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ABSTRACT: Gasoline is one of the largest-volume products
of the oil industry that yields 60%−70% of the total refinery
revenues. This work presents a novel continuous-time mixed-
integer nonlinear programming (MINLP) formulation for the
gasoline blend scheduling problem. It incorporates nonlinear
blending correlations for an improved prediction of key blend
properties, and nonlinear constraints for precisely tracking the
inventory level in product tanks when multiple blenders are
operated. The approach handles nonidentical blenders,
multipurpose tanks, sequence-dependent changeovers, limited
amounts of gasoline components, and multiperiod scenarios
with component flow rates changing with the period.
Operating rules for blenders and product/component tanks are also considered. A special model feature is the use of floating
slots dynamically allocated to time periods while solving the problem. An approximate mixed-integer linear programming
(MILP) formulation assuming ideal mixing provides a good initial point. By fixing the integer variables, the resulting nonlinear
programming (NLP) is then solved to find a near-optimal MINLP solution. Alternatively, a MINLP solver can be directly applied
to the original MINLP formulation. Eleven benchmark examples have been successfully solved using the two solution strategies
at rather low computational cost.

1. INTRODUCTION

Gasoline is one of the largest-volume products of the oil
industry that yields 60%−70% of the total refinery revenues.1

There are several important properties used to characterize the
gasoline quality. Such properties are specified to guarantee an
acceptable engine performance and the fulfillment of environ-
mental regulations. They include the octane numbers (ONs),
volatility, boiling range, sulfur and aromatics contents, and
viscosity. ONs measure the antiknock properties of trans-
portation fuels. Knocking occurs when a fuel/air mixture ignites
prematurely in the combustion chamber producing a knocking
sound, reducing the engine’s power, and causing mechanical
stress on the engine parts.2 The ON of a fuel is defined as the
percentage of iso-octane in a binary mixture with n-heptane that
exhibits a resistance to detonation similar to the fuel being
tested in a standard engine under standard conditions. On the
octane scale, iso-octane is assigned an ON of 100, and for n-
heptane, ON = 0. Two standard test procedures are used to
characterize the antiknock properties of fuels for spark engines:
the ASTM Standard D-2699 test, which gives the research
octane number (RON), and the ASTM Standard D-2700 test,
which provides the motor octane number (MON). The RON
represents the antiknock property under conditions of low
speed and frequent accelerations, while the MON measures the
engine performance under more-severe high-speed conditions.3

Other major properties that affect the engine performance
are the volatility and the boiling range, given in terms of the

Reid vapor pressure (RVP) and the ASTM distillation points,
respectively. A vapor pressure that is too high leads to vapor
stalling and motor locking, while very low RVP will bring
difficulties in the engine startup.2 The RVP of a fuel is its
absolute vapor pressure at 100 °F, as determined by the ASTM
Standard D-323 test method. In turn, the boiling range also
affects the engine during startup and driving, and is particularly
important for good performance during quick acceleration and
high-speed driving.2 Government regulations place a maximum
limit on the RVP to reduce the emission of volatile organic
compounds into the atmosphere. Other environmental
restrictions include maximum concentrations of aromatics,
olefin, sulfur, and oxygenates.
Gasoline is indeed a complex mixture of hydrocarbons,

additives, and blending agents. The feedstocks for the gasoline
pool come from various intermediate production units such as
catalytic reformers, alkylation and isomerization units, fluidized
catalytic cracking (FCC) units, and hydrocrackers. The low-
cost n-butane having a RON of 94 can also be a gasoline
component, but its volume fraction is limited by the maximum
RVP limit. Additives and blending agents are also incorporated
in the hydrocarbon mixture to improve the antiknock

Received: April 22, 2016
Revised: June 15, 2016
Accepted: June 23, 2016
Published: June 23, 2016

Article

pubs.acs.org/IECR

© 2016 American Chemical Society 7782 DOI: 10.1021/acs.iecr.6b01566
Ind. Eng. Chem. Res. 2016, 55, 7782−7800

pubs.acs.org/IECR
http://dx.doi.org/10.1021/acs.iecr.6b01566


performance and the stability of the gasoline. These oxygenated
compounds include octane enhancers, such as methyl tert-butyl
ether (MTBE) and tert-butyl alcohol (TBA), and alternative
fuels, such as ethanol and methanol, for economic and
environmental reasons.
Gasoline blending is the process of combining several

refinery streams of different compositions to make proper
amounts of on-spec blends to fulfill product demands. Several
different gasoline grades are usually produced in the gasoline
blending unit (GBU) of a refinery, with each grade meeting
some specific quality requirements. A schematic diagram of the
GBU is shown in Figure 1. The gasoline components are

usually stored in a set of dedicated storage tanks and supplied
to blenders at constant flow rates. At the same time, the
component tanks can be receiving additional amounts of
components from upstream production units.
Gasoline components can be blended in two different ways:

(a) the traditional batch-blending process where the feedstocks
are mixed in a blend tank, and (b) the tankless, inline blenders
mixing the intermediate streams using flowmeters and control
valves to obtain on-spec products.4 Usually, several blenders are
operated in a semicontinuous mode with each one making only
one product at a time. Inline blending allows one to save
money by reducing the blend time and avoiding the need for
mixing tanks. The blending task is particularly difficult because
some critical properties of the gasoline components like the
ONs and the Reid vapor pressure do not mix in an ideal
fashion, thus requiring nonlinear correlations for the accurate
prediction of the gasoline quality. The finished products
obtained in the blenders are discharged into a farm of
nondedicated product tanks from which customer orders
should be delivered to the market within specific time windows.
A large refinery can have more than 20 gasoline components.

Some of them are more expensive but meet many quality
specifications, while others are less expensive and fail to reach
most of the required properties by themselves. One of the
problem goals then is to choose the best proportion of each
one in the gasoline blends, to satisfy their quality specifications
and, at the same time, minimize the total feedstock cost (i.e.,
the optimal blend recipes). Quality giveaways arise when the
refinery makes products of higher quality than required, thus
reducing the profit margin. An octane giveaway of 0.1 can cost
several millions of dollars per year.5 In turn, reblending is
performed when the production fails to reach the quality
specifications. It may cause a significant cost in feedstocks, tank
space, and blending time, and, consequently, a reduction in the
overall capacity of the GBU.
The blending process should be performed, to maximize the

total profit by simultaneously minimizing feedstock costs,

quality giveaways, reblending operations, product changeovers
in blenders and product tanks, and penalties for tardy orders. In
other words, product recipes and the scheduling of blending
and delivery operations are to be optimized. This work
introduces a novel continuous-time mixed-integer nonlinear
programming (MINLP) formulation for the gasoline blending
problem. The proposed MINLP model is an extension of the
MILP approach introduced by Cerda ́ et al.,6 that now includes
nonlinear blending equations for an improved prediction of key
blend properties. Moreover, additional nonlinear constraints
are included to (i) precisely track the inventory level in finished
product tanks and, (ii) if necessary, force using the same recipe
at all production runs of each finished product. The MINLP
formulation is solved by using either a very efficient two-stage
MILP-NLP strategy or a MINLP solver. In both cases, an
approximate MILP problem representation is first solved to get
a good initial point for either the NLP or the MINLP solver.
The two solution strategies are able to determine near-optimal
solutions at rather low computational cost.

2. PREVIOUS CONTRIBUTIONS
Numerous contributions on the gasoline blend scheduling
problem have already been published. Some key differentiating
features can be used to characterize them, such as (a) blending
tanks or inline blenders for the mixing process; (b) single or
multiple identical/nonidentical blenders; (c) dedicated or
multipurpose product tanks; (d) fixed or variable product
recipes: (d) linear or nonlinear correlations relating ONs and
RVP with the blend composition; (e) nonsimultaneous or
simultaneous input and output flows in product tanks; (f)
constant or variable feedstock flow-rate from upstream units to
component tanks along the time horizon; (g) ignoring or
considering transition times and costs in blenders and product
tanks; and (h) discrete or continuous-time formulations.
Previous works that assume inline blenders are first reviewed.

