks, kl) = 1

N − m − ks − kl

N−m−kl∑
l=ks+1

zm,n[l] (13)

here zm,n[1] ≤ · · · ≤ zm,n[N − m] are the previously defined order
tatistics. When ks = kl = k, a symmetric k-trimmed mean estimator
s obtained, given by (14).

ˆx−TRIMM
3 (m, n, k) = 1

N − m − 2k

N−m−k∑
l=k+1

zm,n[l] (14)

here k can take the values k = 0, 1, . . . ,
⌊

(N − m − 1)/2
⌋

, and the
ymbol � � denotes the floor or the integer part function that is given
y (16).
N − m − 1
2

⌋
=

⎧⎪⎨
⎪⎩

N − m − 1
2

if N − m is odd

N − m

2
− 1 if N − m is even

(15)
 ms  are near a Laplacian or double exponential density distribution. The estimated

It  should be noted that the unbiased sample mean estimator (8)
is a special case of the symmetric k-trimmed mean estimator (14)
when k = 0, i.e., ĉx−TRIMM

3 (m, n, k = 0) = ĉx−MEAN
3 (m,  n); and that the

sample median estimator (12) is another special case of (14), when
k =
⌊

(N − m − 1)/2
⌋

, i.e., ĉx−TRIMM
3

(
m, n, k =

⌊
(N − m − 1)/2

⌋)
=

ĉx−MED
3 (m, n).

2.5.3.2. Ensemble average third-order cumulant estimators. Ensem-
ble (or time segments) averaging is a form of data stratification. This
is a standard statistical technique used in the analysis of stationary
time series in order to obtain an acceptable trade-off between the
bias of the estimator and its variance. In averaging over time seg-
ments, the finite sequence XN = {x(k), k = 1, 2, . . .,  N} is divided into D
non-overlapping subsequences, each one having a length of M sam-
ples, such that N = D × M.  If x(i)(j), j = 1, 2, . . .,  M, i = 1, 2, . . .,  D denote
the k = (i − 1)M + jth observation in the original sequence, then the
subsequences X(i) are defined as, X(i) = {x(i)(j) = x((i − 1)M + j), j = 1, 2,
. . .,  M}  , i = 1, 2, . . .,  D.

Thus, the following ensemble average versions of the three
estimators defined previously are calculated as the ensem-
ble average of the cumulant subsequences estimates on the
segments.

Ensemble average arithmetic mean third-order cumulant estima-
tor:
where, z(i)
m,n(l) = x(i)(l)x(i)(l + m)x(i)(l + n), i = 1, 2, . . . , D are

defined in each subsequence X(i) for fixed values of m and n over
the triangular region m = 0, 1, 2, . . .,  0 ≤ n ≤ m ≤ M − 1, the index l
varies from 1 to M − m.
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Ensemble averaging median third-order cumulant estimator:

ĉx−MED-D
3 (m, n) = 1

D

D∑
i=1

Med
(

z(i)
m,n(l)

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
D

D∑
i=1

z(i)
m,n

[
M − m + 1

2

]
if M − m is odd

1
D

D∑
i=1

z(i)
m,n[(M − m)/2] + z(i)

m,n[[(M − m)/2] + 1]

2
if M − m is even

(17)

here the values z(i)
m,n[·] are the order statistics defined in the sub-

equence X(i), i = 1, 2, . . .,  D.
Ensemble averaging symmetric trimmed mean third-order cumu-

ant estimator:

ˆx−TRIMM-D
3 (m, n, k) = 1

D

D∑
i=1

1
M − m − 2k

M−m−k∑
l=k+1

z(i)
m,n[l] (18)

.5.3.3. Bispectrum estimates. As it was pointed out previously, the
ispectrum estimation is an approximation of the definition (4),
alculated as:

ˆx−XX
3 (ω1, ω2) =

L∑
m=−L

L∑
n=−L

ĉx−XX
3 (m,  n)w(m, n)

× exp{−j(ω1m + ω2n)} (19)

here the super index XX in the third-order cumulant and bis-
ectrum estimates can be: MEAN, MED, TRIMM,  or the ensemble
verage versions MEAN-D, MED-D,  TRIMM-D; and L ≤ N − 1 or

 ≤ M − 1, as appropriate. The cumulant symmetries and the prop-
rties of its two-dimensional fast Fourier transform should be
onsidered in order to reduce the computational cost [10,11,37].
s in the case of conventional power spectrum estimation, a bidi-
ensional window function w(m,n) is used to find the smooth

ispectrum estimates. Furthermore, it is well known that the
election of the window function w(m,n) affect the bias-variance
rade-off in the bispectrum estimation. The bidimensional window
unction w(m,n) must satisfy the following conditions [37]:

Symmetry properties: w(m, n) = w(n, m) = w(−m, n − m)  =
w(m − n, −n)
Zero outside the region high-order statistics estimates, i.e.,
w(m, n) = 0; |m| > L
Normalizing condition at the origin, i.e., w(0, 0) = 1
Nonnegative Fourier transform, i.e., W(ω1, ω2) ≥ 0, for all (ω1, ω2)

These properties can be satisfied by generating the bivariate
unction w(m,n) using some standard univariate window functions,
uch as Daniell, Hamming, Parzen, Priestley or Sasaki windows.

The window functions can be evaluated in terms of two  quan-
ities that are proportional to the bias and the variance of the
stimated bispectrum. This issue is fully explained and analyzed
n Nikias and Petropulu [37]. Among other things, the authors con-
luded that the bispectrum estimated with Sasaki window has the
owest bias, and that of Parzen window has the lowest variance.
ccording to this, the Parzen window function was  chosen.

.6. Feature extraction
The goal of feature extraction is to find a small set of characteris-
ics, grouped into a feature vector of the digitalized EMG  signals that
s useful for characterizing and discriminating the motion patterns.
he information contained in these features represents the motion
sing and Control 8 (2013) 153– 168 159

intention of the user. In the following sections, the procedures used
for EMG  bispectrum feature extraction and feature reduction will
be explained.

2.6.1. Bispectrum feature extraction
The performance of the bispectrum estimations in real time

situations determines the most adequate estimator. For analysis
the estimators explained in Section 2.5.3 were considered. In this
feature extraction stage, the robust bispectrum median estimator
using (17) is implemented. As is explained later, the median esti-
mator produces the lowest variance estimation and it is robust
against outliers as well, which justifies the decision for choosing
this estimator.

The EMG  data segmentation allows the continuous classification
of movements in sliding time windows. Those windows have 256
samples with overlapping on 128 samples (50%). The segments are
assumed as a stationary stochastic process and it also provides the
suitable dimension, thus making faster the two-dimensional fast
Fourier transform.

The bispectrum function was  calculated in each of the four
EMG  channels over the sliding time windows. In Eq. (17), the EMG
segment x(k) was  divided into four groups of 64 samples (D = 4
and M = 64), and then, the estimation of the third-order cumulant
sequences was calculated as the average of estimates on the seg-
ments. Then, the discrete time double fast Fourier transform was
calculated using the cumulant sequences and their symmetries. The
bispectrum estimation results in a complex square matrix of order
128 which contains several regions of symmetry. The fist triangu-
lar region was  used to compute the features vector. A schematic
explanation is shown in Fig. 5.

2.6.2. Bispectrum feature reduction
The bispectrum is a bidimensional complex function that is

represented by a complex-valued square matrix of size 2M × 2M;
where M is the size of the fist quadrant redundancy region. In this
work, M = 64 for each of the four channels; then, the matrix size is
128 × 128. In order to perform the classification, it is not suitable
to use the whole bispectrum matrix due to its high dimension-
ality. Therefore, it is necessary to reduce this 2D complex-valued
array into a real-valued feature vector without losing much infor-
mation along the process. This is possible because of the redundant
information present in the bispectrum.

To this purpose, various authors have proposed different reduc-
tion techniques, by taking into consideration several factors, such as
complexity, computational cost and feasibility of real-time imple-
mentation. Kaplanis et al. [20] have examined seven parameters of
the bispectrum: peak amplitude in the x-direction; slope peak slope
in the x-direction; peak amplitude in the y-direction; slope peak
slope in the y-direction; Maximum amplitude; Test for Gaussian-
ity; Test for Linearity. Similarly, Hussain et al. [46] have investigated
the Test for Gaussianity based on the mean bicoherence power (a
squared power normalized version of the bispectrum). Chen et al.
[19] used segmented matrix integration (axial and radial direction)
and a non-linear logarithm transform of the bispectrum.

For each EMG  channel, two  feature reduction methods for the
complex bispectrum matrix are proposed. The first one estimates,
as shown in Table 1, the three classic Pythagorean means from
the module of the bispectrum matrix, i.e., arithmetic mean (AM),
harmonic mean (HM), and geometric mean (GM). With these, the
vector [AMs, HMs, GMs]T is formed, where the subscript s = 1, 2, 3,

4 indicates the EMG  channel number (see Fig. 6(a)). The final fea-
ture vector is obtained by applying a quarter-root transformation of
each component of the vector [AMs, HMs, GMs]T. The purpose of this
last transformation is to obtain a more peaked feature’s probability
distribution which has better numerical properties.
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Table 1
Feature vectors.