Grismann and Gruhnn7 developed a two-level integrated
approach to coordinate the short-term scheduling of blending
operations with nonlinear recipe optimization. At the top level,
a nonlinear problem allows to determine blending recipes and
product volumes. After fixing them, the blend scheduling
problem modeled as an MILP is solved at the lower level. Jia
and Ierapetritou8 decomposed the overall refinery system into
three major domains: (a) crude oil unloading, blending and
processing; (b) production units yielding several feedstocks;
and (c) gasoline blending and delivery of final products. By
assuming fixed product recipes and a single blend header, they
developed a continuous-time event-based MILP formulation
for the simultaneous scheduling of gasoline blending and
distribution operations. Meńdez et al.9 proposed an iterative
method that consists of solving a sequence of MILP
formulations based on either a discrete-time or a slot-based
continuous-time representation. The iterative procedure aims
to preserve the model’s linearity even though variable recipes
and nonlinear mixing correlations are considered. The
approach assumes the operation of parallel identical blenders,
dedicated storage tanks, a constant feed component flow rate,
and simultaneous loading and unloading operations at every
product tank. Li et al.10 developed a continuous-time MILP
formulation based on process slots that incorporates new
features, such as the operation of nonidentical blenders and
multipurpose product tanks, multiperiod scenarios with
component flow-rates varying as piecewise constant functions
of time, and nonsimultaneous input and output flows in

Figure 1. Schematic of the gasoline blending unit.
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product tanks. By using linear mixing correlations, the problem
was modeled through an MILP that ensures a constant blend
rate per time slot. Because a production run may be extended
over two or more slots, a schedule adjustment procedure is
subsequently applied to get a constant blend rate during the
entire run. The approach of Li et al.10 was later improved by Li
and Karimi,11 who presented a multigrid continuous-time
MILP formulation based on unit slots instead of process slots
to get a better relaxed solution and a faster improvement of the
lower bound. More importantly, the MILP model explicitly
accounts for limited component inventories forcing the product
recipes to change along the time horizon. By including
additional constraints, simultaneous receipt/delivery operations
in product tanks can also be considered. More recently,
Castillo-Castillo and Mahalec12 modified to some extent the
MILP formulation of Li and Karimi11 by incorporating new
operational constraints, lower bounds on the objective function,
and additional equations transforming binary variables into
continuous ones. The proposed formulation accounts for
product-dependent setup times in blenders, minimum
production of blend runs and penalties for fulfilling the same
order from multiple tanks. When nonlinear correlations are
considered to estimate blend octane numbers, satisfactory
results were obtained by using global MINLP solvers. Castillo-
Castillo and Mahalec13 also developed a new three-level
approach that decomposes the blend scheduling problem into
three stages: blend recipe optimization, approximate schedul-
ing, and detailed scheduling. The first level determines the
blend recipes by solving a discrete time LP (or NLP) model,
the second level assumes fixed blend recipes to compute an
approximate schedule via a discrete-time MILP model, and the
third level uses a continuous-time MILP to exactly determine
the start/stop time of each operation. In this way, the solution
time is reduced by ∼3 orders of magnitude. Recently, Cerda ́ et
al.6 developed an efficient MILP continuous-time approach
based on the use of floating slots and linear mixing correlations
for predicting blend properties.
Some other contributions assumed the use of blend tanks for

the mixing process. Kolodziej et al.14 addressed the multiperiod
blend scheduling problem, which is an extension of the pooling
problem that accounts for time-varying feedstock supply and
product demand. The blending infrastructure consists of a
network of supply, blending, and demand tanks operating over
a time horizon divided into a set of time periods. Flows cannot
enter and exit a blending tank during the same time period. The
problem goal is to determine the optimal flows between tanks
to maximize the total profit while meeting the product demands
within the specified composition limits. By using a radix-based
discretization technique that was introduced by Teles et al.,15

the MINLP formulation reduces to an approximate MILP that
is incorporated into a heuristic solution procedure and in two
rigorous global optimization methods. Castro16 developed a
new MINLP formulation for the multiperiod pooling problem
that uses individual flows and split fractions to generate
nonconvex bilinear terms better handled by a decomposition
algorithm. In this way, global optimization solvers for MINLP
can provide the best solutions of pooling problems. More
recently, Lotero et al.17 proposed an alternative formulation
based on generalized disjunctive programming (GDP) that
includes redundant constraints to improve the linear relaxation
of the problem. In addition, an efficient solution procedure
decomposes the MINLP model into two levels. The first level
or master problem is an MILP relaxation of the original

MINLP, and the second level is a smaller MINLP in which
some of the binary variables have been fixed. The lower-level
subproblem provides a rigorous lower bound when a feasible
solution of the MINLP is found. The two subproblems are
iteratively solved until the gap between the upper and the lower
bound is closed.

3. ESTIMATING BLEND PROPERTIES USING
NONLINEAR CORRELATIONS

Key blend properties that mostly determine the optimal
product recipes are the octane numbers (ONs), i.e., the RON
and MON properties. Assuming an ideal mixing, the octane
number of the gasoline components will blend linearly on a
volumetric basis, as stated by eq 1. S is the set of available
gasoline components, ws is the volumetric fraction of
component s in the blend, and ONs is the octane number of
component s. Ideal mixing implies no interaction between
gasoline components.

∑=
∈

wON ON
s

s s
S

blend
(1)

However, ONs do not blend linearly. Positive or negative
deviations from the value predicted by eq 1 usually arise. As
stated by Rusin et al.,18 the mixing of an olefin and a paraffin,
both featuring RON = 90, may result in a blend with RON =
95. The mixture of an olefin and a paraffin usually presents
positive deviations from the linear blending rule, while aromatic
and olefin blends show slightly negative deviations. As a result,
several empirical blending models that account for the
nonlinear dependence of the octane numbers with the blend
composition have been proposed in the literature. There are
several characteristics that are desirable in a blending model.
The most important are predictive accuracy, simplicity, and the
model ability to remain accurate over a quality range beyond
the one used to estimate the model parameters. Moreover, a
good blending model should not require a large dataset to be
periodically updated. Through better predictions, gasoline
reblending can be avoided and millions of dollars per year
can be saved.
The simplest nonideal blending model is based on fictitious

octane numbers (BONs) of gasoline components that blend
linearly on a volumetric basis.3 Such BON values are derived
from regression analysis of a small blend dataset. The approach
has limited utility, because it remains accurate only for blends
with similar components and quality range of the data used to
estimate the BONs. Values of the BONs for some typical
gasoline components can be found in Gary and Handwerk.3

∑=
∈

wON BON
s

s s
S

blend
(2)

A more reliable method is the nonlinear Ethyl RT-70 scheme
proposed by Healy et al.19 It is one of the pioneer models
available in the literature that is usually adopted as a benchmark
to evaluate the performance of new gasoline blend correlations.
Nonlinearities are modeled as functions of (i) the olefin (Os)
and aromatics (As) contents of every pure component s, and
(ii) the blend component sensitivity, given by the difference
(RONs − MONs). Each of these factors appears in different
nonlinear terms, with Os and As given on a volumetric basis.
The Ethyl model comprises a total of six empirical parameters
(a1−a6) for computing the RON and MON values of each
blend. For blends outside the dataset used to estimate the
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parameters, the standard deviations of the prediction errors
were found to be 0.92 for RON and 0.61 for MON. Other
accurate methods comprise a higher number of parameters and
require a larger experimental cost to update the blending model
by least-squares analysis. Accounting for its accuracy and
simplicity, the nonlinear Ethyl model is one of the methods that
has been adopted to evaluate the RON and MON properties in
the proposed MINLP formulation. The Ethyl model equations
are given in Section 5.2.
At approximately the same time as the Ethyl method, simple

nonlinear correlations for predicting the octane numbers of
gasoline blends were also proposed by Stewart.20 Both models
attributed most of the blending nonlinearity to the olefin
content of the feedstocks. In addition to the octane numbers
and the olefin content of the feedstocks, the Stewart’s
correlations also include the olefin content of the blend
(Oblend), which is computed as the volumetric average of olefin
contents of the selected gasoline components:

∑=
∈

O wO
s

s s
S

blend

Besides, Vs is the volume of component s in the blend. The
Stewart model includes four parameters that were determined
by using least-squares analysis on 102 blends. The proposed
MINLP formulation was also tested using the Stewart
correlations (eqs 3−5). Values of the parameters a ̅ and c ̅ for
estimating RONblend and MONblend are (0.0414, 0.01994) for
RONblend and (0.130, 0.0970) for MONblend.

=
∑ + ̅ −

∑
∈

∈

V D c O O

V D
RON

[RON ( )]s s s s s

s s s

S

S
blend

blend

(3)

=
∑ + ̅ −

∑
∈

∈

V D c O O

V D
MON

[MON ( )]s s s s s

s s s

S

S
blend

blend

(4)

= ̅ −
− ̅ −

D
a O O

a O O
( )

1 exp[ ( )]s
s

s

blend

blend (5)

Besides the octane numbers, the other critical property that
blends nonlinearly is the Reid vapor pressure (RVP), which is
defined by the ASTM Standard D-323-56 method. The RVP
gives an indication of the volatility of a gasoline blend. When
determining the optimal blend recipe, the maximum RVP limit
restricts the amount of n-butane (a relatively inexpensive source
of octane rating) that can be added to the gasoline blend.3 The
maximum RVP is especially important under limited amounts
of the preferred gasoline components, such as the fluidized
catalytic cracking (FCC) gasoline, the reformate stream (REF),
and the light straight run (LSR) naphtha. In those cases, the
optimal blend recipe has a tendency to include increasing
amounts of n-butane until reaching the RVP upper bound. The
blending index method is the simplest empirical nonlinear
model developed by the Chevron Research Company to
estimate the RVP of gasoline blends.3 It is given by eq 6, which
only requires knowing the RVP values of the pure components
and the blend composition on a volumetric basis.

∑=
∈

wRVP RVP
s

s s
S

blend
1.25 1.25

(6)

Other approaches for predicting the RVP of gasoline blends
include the nonlinear correlations of Stewart21 and the

interaction method of Morris,22 which can also be applied to
RVP blending by replacing octane numbers by RVPs.

4. PROBLEM STATEMENT
The gasoline recipe and blend scheduling problem can be
defined as follows.
Given: (a) a set of dedicated tanks for gasoline components,

together with their maximum capacities (scaps) and initial
inventories (iiss) for each one; (b) a set of blend headers b ∈ B
working in parallel, their processing rate limits [rbb,p

min, rbb,p
max] and

the final products p ∈ P that each one can process; (c) a set of
gasoline components s ∈ S, and their critical properties (sprg,s)
and unit costs (scosts); (d) a set of demanded gasoline grades p
∈ P and their quality specifications given by the allowable range
[pprg,p

min, pprg,p
max] for the critical properties g ∈ G, and the

limiting proportions [vcs,p
min, vcs,p

max] of the gasoline components
in the finished products; (e) a set of production runs i ∈ I
performing in the blend headers with a minimum length lbb,p

min;
(f) a set of customer orders r ∈ R, the requested product, the
order size qr, the delivery time window [atwr, btwr] and the
order delivery rate rdrr for each one; (g) a set of multipurpose
product tanks j ∈ J, the tank capacity (pcapj), the subset of final
products that can store (Pj), the current stored product, the
initial inventory (iijp,j) and the maximum delivery rate (pdrj);
(h) a time horizon composed of several time periods k ∈ K
with different constant component feed rates svrs,k over each
period.
Determine: (1) the allocation of production runs to blenders;

(2) the gasoline grade, the selected recipe and the amount
yielded by each production run; (3) the short-term schedule of
blending operations in every blender; (4) the sequence of
gasoline grades that are stored in each product tank; (5) the
allocation of production runs to product tanks; (6) the
schedule of delivery operations from each product tank; and
(7) the inventory profiles in component and product tanks over
the time horizon, in such a way that all customer orders are
fully satisfied while minimizing quality giveaway, off-spec
products, total component cost, penalties on tardy orders,
and changeover costs in blenders and product tanks.
In this work, the management of the gasoline blending unit

also accounts for a series of operational rules for blenders and
tanks. Such important rules are as follows:

(i) every blender can process several products over the time
horizon, but one after another;

(ii) after starting the processing of a gasoline product, a
blender should operate for some minimum time before
stopping or switching to another product;

(iii) a component tank may feed multiple blenders at the
same time;

(iv) a component tank can receive flows from upstream
processes and feed blenders at the same time;

(v) a blender can, at most, feed a single product tank at any
time instant;

(vi) a product tank cannot receive some final product from a
blender and simultaneously deliver a customer order;

(vii) a customer order can be satisfied by delivering the
requested product from different product tanks; and

(viii) a product tank can deliver several orders at the same
time.

In addition to the operational rules, a series of assumptions
already proposed in previous works have been used to model
the problem. They can be summarized as follows:
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(a) every blending run should occur within a single time slot;
(b) mixing in every blender is perfect;
(c) the product changeover time and cost in blenders are

sequence-dependent;
(d) during a time slot, every product tank can, at most,

receive the production from a single blender;
(e) the product changeover time in product tanks is

negligible;
(f) each order involves a single product and must be

delivered within the time horizon;
(g) loading and delivery operations in product tanks should

occur in different time slots;
(h) delivery of a customer order from a product tank should

be greater than a threshold value, and it must occur
within a single time slot and begin at the starting time of
the assigned slot.

5. THE MINLP MATHEMATICAL MODEL
The proposed MINLP formulation is based on the use of
ordered sets of production runs (I) and floating time slots (T)
with variable length. The elements of the set I are
chronologically ordered with the production run (i + 1)
never beginning before starting run i. Similarly, the time slot t ∈
T starts at the completion time of slot (t −1). Floating time
slots t ∈ T and production campaigns i ∈ I are not preassigned
to time periods, because it is somewhat difficult to know a priori
the number of them required in each period. They can be
viewed as floating elements that can move from one period to
another during the solution procedure. Therefore, unique sets
of time slots and productions runs are defined, and the
assignment of them to time periods is optimally made by the
model.
5.1. Model Variables. Model decision variables can be

gathered according to their purpose. They are defined for
sequencing operations in the blenders, and allocating blending
runs and order deliveries to product tanks and time slots. The
arrangement of blending operations in the blend headers is
handled through three different sets of binary variables: WIi,k,
assigning production runs to time periods; WBi,b, allocating
production runs to blenders b ∈ B; and YBi,p, selecting the final
product p ∈ P yielded by each production run. The second
group of 0−1 variables (XIJi,j,t, XPJp,j,t) is defined to allocate
production runs and final products to product tanks and time
slots. In combination with YBi,p, the assignment variables XIJi,j,t
and XPJp,j,t select the destination for the volume of product
generated by run i during the time slot t. The third group
involves the 0−1 variables XRJr,j,t and XDJp,j,t that assign
customer orders to product tanks and time slots.
The continuous variables associated with every production

run i include QBi,p representing the volume of final product p,
(SBi, CBi) denoting the initial and final times, and LBi,b,p
standing for the length of run i. If run i is allocated to time
slot t and (STt, CTt) represent the initial and final times of slot
t, then the following conditions must hold: SBi ≥ STt and CBi
≤ CTt. To track the inventory levels in component tanks, the
proposed model includes the continuous variables (SINIs,i,
SINCs,i) standing for the inventory of component s at the start
and end times of run i, SINFs denoting the inventory of
component s at the end of the scheduling horizon, and USs,i,
indicating the amount of component s ∈ S assigned to run i.
Similarly, the inventory levels in product tanks are controlled by
the variables: PINVp,j,t standing for the inventory of final

product p in tank j ∈ Jp at the end of slot t, QPJi,p,j,t denoting
the amount of product p from run i that is discharged into tank
j ∈ Jp during the slot t, and UPp,j,t representing the amount of
product p unloaded from product tank j during time slot t. It is
assumed that an order delivery assigned to time slot t always
begins at its initial time STt. Relative to an order delivery r,
there are two continuous variables: URr,j,t, representing the
amount of product delivered from tank j for order r within the
time slot t, and CRr,j,t, denoting the final time of that delivery.

5.2. Model Constraints. The gasoline blend optimization
problem comprises four types of constraints related to (i) the
scheduling of production runs in the blend headers, (ii) the
fulfillment of quality specifications and demands of the final
products, (iii) the tracking of inventory levels in component
and product tanks to avoid overloading and running-out
conditions, and (iv) the scheduling of nonsimultaneous receipt
and delivery operations at multipurpose product tanks. Most of
the constraints are linear. Nonlinearities just appear in
equations of type (ii) and (iii). Nonlinear correlations are
used to better estimate key gasoline blend properties such as
the RON, the MON, and RVP. When multiple blenders are
operated, nonlinear terms are to be included in constraints of
type (iii) to exactly monitor the inventory level in component
tanks. In some cases, the same recipe is to be adopted in all
production campaigns of a final product. Additional nonlinear
equations are necessary to guarantee that condition.