Module feature vector
[AMs , HMs , GMs]T , s = 1,
2, . . .,  4

Arithmetic mean (AM) AMs = 1
M

M∑
i=1

1
M−i+1

M∑
j=i

|B̂x(s)MED-D
3 (i, j)|

Harmonic mean (HM) HMs = M

(
M∑

i=1

(M − i + 1)

(
M∑
j=i

|B̂x(s)MED-D
3 (i, j)|−1

)−1)−1

Geometric mean (GM) GMs =

⎛
⎝ M∏

i=1

(
M∏
j=i

|B̂x(s)MED-D
3 (i, j)|

)1/(M−i+1)
⎞
⎠

1/M

Square real part feature
vector [RAMs , RHMs ,
RGMs]T , s = 1, 2, . . .,  4

Real arithmetic mean (RM) RAMs = 1
M

M∑
i=1

1
M−i+1

M∑
j=i

�eal(B̂x(s)MED-D
3 (i, j))

2

Real harmonic mean (RHM) RHMs = M

(
M∑

i=1

(M − i + 1)

(
M∑
j=i

�eal(B̂x(s)MED-D
3 (i, j))

)−1)−1

Real geometric mean (RGM) RGMs =

⎛
⎝ M∏

i=1

(
M∏
j=i

�eal(B̂x(s)MED-D
3 (i, j))

2

)1/(M−i+1)
⎞
⎠

1/M

x(s), EMG  subsegment.

Fig. 5. A 256 samples segment is used to estimate the third-order cumulant and, then, the bispectrum is obtained by the two-dimensional fast Fourier transform. The fist
triangular redundancy region is chosen for the analysis of movement intention.

F
b

ig. 6. The feature vectors are defined by the quarter-root of the three Pythagorean mean
ispectrum matrix.
s obtained from (a) the module, and (b) the square of the real part of the complex
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F he artificial neural network input vector is based on the EMG feature vector, and the five
e ronation, supination and rest). A post processing is applied to the outputs.
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Fig. 8. The figure shows the post processing of the motion classification system.

MMAX = max
j

(M̄j) = max
j

(
1
4

i+3∑
i

Mji

)
, j = 1, . . . , 5 (21)
ig. 7. The neural network is a two-layer feed-forward back propagation network. T
lements output vector (M1–5) characterizes the movements (flexion, extension, p

The second feature reduction method is summarized in Fig. 6(b)
nd Table 1. This method differs from the former one in that it uses
he square of the real part of the complex bispectrum matrix instead
f the module. In this case, the vector obtained before applying the
uarter-root transformation is [RAMs, RHMs, RGMs]T. This feature
eduction method turns to be more effective, and faster than the
rst one. In both reduction methods, the size of the final feature
ector is 12 (three features per channel).

.7. Classification method

It is widely recognized that the correct selection of components
f the feature vector is more decisive than the choice of a spe-
ific classification method [3].  Thus, the selection of the classifier
s not our primary goal in this paper. Several classifiers have been
sed for EMG classification [8,9,47]. For example, different Artifi-
ial Neural Networks, Support Vector Machine, multiple classifiers
ith competence function, linear Bayesian classifier, and so on. In

his paper, a two-layer feedforward neural network (Fig. 7) was
sed, because of, among other things, its great simplicity, straightfor-
ard numerical implementation, acceptable classification rate, and
ood performance in real time. This neural network has one hidden
ayer and one output layer. The hidden layer contains 20 neurons

ith hyperbolic tangent sigmoid activation function and the output
ayer has 5 neurons with a linear activation function constrained to
he interval [0,1]. The selection of the number of hidden neurons
as been determined directly by minimizing the combination of
quared errors and weights, and by maximizing the classification
ate on the training stage [48].