5.2.1. Production Runs Performed in Blenders. 5.2.1.1. A
Production Run i Should, At Most, Be Performed within a
Single Time Period k. According to eq 7, a production run
should, at most, be performed within a single time period.
Therefore, ∑k∈K WIi,k = 0 characterizes a fictitious run i that
was never performed:

∑ ≤ ∀ ∈
∈

i IWI 1
k

i k
K

,
(7)

5.2.1.2. A Production Run i Can, At Most, Be Assigned to a
Single Blender. Using eq 8, a production run should, at most,
be assigned to a single blender:

∑ ∑= ∀ ∈
∈ ∈

i IWB WI
b

i b
k

i k
B K

, ,
(8)

5.2.1.3. A Production Run Can, At Most, Yield a Single
Product. Using eq 9, a production run yields, at most, a single
final product:

∑ ∑= ∀ ∈
∈ ∈

i IYB WB
p

i p
b

i b
P B

, ,
(9)

5.2.1.4. Definition of the Continuous Variable WBPi,b,p.
The continuous variable WBPi,b,p ∈ [0,1] identifies the final
product p yielded by production run i in blender b. Its value is
determined by eqs 10−12.

≥ + − ∀ ∈ ∈ ∈i p bI P BWBP WB YB 1 , , pi b p i b i p, , , ,

(10)

∑ ≤ ∀ ∈ ∈
∈

i pI PWBP YB ,
b

i b p i p
B

, , ,

p (11)

∑ ≤ ∀ ∈ ∈
∈

i bI BWBP WB ,
p

i b p i b
P

, , ,

b (12)
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5.2.1.5. Length of a Production Run. Using eq 13, the
length of a nonfictitious production run yielding product p in
blender b should have a value within the range [lbb,p

min, lbb,p
max]:

≤ ≤ ∀ ∈ ∈ ∈i p bI P Blb WBP LB lb WBP , , pb p i b p i b p b p i b p,
min

, , , , ,
max

, ,

(13)

5.2.1.6. Volume of Final Product Yielded by a Production
Run. The continuous variable QBi,p stands for the amount of
final product p yielded by run i, and its value is given by eq 14:

∑ ∑≤ ≤ ∀ ∈ ∈
∈ ∈

i pI Prb LB QB rb LB ,
b

b p i b p i p
b

b p i b p
B B

,
min

, , , ,
max

, ,

p p

(14)

5.2.1.7. Ordered Execution of Production Runs in Blenders.
Using eq 15, a generic run i can be performed only if the
preceding run (i − 1) has already been assigned to a blend
header, i.e., ∑b∈B WB(i−1),b = 1. Therefore, the last elements of
I are reserved for fictitious runs.

∑ ∑≤ ∀ − ∈ ∈
∈ ∈

− i i bI BWB WB ( 1), ,
b

i b
b

i b
B B

, ( 1),

(15)

5.2.1.8. Sequencing Production Runs in Each Blender.
Using eq 16a, a production run i′ can never start before
completing run i if i < i′ and both runs have been assigned to
the same blender. Moreover, if run i is assigned to time period
k, it should be performed within the time limits of period k, i.e.,
(llimk, ulimk). The starting and completion times of production
run i then are determined by the set of equations 16a−16d. The
parameter τb,p,p′ is the sequence-dependent changeover time in
blender b.

τ≤ − + − −

∀ ′ ∈ ′ > ′ ∈ ∈ ∩

′ ′ ′ ′

′

h

i i i i p p P bI B B

CB SB (2 WBP WBP )

, ( ), , , p p

i i b p p i b p i b p, , , , , ,

(16a)

∑≤ ∀ ∈
∈

i ICB ulim WIi
k

k i k
K

,
(16b)

∑≥ ∀ ∈
∈

i ISB llim WIi
k

k i k
K

,
(16c)

∑ ∑= + ∀ ∈
∈ ∈

i ICB SB LBi i
p b

i b p
P B

, ,

p (16d)

To facilitate the tracking of component and final product
inventories, a production run (i + 1) can never begin before
starting the preceding run i, regardless of the blenders assigned
to both runs. In addition, a production run i can never finish
after completing run (i + 1). Both conditions are redundant if
runs i and (i + 1) are assigned to the same blender.

≤ ∀ ∈+ i ISB SBi i 1 (17a)

≤ ∀ ∈+ i ICB CBi i 1 (17b)

If the changeover time is not sequence-dependent, eq 16a
can be replaced by the simpler eq 16a′:

τ≤ − + − −

∀ ′ ∈ ′ > ∈
′ ′h

i i i i bI B

CB SB (2 WB WB )

, ( ),

i i b i b i b, ,

(16a′)

5.2.1.9. Transition Costs in Blenders. The continuous
variable TRBi,b, which is given by eqs 18a and 18b, denotes
the cumulative transition cost at blender b ∈ B after performing

production run i. In eq 18a, the parameter ctrbb,p,p′ denotes the
sequence-dependent transition cost in blender b and MB is a
relatively large number. As stated by eq 18c, the maximum
value of TRBi,b for all i ∈ I provides a lower bound for the total
transition cost (TTRBb) in blender b.

≥ + − − −

∀ ′ ∈ < ′ ∈ ∩ ′ ∈ ≠ ′

′ ′ ′ ′

′

M

i i i i b p p p pI B B P

TRB TRB ctrb (2 WBP WBP )

( , ) ( ), , , ( )p p

i b i b b p p i b p i b p, , , , B , , , ,

(18a)

≤ ∀ ∈ ∈M i bI BTRB WB ,i b i b, B , (18b)

≥ ∀ ∈ ∈i bI BTTRB TRB ,b i b, (18c)

If the transition cost has a constant value (ctrb), a lower
bound on the total transition cost in blenders is given by eq 19,
which assumes a single run per product.

∑ ≥ −
∈

BPTTRB ctrb[card( ) card( )]
b

b
B (19)

5.2.2. Overall Fulfillment of Final Product Demands. The
parameter demp denotes the total demand of final product p to
be satisfied during the scheduling horizon, given by eq 20.
Because part of that demand can be fulfilled by making use of
the initial inventory of product p, then eq 21 states that the
production of product p should be large enough to cover its net
demand over the time horizon.

∑= ∀ ∈
∈

q p Pdemp
r

r
R p (20)

∑ ∑≥ − ∀ ∈
∈ ∈

p PQB dem iij
i

i p p
j

p j
I J

, ,
p (21)

5.2.3. Monitoring the Inventory of Component s at the
Start/End Times of a Production Run. 5.2.3.1. Total Amount
of Gasoline Components Assigned to Each Production Run.
The continuous variable QSs,i,p represents the amount of
component s ∈ S assigned to run i producing product p.
According to eq 22, the total amount of gasoline components
assigned to run i should be equal to the production of the final
product yielded by run i.

∑ = ∀ ∈ ∈
∈

i pI PQS QB ,
s S

s i p i p, , ,
(22)

5.2.3.2. Amount of Each Individual Gasoline Component
Assigned to a Production Run. Equation 23 provides the
amount of component s allocated to run i yielding product p,
i.e., QSs,i,p. Then, gasoline recipes are strictly determined by
continuous variables. There is no 0−1 variable performing the
selection of the blend components.

≤ ≤

∀ ∈ ∈ ∈s i pS I P

vc QB QS vc QB

, ,

s p i p s i p s p i p,
min

, , , ,
max

,

(23)

5.2.3.3. Total Amount of Component s Consumed by
Blending Runs up to Time SBi. By the definition of the set I,
those production runs i′ starting before run i and belonging to
the subset INPi = {i′ ∈ I|i′ < i − card(B) + 1} are completed
before beginning run i. They cannot be executed in parallel
with run i. Therefore, the total amount of component s
assigned to those production campaigns i′ ∈ INPi was already
consumed at time SBi. Instead, the preceding runs i′ belonging
to the subset IPi = {i′ ∈ I|i′ > i − card(B)} can be executed in
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parallel with run i if more than one blender is operated, i.e.,
card(B) > 1. Then, they can be totally or partially overlapped
with run i. Consequently, the amounts of components allocated
to runs i′ ∈ IPi may be partially consumed (or not consumed at
all) at time SBi. Assuming a constant production rate over the
entire run i, the consumption rate of component s during
campaign i (RSi,s) is given by the nonlinear constraint given as
eq 24. In turn, eq 25 provides a lower bound for the continuous
variable QSPs,i′,i representing the amount of component s
consumed by run i′ ∈ IPi after time SBi. The difference (CBi′ −
SBi) is the overlap in time between runs i′ and i. If the
continuous variable USPs,i denotes the total amount of
component s consumed up to time SBi, then its value given
by eq 26 can be obtained by simply subtracting (∑i′∈IPi

QSPs,i′,i) from the total amount of component s assigned to
the preceding runs i′ < i. When a single blender is available, IPi
is an empty set.

∑ ∑ ∑= ∀ ∈ ∈
∈ ∈ ∈

i sI SQS RS ( LB ) ,
p

s i p s i
p b

i b p
P P B

, , , , ,

p

(24)

≥ − ∀ ∈ ′ ∈ ∈′ ′ ′ i i sI IP SQSP RS (CB SB ) , ,s i i s i i i i, , ,

(25)

∑ ∑ ∑= −

∀ ∈ ∈

′∈
′< ∈

′
′∈

′

i sI S

USP QS QSP

,

s i
i
i i p

s i p
i

s i i
I P IP

, , , , ,
i

(26)

5.2.3.4. Total Amount of Component s Consumed by the
Blending Runs up to Time CBi. Because of the definition of the
set I, all the production runs i′ that precede run i (i′ < i) have
already finished at the completion time of run i. The amounts
of gasoline components assigned to them then have been
totally consumed at time CBi. However, succeeding runs
belonging to the subset ISi = {i′ ∈ I| i < i′ < i + card(B)} can be
performed in parallel with run i if multiple blenders are
available. They can be partially or completely overlapped in
time with run i. As a result, the amount of component s
allocated to runs i′ ∈ ISi can be either partially or totally
consumed at time CBi. Equation 27 provides a lower bound for
the value of the continuous variable QSSs,i,i′, denoting the
amount of component s consumed by run i′ ∈ ISi up to time
CBi. The total amount of component s consumed up to time
CBi, given by the continuous variable USSs,i, is obtained
through eq 28 by summing up those amounts consumed by
production runs i′ ≤ i and by all campaigns i′ ∈ ISi.

≥ − ∀ ∈ ′ ∈ ∈′ ′ ′ i i sI SQSS RS (CB SB ) , IS ,s i i s i i i i, , ,

(27)

∑ ∑ ∑= +

∀ ∈ ∈

′∈
′≤ ∈

′
′∈

′

i sI S

USS QS QSS

,

s i
i
i i

p
s i p

i
s i i

I P IS
, , , , ,

i

(28)

5.2.3.5. Inventories of Component s at the Start/End
Times of a Production Run. The inventory level of every
component should be monitored to avoid overloading and
running-out conditions at the start/end time of every
production run. The continuous variables SINIs,i and SINCs,i
represent the inventory levels of component s at the start and
completion times of run i, respectively. Equation 29a provides
the inventory of component s at the start of run i. Its value must

be lower than the capacity of the tank assigned to component s
(scaps) to avoid overloading. Assuming that production run i is
assigned to time period k (i.e., WIik = 1), then eq 29a accounts
for (i) the initial inventory of component s; (ii) the amount of
component s loaded into the assigned tank over the periods k′
< k; (iii) the amount of component s loaded during the period
k up to the start time of run i; and (iv) the cumulative amount
of component s (USPs,i) delivered from the assigned tank to the
blenders up to time SBi. In eq 29a, the continuous variable
LKSi,k denotes the length of the time interval between the
beginning of period k and the start time of run i. Its value is
given by eqs 29b and 29c. Evidently, LKSi,k is equal to zero if
run i is not assigned to period k.

∑ ∑= + +

− ≤ ∀ ∈ ∈

∈ ′∈
′<

′ ′hk

s iS I

SINI iis [( svr )WI svr LKS ]

USP scap ,

s i s
k k

k k

s k k i k s k i k

s i s

K K
, , , , ,

, (29a)

≥ − + −

∀ ∈ ∈

hk

i kI K

LKS SB llim (1 WI )

,

i k i k k i k, ,

(29b)

≤ ∀ ∈ ∈hk i kI KLKS WI ,i k k i k, , (29c)

Similarly, eq 30a provides the inventory of component s at
the completion of run i given by the continuous variable
SINCs,i. In this case, LKFi,k denotes the length of the time
interval between the beginning of the assigned period k and the
completion of run i and its value is given by eqs 30b and 30c.
To avoid running-out conditions for component s, the
condition SINCs,i ≥ 0 is to be satisfied at the completion of
any run i.

∑ ∑= + +

− ∀ ∈ ∈

∈ ′∈
′<

′ ′hk

s iS I

SINC iis [( svr )WI svr LKF ]

USS ,

s i s
k k

k k

s k k i k s k i k

s i

K K
, , , , ,

, (30a)

≤ − ∀ ∈ ∈i kI KLKF CB llim WI ,i k i k i k, , (30b)

≤ ∀ ∈ ∈hk i kI KLKF WI ,i k k i k, , (30c)

Besides, the inventory of component s at the horizon end
(SINFs) is determined by eq 30d. SINFs must never exceed the
capacity of the assigned tank (scaps).

∑ ∑ ∑= + − ≤

∀ ∈

∈ ∈ ∈
hk

s S

SINF iis svr QS scaps s
k

k s k
i p

s i p s
K I P

, , ,

(30d)

5.2.4. Fulfillment of the Gasoline Quality Specifications.
5.2.4.1. Controlling the Value of Every Key Property g in the
Final Product p. Let us first consider the gasoline properties
that blend linearly. Equations 31a and 31b seek to make on-
spec final products within the desired limits {pprg,p

min, pprg,p
max} of

any property g that blends linearly on either volume or weight
base. In eq 31b, ρs represents the density of component s. The
set GL

V comprises the properties that blend linearly on a volume
basis, while GL

W is the set of properties linearly blended on a
weight basis.

∑≤ ≤

∀ ∈ ∈ ∈
∈

i p gI P G

ppr QB spr QS ppr QB

, ,

g p i p
s

g s s i p g p i p
S

L
V

,
min

, . , , ,
max

,

(31a)
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∑ ∑

∑

ρ ρ

ρ

≤ ≤

∀ ∈ ∈ ∈
∈ ∈

∈
i p gI P G

ppr ( QS ) spr QS ppr

( QS ) , ,

g p
s

s s i p
s

g s s s i p g p

s
s s i p

S S

S
L
W

,
min

, , . , , ,
max

, ,
(31b)

5.2.4.2. Model Equations for Predicting and Monitoring
Nonlinear Properties of Gasoline Blends. As explained
previously, the research and motor octane numbers (RON,
MON) are not accurately estimated by the volumetric average
of the component octane numbers because they blend in
nonideal fashion. Nonlinear models are needed to improve
prediction of octane numbers. Let us introduce the continuous
variables PRONi,p and PMONi,p to represent the values of the
RON and MON properties of the final product p yielded by the
blending run i. In turn, VFRs,i,p represents the volumetric
fraction of gasoline component s in blend p provided by run i.
Moreover, the parameters srons and smons denote the research
and motor octane numbers of component s, while Os and As
represent its olefin and aromatic content. Using the Ethyl RT-
70 method introduced by Healy et al.,19 eqs 32−35 provide the
values of PRONi,p and PMONi,p. In eqs 32−35, nonlinear terms
that are functions of the sensitivity (SRONs − SMONs), and
the olefin and the aromatic content of the components are
added to the volumetric average of the RON/MON values of
the gasoline components. The continuous variable VFRs,i,p
represents the volume fraction of component s in blend p
produced by run i.