For both feature reduction methods discussed in Section 2.6.2,
he size of the final augmented feature vector was 12 (three features
or each of four EMG  channels). This augmented feature vector is
sed as the input to a neural network classifier and a 5-dimension
ector is returned as an output that represents the classified move-
ents, i.e., flexion, extension, pronation, supination and rest.
Continuous classification of movements using overlapped slid-

ng windows was applied for training and validation of the neural
etwork classifier. As described in Section 2.3, a segment length of
56 samples and an overlapping of 128 samples were adopted. For
raining the classifier, the first trial of each volunteer was extracted
rom the (our) database of experiments, comprising the sequence
f five movements (see Section 2.1). In the training stage, only
he steady-state signal was considered. Consequently, the transi-
ion periods were removed from the training data [28]. A Bayesian
egularization algorithm [49,50] was used for training the neu-

al network classifier. This method uses a modified performance
unction designed to minimize over-training, and obtains a classi-
er with improved generalization properties. The remaining trials
f our database of experiments without removing the transition
eriods were used as validation data.
Four classified motions are averaged and then, the final motion is the maximum of
this average. Average M1–5 characterizes the movements. The decision increment
is  128 ms  to the outputs.

Finally, in order to improve the motion classification accuracy,
a post-processing step is applied. The analysis window size is
512 ms  (two segment), and the decision increment is 128 ms  (half
segment). Four classified motions are averaged and the intended
motion is assigned to the maximum of this average (see Eq. (21),
and Fig. 8). This post processing produces a decision once every
128 ms.
Fig. 9. The basic software consist on all those C-codes necessary to run the ADC,
buffering data, filtering data, windowing, saving data to disk, graphics user inter-
face, and to allow the option to run the process and control algorithms. Those tasks
run in four parallel threads, in different priorities. This configuration avoids the com-
petition between the fundamental thread and the GUI. Therefore, the hard real time
is  guaranteed.
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ig. 10. The figure shows the joint coordinates calculation scheme. Selectors M1–
ecreasing function (with K < 1) is set. Constants K1 to K4 transform parameters to
ny  damage to the robot.

here i is the sliding time window index, and j = 1, . . .,  5 indicates
he classified class motion.

.8. Real-time myoelectric control

Myoelectric control is widely used in assistive technologies,
ncluding multifunction prosthesis, wheelchairs, grasping control,
irtual keyboards, diagnoses and clinical applications, such as func-
ional neuromuscular stimulation. The main goal of this work is to
ontrol a robotic arm (Cyton ARM7) using the EMG  signals from
he upper limb and user’s visual feedback. The myoelectric control
as done with a dedicated hardware and software system, and the

ontrol loop was closed using the visual perception of the user. The
econd acquisition system was used in this stage (see Section 2.2).

The real time processing software was executed under QNX®

eal time operating system. QNX allowed multi-threads program-
ing with different priority levels, from 1 to 255 (low to high

riority). The applications were developed with an integrated
evelopment environment (IDE) in C-language. The IDE was per-
ormed under Windows® and the applications were transferred
ver Ethernet to a QNX host computer. This configuration decreases
he development time and increases the versatility. The software
as executed in four parallel threads with different priorities. A

lock diagram of the basic module’s structure is shown in Fig. 9.
echnical details about this procedure can be found in [26,27].

The robotic arm, a Cyton ARM7 manipulator, was  controlled
y mimicking a human arm configuration with seven degrees of
reedom. The joints used in this experiment were the elbow and
he wrist rotation, and their coordinates were calculated using the
oot-Mean Square (RMS) of the rectified signal, as the maximum

ikelihood estimator of muscular force [30]. When a movement is
etected and correctly classified, the RMS  of the data segment is

ntegrated over time and the final joint coordinates are obtained by
ubtracting the integrated RMS  of the agonist–antagonist muscles
airs. If movement switches to rest, the joint coordinate is modeled
y an exponential decreasing function. This procedure is equiva-

ent to low-pass filtering or smoothing the robot arm dynamics, as
hown in Fig. 10.
. Results and discussion

In the following subsections, we present and discuss our
esults, divided into three parts. The first one shows the evalu-
tion of the bispectrum estimators proposed in Section 2.5.3.3,
the active motions and M5 is rest. When the Selector M5 is active, an exponential
 coordinates for each volunteer. Saturations from −90◦ to 90◦ are applied to avoid

while the second presents the classification performance of the
bispectrum-based feature extraction. In the third subsection, the
real time implementation of the myoelectric control scheme herein
proposed is presented, applied to a robotic arm.

3.1. Evaluation of the bispectrum estimation

The bispectrum estimators proposed in the Section 2.5.3.3 were
evaluated in terms of accuracy, robustness against outliers and
computational time. In addition, the underlying probability dis-
tributions of the estimates have been considered in the analysis
of the results. It is reasonably assumed that EMG  signals are suffi-
ciently fast mixing sequences; that is, its values at widely-separated
times are asymptotically independent [51]. For signals that exhibit
this weakly time-dependent behavior, the moving block bootstrap
resampling technique [52] could be used to generate a large num-
ber of independent pseudo-random sequences from the observed
signal. With these new segments, it is possible to estimate the value
of statistical quantities from the original signal via Monte Carlo
simulations, e.g., mean, variance, distribution functions, and so on.