= ̅ + − ̅ ̅ + − ̅

+ − ̅ ∀ ∈ ∈

r a r s a O O

a A A i pI P

PRON (rs ) ( )

( ) ,

i p i p i p i p i p i p i p

i p i p

, , 1 , , , 2
2

, ,
2

3
2

, ,
2

(32)

= ̅ + − ̅ ̅ + − ̅

+
− ̅

∀ ∈ ∈
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m a m s a O O

a
A A

i pI P

PMON (ms ) ( )

100
,

i p i p i p i p i p i p i p

i p i p

, , 4 , , , 5
2

, ,
2

6

2
, ,

2 2

(33)

∑= ∀ ∈ ∈ ∈
′∈

′ s i pS I PQS VFR ( QS ) , ,s i p s i p
s

s i p
S

, , , , , ,

(34)

∑̅ = ∀ ∈ ∈
∈

r i pI PVFR SRON ,i p
s

s i p s
S

, , ,
(35a)

∑̅ = ∀ ∈ ∈
∈

m i pI PVFR SMON ,i p
s

s i p s
S

, , ,
(35b)

∑̅ = − ∀ ∈ ∈
∈

s i pI PVFR (SRON SMON ) ,i p
s

s i p s s
S

, , ,

(35c)

∑= −

∀ ∈ ∈
∈

i pI P

rs VFR (SRON SMON )SRON

,

i p
s

s i p s s s
S

, , ,

(35d)

∑= −

∀ ∈ ∈
∈

i pI P

ms VFR (SRON SMON )SMON

,

i p
s

s i p s s s
S

, , ,

(35e)

∑̅ = ∀ ∈ ∈
∈

O O i pI PVFR ,i p
s

s i p s
S

, , ,
(35f)

∑̅ = ∀ ∈ ∈
∈

O O i pI PVFR ,i p
s

s i p s
S

,
2

, ,
2

(35g)

∑̅ = ∀ ∈ ∈
∈

A A i pI PVFR ,i p
s

s i p s
S

, , ,
(35h)

∑̅ = ∀ ∈ ∈
∈

A A i pI PVFR ,i p
s

s i p s
S

,
2

, ,
2

(35i)

Values for the model coefficients a1−a6 reported by Healy et
al.19 are a1 = 0.03224, a2 = 0.00101, a3 = 0, a4 = 0.04450, a5 =
0.00081, and a6 = −0.0645. In this work, we use the Chevron
blending index method to predict the Reid vapor pressure
(RVP).3 The RVP value for any product p yielded by blending
run i (PRVPi,p) is estimated by a nonlinear mixing rule given by
eq 36. The parameter srvps is the RVP of the gasoline
component s.

∑= ∀ ∈ ∈
∈

i pI PPRVP VFR (srvp) ,i p
s

s i p s
S

,
1.25

, ,
1.25

(36)

Note that if all the production runs for product p should use
the same recipe given by VFRs,p, then eq 34 should be replaced
by the nonlinear eq 37. In addition, VFRs,i,p must be substituted
by VFRs,p in eqs 35a−35i.

∑= ∀ ∈ ∈ ∈
′∈

′ s i pS I PQS VFR ( QS ) , ,s i p s p
s

s i p
S

, , , , ,

(37)

To obtain on-spec gasoline blends, the values of the
nonlinear properties PRONi,p, PMONi,p, and PRVPi,p should
satisfy the constraints described by eqs 38a−38c.

≤ ≤

∀ ∈ ∈i pI P

pron YB PRON pron YB

,

p i p i p p i p
min

, ,
max

,

(38a)

≤ ≤

∀ ∈ ∈i pI P

pmon YB PMON pmon YB

,

p i p i p p i p
min

, ,
max

,

(38b)

≤ ≤ ∀ ∈ ∈i pI Pprvp YB PRVP prvp YB ,p i p i p p i p
min

, ,
max

,

(38c)

The intervals (pronp
min, pronp

max), (pmonp
min, pmonp

max), and
prvpp

min, prvpp
max) stand for the specified allowable ranges of

variables PRONi,p, PMOMi,p, and PRVPi,p, respectively.
5.2.5. Allocating the Blend Production to Final Product

Tanks and Time Slots. 5.2.5.1. Assigning Production Runs to
Storage Tanks. By eq 39, a production run should, at most, be
allocated to a single product tank and performed within a single
time slot.

∑ ∑ ∑= ∀ ∈
∈ ∈ ∈

i IXIJ WB
t j

i j t
b

i b
T J B

, , ,
(39)

In turn, eq 40 states that a product tank can, at most, receive
a single production run within every time slot.

∑ ≤ ∀ ∈ ∈
∈

j tJ TXIJ 1 ,
i

i j t
I

, ,
(40)

5.2.5.2. Assigning Storage Tanks to Final Products during
Any Time Slot. Using eq 41, a storage tank should be allocated
to a single product at every time slot.
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∑ = ∀ ∈ ∈
∈

t jT JXPJ 1 ,
p

p j t
P

, ,
j (41)

Moreover, a campaign of product p (i.e., YBi,p = 1) must be
discharged into a storage tank assigned to that product.
Assuming that run i yields product p, then the variable XIJi,j,t
can be equal to one only if XPJp,j,t = 1 by eq 42.

+ ≤ +

∀ ∈ ∈ ∈ ∈i j p tI J P T

XIJ YB 1 XPJ

, , ,j

i j t i p p j t, , , , ,

(42)

5.2.5.3. Amount of Product Loaded into a Storage Tank
during a Time Slot. The continuous variable QPJi,p,j,t stands for
the amount of product p from run i discharged into storage
tank j ∈ Jp during the time slot t. As specified by eqs 43a and
43b, its value is zero if either production run i does not yield
product p (i.e., YBi,p = 0) or run i is not assigned to tank j
during the slot t (i.e., XIJi,j,t = 0). Otherwise, it is equal to QBi,p
by eq 43c.

≤ ∀ ∈ ∈ ∈ ∈i j p tI J P TQPJ dem XIJ , , ,ji p j t p i j t, , , , ,

(43a)

∑ ∑ ≤ ∀ ∈ ∈
∈ ∈

p iP IQPJ dem YB ,
t j

i p j t p i p
T J

, , , ,

p (43b)

∑ ∑ = ∀ ∈ ∈
∈ ∈

p iP IQPJ QB ,
t j

i p j t i p
T J

, , , ,
p (43c)

5.2.5.4. Product Transition Cost in Storage Tanks. The
positive variable TRJp,j,t represents the changeover cost in the
product tank j when product p stored during the slot t is
replaced by another product p′ ≠ p in the next slot (t + 1). The
value of TRJp,j,t is given by eq 44a, where the parameter ctrjj
denotes the product changeover cost in tank j.

∑≥ + −

∀ ∈ ∈ ∈

′∈
′≠

′ +

p j tP J T

TRJ ctrj (XPJ XPJ 1)

, ,p

p j t j p j t
p
p p

p j t
P

, , , , , , 1
j

(44a)

If sequence-dependent transition costs are to be handled, eq
44a is to be replaced by eq 44b.

≥ + −

∀ ′ ∈ ≠ ′ ∈ ∩ ∈

′ ′ +

′p p p p j tP J J T

TRJ ctrj (XPJ XPJ 1)

, ( ), ,p

p j t j p p p j t p j t

p

, , , , , , , , 1

(44b)

5.2.6. Sequencing Time Slots. 5.2.6.1. Ordered Set of Time
Slots. It is said that T is an ordered set because time slot t must
begin just after finishing the preceding slot (t − 1), as specified
by eq 45.

≥ ∀ − ∈− t t TST CT ( 1),t t 1 (45)

5.2.6.2. Initial and Final Times of Production Runs
Assigned to Time Slot t. Using eqs 46a and 46b, a production
run assigned to time slot t must be performed within the range
{STt, CTt}. The length of slot t is given by eq 47. Equation 48
states that the total length of the time slots should be equal to
the horizon length h.

∑≤ + − ∀ ∈ ∈
∈

h i tI TST SB (1 XIJ ) ,t i
j

i j t
J

, ,
(46a)

∑≤ + − ∀ ∈ ∈
∈

h i tI TCB CT (1 XIJ ) ,i t
j

i j t
J

, ,

(46b)

= − ∀ ∈t TLT CT STt t t (47)

∑ =
∈

hLT
t

t
T (48)

5.2.7. Unloading Products from the Storage Tanks To
Satisfy Customer Demands. 5.2.7.1. Nonsimultaneous Load-
ing and Unloading Operations in Storage Tanks. Equation
49 imposes that simultaneous receipt and delivery operations in
product tanks cannot be performed within the same time slot.
The binary variable XDJp,j,t denotes the discharge of product p
from product tank j during time slot t whenever XDJp,j,t is equal
to 1.

∑ ∑+ ≤ ∀ ∈ ∈
∈ ∈

t jT JXDJ XIJ 1 ,
p

p j t
i

i j t
P I

, , , ,
j (49)

5.2.7.2. Amount of Product Unloaded from a Storage
Tank during a Time Slot. The continuous variable UPp,j,t
represents the amount of product p unloaded from product
tank j during slot t to satisfy customer orders for product p. Its
value should be equal to zero if (a) product tank j receives
production from a blender during time slot t, (b) product tank j
has not been assigned to product p during time slot t, or (c) no
delivery of product p from tank j is planned during time slot t.
Such conditions are expressed by eqs 50, 51, and 52,
respectively. If none of the above conditions holds, the
unloaded volume of p can never exceed the available inventory
of p in tank j at the end of the preceding time slot (t − 1), as
established by eq 53.

≤ ∀ ∈ ∈ ∈j p tJ P TUP pcapXDJ , ,jp j t j p j t, , , , (50)

≤ ∀ ∈ ∈ ∈j p tJ P TXDJ XPJ , ,jp j t p j t, , , , (51)

≤ ∀ ∈ ∈ ∈j p tJ P TUP pcapXDJ , ,jp j t j p j t, , , , (52)

≤ ∀ ∈ ∈ ∈− j p tJ P TUP PINV , ,jp j t p j t, , , , 1 (53)

5.2.7.3. Meeting the Total Demand of Product p. By eq 54,
the total volume of product p unloaded from all the storage
tanks over the entire scheduling horizon should be large
enough to meet the requirements of all of the orders
demanding product p.

∑ ∑ ∑≥ ∀ ∈
∈ ∈ ∈

q p PUP
t j

p j t
r

r
T J R

, ,

p p (54)

5.2.8. Controlling the Inventory of Final Products in
Storage Tanks. 5.2.8.1. Inventory Level of Final Products in
Storage Tanks along the Scheduling Horizon. The non-
negative variable PINVp,j,t denotes the inventory of product p in
tank j ∈ Jp at the end of time slot t. Its value, given by eq 55,
accounts for (i) the initial inventory of product p in tank j
(iijp,j), (ii) the total volume of product p from blend headers
discharged into tank j up to time CTt, and (iii) the amount of
product p unloaded from tank j ∈ Jp to meet customer orders
from the horizon start up to time CTt. By eq 56, the value of
PINVp,j,t should never exceed the capacity of tank j.
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∑ ∑ ∑= + −

∀ ∈ ∈ ∈

∈ ′∈
′≤

′
′∈
′≤

′

j p tJ P T

PINV iij QPJ UP

, ,j

p j t j p
i t

t t

i p j t
t
t t

p j t
I T T

, , , , , , , ,

(55)

≤ ∀ ∈ ∈ ∈j p tJ P TPINV pcapXPJ , ,jp j t j p j t, , , , (56)

5.2.8.2. Conditions for the Allocation of Tank j ∈ Jp to
Product p during Time Slot t. Equation 57 specifies that a
storage tank j ∈ Jp allocated to product p during time slot t
cannot contain another product at the end of slot (t − 1). In
other words, either tank j was already assigned to product p or
it is empty at the end of time slot (t − 1).

≤ −

∀ − ∈ ′ ∈ ′ ≠ ∈ ∩

′ −

′t t p p p p jT P J J

PINV pcap(1 XPJ )

( 1), , , ( ),j p p

p j t j p j t, ,( 1) , ,

(57)

5.2.9. Fulfillment of Customer Orders. 5.2.9.1. Allocating
Deliveries of Final Products from Storage Tanks to Customer
Orders. By eq 58, no allocation of product p to customer orders
requiring that product during time slot t can be made if there is
no discharge of p from tank j, i.e., XDJp,j,t = 0. The parameter
nrp represents the total number of customer orders for the final
product p.

∑ ≤ ∀ ∈ ∈ ∈
∈

j p tJ P TXRJ nr XDJ , ,j
r

r j t p p j t
R

, , , ,
p

(58)

Moreover, eq 59 requires that the entire amount of product
discharged from storage tank j should be entirely allocated to
customer orders demanding that product. Equation 60 shows
that the total amount of product assigned to customer order r
from one or several tanks at the same or different time slots
should be exactly equal to qr.

∑= ∀ ∈ ∈ ∈
∈

j p tJ P TUP UR , ,jp j t
r

r j t
R

, , , ,

p (59)

∑ ∑ = ∀ ∈
∈ ∈

q r RUR
t j

r j t r
T J

, ,

r (60)

5.2.9.2. Limiting the Amount of Product Delivered for a
Customer Order. Equations 61a and 61b restrict the value of
URr,j,t to the interval (srmin, qr):

≥ ∀ ∈ ∈ ∈j r tJ R TUR sr XRJ , ,r j t r j t, , min , , (61a)

≤ ∀ ∈ ∈ ∈q j r tJ R TUR XRJ , ,r j t r r j t, , , , (61b)

where srmin is the minimum amount coming from a product
tank that can be assigned to a customer order. If the parameter
rdrr represents the delivery rate of order r demanding product p
and pdrp,j denotes the maximum delivery rate of product p from
tank j, then the values of URr,j,t and XRJr,j,t are also limited by
eqs 62a and 62b.

≤ − ∀ ∈ ∈ ∈p j tP J TUR rdr (CT ST ) , ,pr j t r t t, ,

(62a)

∑ ≤ ∀ ∈ ∈ ∈
∈

j tJ p P Trdr XRJ pdr , ,p
r

r r j t p j
R

, , ,
p

(62b)

5.2.9.3. Starting and Completion Times of Product
Deliveries from Storage Tanks. The positive variable CRr,j,t
represents the completion time for the delivery of product from
tank j to order r during time slot t. Assuming that every
unloading operation always begins at the start of a time slot,
then STt should satisfy the constraint described by eq 63,

≥ ∀ ∈ ∈ ∈r j tR J TST atw XRJ , ,rt r r j t, , (63)

while the value of CRr,j,t is bounded by eq 64.

≥ + − −

∀ ∈ ∈ ∈

⎛
⎝⎜

⎞
⎠⎟ h

r j tR J T

CR ST
UR

rdr
(1 XRJ )

, ,r

r j t t
r j t

r
r j t, ,

, ,
, ,

(64)

Using eqs 62a and 64, CRr,j,t is never greater than CTt if XRJr,j,t
= 1, to meet the condition that the delivery of a customer order
should occur within a single time slot.

5.2.9.4. Tardiness of Customer Order r. The continuous
variable CRFr is the time at which customer order r is
completely satisfied. Its value is given by eq 65.

≥ ∀ ∈ ∈ ∈r j tR J TCRF CR , ,rr r j t, , (65)

The tardiness of order r (TDr) then can be determined by eq
66.

≥ − ∀ ∈r RTD CRF btwr r r (66)

The parameter btwr is the upper limit of the time window for
order r.

5.2.10. Objective Function. The problem goal (eq 67) is the
minimization of the total operating cost that includes the
component consumption cost, the transition costs in blenders
and product tanks, and the tardiness costs. In eq 67, the
parameter ctd represents the tardiness cost per unit time, and
scosts is the unit cost of component s.

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

= +

+ +

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈
<| |

Zmin ( scost QS ctdTD

TTRB TRJ )

s i I p P
s s i p

r
r

b
b

p j t
j p t

S R

B P J T
T

, ,

t

, ,
p (67)

Therefore, the MILP formulation of Cerda ́ et al.6 has been
generalized by including (a) the new constraints (eqs 32−34,
35a−35i, 36, and 38a−38c) to get a better estimate of key
gasoline blend properties such as the RON, the MON, and the
RVP; (b) eqs 24−28, 29a, and 30a to exactly monitor the
inventory level in component tanks and (c) the nonlinear
constraint (eq 37) only if the same recipe is to be adopted in all
production campaigns of a final product.

6. THE MILP APPROXIMATE MODEL
In the proposed MINLP model, just the constraints described
by eqs 24, 25, 27, 32−34, 36, and 37 are nonlinear. In order to
replace eqs 24, 25, and 27 by approximate linear constraints, it
is defined the binary variable ZOi′,i denoting the overlapping of
the blending runs (i′, i) with i′ < i whenever ZOi′,i = 1.
Equations 68a and 68b, which were first introduced by Cerda ́ et
al.,6 are used to determine the value of ZOi′,i with the parameter
ε representing a very small number. When ZOi′,i = 0, no
overlapping of runs (i′, i) occurs.