3.1.1. Accuracy of bispectrum estimation
The accuracy of the bispectrum estimation depends on three

factors, namely, the amount of data (segment length L), the bi-
dimensional smoothing window function W(· , ·) and, finally, the
accuracy of the third-order cumulant estimates ĉx−XX

3 (m,  n). By
recalling the equations of Section 2.5, we can see that these fac-
tors are clearly shown in definition (4) and estimation (19) of the
bispectrum.

Bx
3(ω1, ω2) =

∞∑
�1=−∞

∞∑
�2=−∞

cx
3(�1, �2) exp{−j(�1ω1 + �2ω2)} (4)

B̂x−XX
3 (ω1, ω2) =

L∑
m=−L

L∑
n=−L

ĉx−XX
3 (m, n)w(m, n) exp{−j(ω1m + ω2n)}

(19)

As was  already pointed out in Section 2.3,  the segment length
and overlapping have been fixed to 256 samples and 128 samples,

respectively. These two values were determined by the trade-off
balance between the accuracy of the classification and the response
times that satisfy the real-time constraints of the myoelectric con-
trol application. As it is noted in Section 2.5.3.3,  two-dimensional
smoothing window functions have been extensively analyzed by
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Table 2
Mean and variance of bispectrum estimators from 1000 Monte Carlo simulation
experiments.

Estimator D Mean (23) Variance (24)

Arithmetic
mean

1 0.031 0.64
2 0.0066 0.17
4  0.0051 0.19

Median
1  0.00039 0.027
2  0.00014 0.0038
4  0.00016 0.0048
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Table 3
Mean and variance of bispectrum estimators from 1000 Monte Carlo simulation
experiments with the data sets that include outliers.

Estimator D Mean (23) Variance (24)

Arithmetic
mean

1 0.035 1.10
2 0.0078 0.22
4  0.0065 0.21

Median
1  0.00035 0.015
2  0.00015 0.0064

mate of the processing time. As it can be expected, the real time
implementation is faster on the QNX operating system (Section 2.8).

The average computational times for the estimators are shown
in Table 4. The time difference between the ensemble estimators
with two  (D = 2) and four (D = 4) sub-segments are small. In the case

Table 4
Averaged computational time.
Trimmed
mean

1 0.012 0.36
2 0.0027 0.075
4  0.0022 0.12

ther authors. Based on these studies, Parzen window was  selected
ecause the estimated bispectrum showed the lowest variance.
inally, it is clear from the bispectrum definition (as a double
iscrete Fourier transform of the third-order cumulants) that the
ccuracy of the third-order cumulant estimates is an important fac-
or that directly affects the accuracy of the bispectrum estimation.

The bispectrum accuracy is analyzed through the mean (23) and
ariance (24) of the bispectrum estimated at the origin B̂x−XX

3 (0,  0).
his term is a real random variable that is calculated by the matrix-
eighted average of the third-order cumulant estimates (see Eq.

22)) and, therefore, it provides an indirect evaluation of the third-
rder cumulant estimates for a fixed weight matrix W.

ˆx−XX
3 (0,  0) =

L∑
m=−L

L∑
n=−L

ĉx−XX
3 (m,  n)W(m,  n) (22)

The sample mean of B̂x−XX
3 (0,  0) is given by:

¯ 3(0,  0) = 1
NB

NB∑
b=1

B̂x(b)−XX
3 (0,  0) (23)

nd the sample variance as:

˜3(0,  0) = 1
NB

NB∑
b=1

(B̂x(b)−XX
3 (0,  0) − B̄3(0,  0))

2
(24)

here {x(b), b = 1, 2, . . .,  NB} are a set of NB independent pseudo-
andom sequences (segments) generated from the EMG  signal in
he moving block bootstrap technique.

.1.1.1. Results of Monte Carlo simulation experiments. The pre-
iously outlined moving block bootstrap procedure is used to
enerate 1000 independent pseudo-random segments from a seg-
ent of EMG  signal during a muscle contraction of 256 samples.

hen, we calculate the sample mean (23), and sample variance (24)
f the bispectrum estimators proposed in Section 2.5.3.3,  namely,
he arithmetic mean estimator, the median estimator, the symmet-
ic trimmed mean estimator, and their ensembles average versions
or three subsegments D = 1, 2, and 4 (see Section 2.5.3.2).  Results
re summarized in Table 2 and Fig. 11 from which the following
bservations were extracted:

(i) The arithmetic mean estimator has a notable higher variance
than the median and the symmetric trimmed mean estimators.

(ii) The median estimator has a substantial lower variance than
the other estimators. This result is consistent with the fact that

the underlying distribution of z(l) was approximately Lapla-
cian (see Fig. 3) and, in this case, the median is the maximum
likelihood estimator.

iii) As it would be expected, both the mean and the variance
decrease when the number of sub segments D increase,
4  0.00018 0.011

Trimmed
mean

1 0.012 0.50
2 0.0027 0.056
4  0.0023 0.075

although the variance shows a slight increase when the data
are divided into four segments (D = 4).

3.1.2. Robustness property of bispectrum estimators:
The robustness properties of bispectrum estimators were eval-

uated by analyzing the accuracy of B̂x−XX-D
3 (0,  0), when a single

normally distributed outlier is introduced at a random (uniformly
distributed) time into the original EMG  signal.

In data sets that include outliers, the variance of mean estima-
tor grows further than the others estimators, while the robustness
property of the median estimator results in nearly the same vari-
ance (as without outliers), as is shown in Table 3. It is recognized
that the trimmed mean estimator has similar robustness proper-
ties. Nevertheless the variance is relatively greater than the median
estimator.

3.1.3. Average computational time
The real time constraints of myoelectric control require that

the computational time for the bispectrum estimation, the features
vector construction and the movements’ classification be smaller
than the sliding time window of 128 ms.

The average computational time was  calculated using 1000 seg-
ments randomly selected from the four channels EMG  signal, in
different trials and volunteers. The time that the computer takes to
perform the features extraction, features vector construction and
movements’ classification were obtained for each segment. This last
classification task is straightforward to implement, so the compu-
tational time is spent mainly by the following two  tasks:

• Bispectrum estimation:  The bispectrum is calculated using the
estimator evaluated in the previous sections, i.e., the arithmetic
mean estimator, the median estimator, the symmetric trimmed
mean estimator, and their ensembles average versions for three
sub segments D = 1, 2, and 4.

• Features vector construction: The Pythagorean means from the
real part of the complex bispectrum method was used to obtain
the features vector. This feature reduction method results more
effective and faster (Section 2.6.2).

These calculations were performed in Matlab, providing an esti-
Estimator D = 1 D = 2 D = 4

Arithmetic mean 61 ms 14 ms  14 ms
Median 126 ms 32 ms  30 ms
Trimmed mean 311 ms 121 ms  109 ms
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ig. 11. (a) The top of the figure shows a bar-plot of the estimated sample means (
nsembles versions (D = 1, 2 and 4). The top of the figure also shows an enlargeme
stimated sample variances (24). All means and variances are estimated with 1000 in

f one segment (D = 1), the average times increases significantly,
nd this time is even greater than the sliding time windows for the
rimmed mean estimator.

.2. Classification performance of the bispectrum-based features

In this section, the performance evaluation of the neural net-
ork classifier described in Section 2.7 is presented. The correct

lassification rate is used to measure the classification accuracy for
he two feature vectors proposed in Section 2.6.2. Recall that these
eature vectors are defined by the quarter-root of the three classic

eans obtained from the module and the square of the real part of
he complex bispectrum matrix (see Table 1). In order to properly
nterpret the results, the following issues are relevant:

The data set of movements was extracted from our own  database
of experiments (see Section 2.7).
The ensemble median bispectrum estimator (for D = 4) was used
on the basis of the advantages outlined in Section 3.1.
The stages of features extraction and reduction, as well as the

classification of movements using a two-layer feedforward neural
network were performed in continuous mode (see Sections 2.6
and 2.7).
The feature vectors were calculated for each volunteer, and then,
the neural networks were trained (see Section 2.7).
 the arithmetic mean, median, and trimmed mean bispectrum estimators for three
the median mean estimator. (b) The bottom of the figure shows a bar-plot of the
dent pseudo-random segments obtained with the moving block bootstrap method.

• The percentage of correct classification rates were computed as
the ratio of correct decisions over the total number of decisions
multiplied by 100.

Some authors, such as in [19,53], give values of correct clas-
sification rates for steady state signals, i.e., the transition periods
between successive movements have been removed. Clearly, this
approach is not suitable for hard real-time applications such as
myoelectric control. Nevertheless, for comparison purposes, the
classification rates were calculated with and without taking into
account transitions between movements. But, for both cases, the
transition periods were removed from the training data set.

For continuous classification (with transitions), the average of
the mean and standard deviation of the correct classification rates
are summarized in Table 5 and Fig. 12.  For a 12-dimension fea-
ture vector obtained from the module of the complex bispectrum
matrix, the average of the mean and standard deviation classi-
fication rates are 92.22% and 2.97, respectively; and for features
obtained from the square of the real part of the bispectrum matrix
are 92.12% and 3.11, respectively. By comparing the performance
of the module and real part feature vectors, it was observed that

the two  averages of the mean rates were very similar. There was
only a small decrease (less than 2% in the worst case) for real part
feature vector. In addition, on account his extensive experience, the
amputee Vol. 1 shows an acceptable performance in both feature
vectors.



E.C. Orosco et al. / Biomedical Signal Processing and Control 8 (2013) 153– 168 165

Table 5
The classification rates using our database with transitions.

Volunteer Feature vector obtained from the module of
the complex bispectrum matrix

Feature vector obtained from the square of the
real part of the complex bispectrum matrix

Mean % SD Mean % SD

1 96.97 0.71 97.03 1.05
2 93.04  1.96 92.93 3.37
3 93.97  2.40 93.85 2.26
4 89.35  5.25 90.40 2.86
5  90.04 2.83 90.07 1.59
6  89.97 4.42 88.43 3.26

Averages 92.22 2.97 92.12 3.11

Mean %, mean percentage of classification rate; SD, standard deviation; Vol. 1, amputee.

Table 6
The classification rates using our database without transitions.

Volunteer Feature vector obtained from the module of
the complex bispectrum matrix

Feature vector obtained from the square of the
real part of the complex bispectrum matrix

Mean % SD Mean % SD

1 99.60 0.35 99.53 0.39
2  96.59 1.95 96.41 3.09
3  96.96 2.09 96.83 1.91
4  93.47 4.95 94.95 2.45
5  93.99 2.74 94.11 1.73
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were used as training data and data from the remaining five tri-
als were used as testing data. EMG  data motions are: open hand,
closed hand, supination, pronation, wrist flexion, wrist extension,
and rest.
6  93.86 3.96 

Averages 95.75 2.40 

ol. 1, amputee.

The results without taking into account transitions between
ovements are summarized in Table 6. For the feature vector

btained from the module of the complex bispectrum matrix, the
verage of the mean and standard deviation classification rates are
5.75% and 2.40, respectively, and for features obtained from the
quare of the real part of the bispectrum matrix are 95.74% and 2.41,
espectively. These classification rates are consistent with results
btained in [19,53]. When these results were compared with those
btained by continuous classification (Table 5), a slight improve-
ent was noted in the classification rates. This improvement was

xpected, because most of the classification errors occur at the
ransitions between movements.
.2.1. Cross-validation with an alternative database
The purpose of this subsection is to validate the effective-

ess of the neural network classifier for the same previous two

ig. 12. Bar-plot of the classification rates summarized in Table 5. The mean and
tandard deviation of the classification rate from the module feature vector and the
eal part feature vector are shown.
92.60 2.78

95.74 2.41

feature vectors with an external database provided by Chan [53]. In
this database, EMG  signals were collected from 30 volunteers from
seven sites on the forearm and one site on the biceps brachii. Within
each trial, the volunteer repeats each limb motion four times, hold-
ing each motion for three seconds each time. A total of six trials
were completed in a session. In this paper, we only use the data
from one session of the fourth volunteer. Data from the first trial
Fig. 13. The user had to control the robot through muscle contraction and visual
feedback to confirm the correct movements. The task involved a sequence of
pronation, supination, flexion, extension movements interspersing with short rest
intervals.
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Fig. 14. The top four figures (a)–(d) show four EMG  signals generated by the subject with a congenital amputation below the elbow. The movements are pronation, supination,
fl cle; (c
j tract
c ow joi
t

i
c
9
s
1

T
C

exion and extension. EMG  signals are (a) pronator muscle; (b) brachioradialis mus
oint  coordinates of the Cyton robot arm. Joint coordinates are obtained by the sub
oordinate is from (e) the pronator–supinator functional muscles pairs, and the elb
o  rest state is made through an exponential decreasing function.

The correct classification rates over six trials are summarized
n Table 7. For the feature vector obtained from the module of the
omplex bispectrum matrix, the mean and standard deviation are

6.23% and 1.81, respectively, and for features obtained from the
quare of the real part of the bispectrum matrix are 95.73% and
.91, respectively.

able 7
orrect classification rates calculated using the external database (hand protocol).

Trials Feature vector obtained from
the module of the complex
bispectrum matrix

Feature vector obtained from
the square of the real part of
the complex bispectrum matrix

1 98.29 97.78
2  96.20 96.41
3  93.18 92.93
4  95.26 93.98
5  97.09 97.35
6  97.37 95.95

Mean % 96.23 95.73
SD 1.81 1.91
) biceps muscle and (d) triceps muscle. The bottom two  figures (e) and (f) show the
ion of the integrated RMS  of the agonist–antagonist muscles pairs. The wrist joint
nt coordinate is from (f) flexion–extension functional muscles pairs. The transition

3.3. Myoelectric Control of a robotic arm

The myoelectric control system based on features extracted
from the EMG  signal bispectrum has been shown in the block dia-
gram of Fig. 1.

The algorithms were executed in the real time operating sys-
tem QNX and the design specifications were discussed in Section
2.8. These specifications explain, among other things, how the joint
coordinates of the robot arm are calculated (Fig. 9, Section 2.8).

In an additional experimental session, three volunteers (two
able-bodied and one trained amputee volunteer) perform a task
in real-time. The experimental task is a sequence of pronation,
supination, flexion, and extension movements interspersed with
short rest intervals. As we  have already pointed out in Section 2.8,
the robot joints used in this experiment were the elbow and the
wrist. Two issues were evaluated for their influence on the system

suitability: (i) the correct (movement) classification rate, and (ii)
the system response delay.

All volunteers successfully completed the control task, espe-
cially the amputee volunteer, due to his experience with
myoelectric control systems (Fig. 13). A sequence of movements of
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our EMG  signals and the joints coordinates are shown in Fig. 14.  The
ovement classification rate of 92% was calculated from the vol-

nteers’ collected data. A classification error occurs more frequently
uring transitions between movements. These classification errors
re naturally low-pass filtered by the robot dynamics. Therefore,
t is unlikely that a robot could be sensitive to transitory mis-
lassifications [28]. From a practical point of view, the users of
he myoelectric control equipment have instantaneous visual feed-
ack. This is so because the system delay does not exceed 128 ms,
hereby avoiding any human–machine compatibility problems
hich may  deteriorate the safety and controllability of the system.

. Conclusions

In previous work, several authors have already proposed the use
f higher order statistics for off-line classification of EMG  signals.
ur approach differs from these earlier works in that we intro-
uce a bispectrum-based continuous classification of EMG  signals

n a hard real-time application, as the case of myoelectric con-
rol of a robot arm. The proposed myoelectric control scheme was
tructured in several stages and we use the most advantageous
echniques for EMG acquisition, data segmentation, bispectrum
stimation, feature extraction and reduction, classification and con-
rol. The data segmentation was implemented as done in several
ther works in the literature, allowing for continuous EMG  classi-
cation and for improving the performance of the system.

Two initial assumptions were empirically verified, (i) that EMG
ignals are not a purely Gaussian process, thus the third order statis-
ics are non-zero; and (ii) that HOS techniques cannot be discarded
hen the marginal probability distribution of the EMG  signals is

ymmetric. These now verified facts allowed us to extract discrim-
native features from the EMG  bispectrum, and thus achieving a
ood classifier.

This work is focused on three bispectrum estimators members of
he family of indirect class of conventional bispectrum estimators:

EAN, MED, and TRIMM estimators; and their ensemble averaging
ersions: MEAN-D, MED-D, and TRIMM-D estimators. On the fea-
ure extraction stage, the bispectrum was estimated by using the

ED-D cumulants estimator, offering robustness against outliers
nd low variance. This can be explained by the fact the underlying
istribution of zm,n(l) was approximately Laplacian and in this case,
he median is the maximum likelihood estimator.

The two feature vectors, defined by the quarter-root of the three
ythagorean means obtained from the module, and the square of
he real part of the complex bispectrum matrix, were analyzed and
ompared. The classification performance was validated with our
wn database of experiments, and with an external one. It was
ound that: (i) our results in real-time classification are quite simi-
ar to those obtained off-line by other authors; (ii) when comparing
he performance of the module and real part feature vectors, it was
bserved that the two averages of the mean rates were very similar
there was only a small decrease, less than 2% in the worst case for
eal part feature vector).

Also, all volunteers successfully completed the control task,
specially the amputee volunteer due to his experience with myo-
lectric control systems. The computational time was  low enough
o allow the real-time implementation; and the delay does not
xceed the segment time of 128 ms.

Finally, we conclude that the bispectrum-based method pro-
ides a good balance between complexity and performance for real
ime applications, even when the bispectrum is a complex matrix

unction.
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