ε≤ − + − ∀ ∈ ′ ∈′ ′H i iI IPSB CB (1 ZO ) , ii i i i,

(68a)
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≤ + ∀ ∈ ′ ∈′ ′ i iI IPCB SB H ZO , ii i i i, (68b)

Because eq 29a in the proposed MINLP formulation intends to
avoid the overloading of component tanks at the start time of a
blending run i (i.e., at time SBi), a conservative hypothesis
consists of assuming that the total amount of component s
allocated to an overlapping run i′ ∈ IPi featuring ZOi′,i = 1 is
consumed after the start of run i, i.e., QSPs,i′,i = ∑p ∈ P QSs,i′,p if
ZOi′,i = 1. If runs (i, i′) do not overlap, ZOi′,i = 0 and,
consequently, QSPs,i′,i = 0. Therefore, the nonlinear eqs 24 and
25 are withdrawn from the model and the value of QSPs,i′,i will
now be given by eqs 69a and 69b instead of the constraint that
is described by eq 25. No change in eq 28 is needed.

≤′ ′QSP MS ZOs i i i i i, , , (69a)

∑≥ − −

∀ ∈ ′ ∈ ′ ∈

′
∈

′ ′ ′

s i i i IPS I

QSP QS MS (1 ZO )

, ( , ) ( )

s i i
p

s i p i i i

i

P
, , , , ,

(69b)

Moreover, the MINLP model includes eq 30a to avoid
running-out conditions at the completion time of blending run
i. If runs (i, i′) with i′ ∈ ISi overlap, the worst case occurs when
they finish at the same time, i.e., CBi = CBi′. The nonlinear eq
27 then will be replaced by the linear constraints described by
eqs 70a and 70b, by assuming that the total amount of
component s assigned to the succeeding run i′ ∈ ISi has been
totally consumed at time CBi when ZOi,i′ = 1. If runs (i, i′) do
not overlap, then ZOi,i′ = 0 and QSSs,i,i′ = 0.

≤′ ′QSS MS ZOs i i i i i, , , (70a)

∑≥ − −

∀ ∈ ′ ∈ ′ ∈

′
∈

′ ′ ′

s i i iS I

QSS QS MS (1 ZO )

, ( , ) ( IS )

s i i
p

s i p i i i

i

P
, , , , ,

(70b)

In addition, the nonlinear equations described as eqs 32−36
will be replaced by the approximate linear constraints described
by eqs 71−73 by assuming that the RON, MON, and RVP
properties blend in an ideal fashion.

∑≤ ≤

∀ ∈ ∈
∈

i pI P

pron QB sron QS pron QB

,

p i p
s

s s i p p i p
S

min
, , ,

max
,

(71)

∑≤ ≤

∀ ∈ ∈
∈

i pI P

pmon QB smon QS pmon QB
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p i p
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s s i p p i p
S

min
, , ,
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(72)

∑≤ ≤

∀ ∈ ∈
∈

i pI P

prvp QB srvpQS srvp QB

,

p i p
s

s s i p p i p
S

min
, , ,

max
,

(73)

The MILP formulation then comprises the objective function
(eq 67) and a set of constraints that includes the linear
equations described by eqs 7−23, 26, 28−31, 38−66, and
68−73. The approximate MILP formulation allows choosing
different recipes if multiple production campaigns of the same
product are performed. Equation 37, which forces us to use the
same recipe for a product, even if multiple runs are executed,
will just be considered when solving the MINLP model. The
optimal solution to the MILP approximate model usually

provides a good initial point for either the NLP or the MINLP
solver.

7. THE MILP−NLP AND THE MILP−MINLP SOLUTION
STRATEGIES

By fixing the integer variables to their MILP-optimal values, the
MINLP formulation is reduced to a low-size NLP model. Since
the MILP approximate model efficiently provides a very good
initial point for the NLP solver, an effective MILP−NLP
solution strategy is first proposed to determine a good feasible
solution for the MINLP. In fact, the best MILP solution just
slightly fails to meet some nonlinear quality specifications,
especially the RON requirement. All other MINLP constraints
are satisfied. As a result, the low-size NLP model is usually
solved within less than a second and provides a near-optimal
solution of the MINLP. An alternative solution approach
consists of solving the MINLP formulation with the DICOPT
solver using the MILP optimal solution as the starting point,
i.e., a MILP−MINLP solution strategy. In this case, the values
of the integer variables remain free when solving the MINLP
formulation. With this strategy, the CPU solution time is still
reasonable but longer than that required by the MILP−NLP
scheme, because of the size of the MINLP. Just for larger
problems, some improved results have been obtained using the
MILP−MINLP approach. Then, the MILP−NLP method has
very good performance, because it provides solutions quite
close to the best ones at low computational cost. Both solution
strategies were tested using the nonlinear correlations for RON
and MON proposed by Healy et al.,19 while those introduced
by Stewart20 was assessed by applying only the MILP−NLP
strategy. Interestingly, vapor pressure constraints just become
important for large gasoline blending problems with limited
amounts of preferred gasoline components. Rules for selecting
the number of blend runs and time slots are given in the
Supporting Information.

8. RESULTS AND DISCUSSION

Eleven benchmark problems first introduced by Li et al.10 and
later studied by Li and Karimi11 and Castillo-Castillo and
Mahalec12,13 have been solved, using the proposed MILP−NLP
and MILP−MINLP approaches. They were called Examples 4−
14 by Li et al.10 and comprise 15−45 orders, 4−5 final
products, 1−3 blend headers, 9 gasoline components, 11
product tanks, a time horizon of 192 h, and blend specifications
for 9 critical properties, including RON, MOM, RVP, and
flammability (FLA), as well as sulfur (SUL), olefins (OLE),
benzene (BEN), aromatics (ARO), and oxygenates (OXY)
contents. For each example, a pair of instances is considered:
the single-period (SP) and the multiperiod (MP) cases. The
component feed flow rates from upstream production units are
assumed to be constant over the time horizon for the SP case,
and piecewise constant functions of time for the MP instance.
The two proposed solution approaches were applied to the MP
instances of Examples 4−14, while the best solutions for the SP
instances were found by using the MILP−NLP method. Data
for the two instances of Examples 4−14 can be found in Li et
al.10 and are also provided as Supporting Information. Except
for Example 5, the blend headers are initially idle. In Example 5,
the unique blender is processing the final product P1 and the
production run underway has a length of 10 h and already
yielded 150 kbbl at time zero. The models were implemented
in GAMS 24.5.623 and solved using the solvers CPLEX 12.6 for
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the MILPs, CONOPT 3.15N for the NLPs, and DICOPT
24.2.2 for the MINLP formulations. All computations were
performed on an Intel(R) Core i7 3632QM 2.20 GHz one-
processor PC with 12 GB RAM and 4 cores. The relative
optimality gap tolerance has been fixed to 0.001 for all the
examples. DICOPT is stopped when a crossover occurs or the
relative gap tolerance has been reached. Besides, a maximum
CPU time of 3600 s was allowed.
8.1. Solving Examples 4−14 Using the MILP−NLP

Strategy. Computational results for the SP and MP versions of
Examples 4−14 using the MILP−NLP algorithm are shown in
Tables 1 and 2, and these results are illustrated in a series of
figures provided in the Supporting Information. Each figure
includes a Gantt chart showing the sequence of operations
performed in blenders and product tanks, and the inventory
profiles in component and product tanks. The nonlinear
correlation of Healy et al.19 is used to predict the octane
numbers of the gasoline blends. Model sizes and the number of
time slots for each example are also given in the Supporting
Information. From Table 1, it follows that the best solutions for
both instances of Examples 4−10 were found within <15 s of
CPU time, with an absolute gap equal to zero. The
computational time still remains below 200 s to solve the MP
instances of Examples 12−14. In all cases, most of the CPU
time is allocated to solve the MILP model. Instead, the solution
of the NLP subproblem is always found within <1 s using the
MILP solution as the initial point. The SP version of the MILP
model for Examples 11−14 is more difficult to solve than that
for the MP instance, because it is less restricted in gasoline
components and consequently presents a lower convergence
rate to the optimal solution.
The best solutions found for all examples share some

common features: no tardy orders and a minimum number of
changeovers in blenders and product tanks (see Table 2).
There are no product transitions in product tanks at Examples
4−8 just involving products P1−P4, and a single switching P3−
P5 in the initially empty tank PT-2 originally assigned to
product P3. Such a changeover arises because no product tank
has been initially allocated to product P5. In addition, the least
number of changeovers in blenders given by [card(P̂) −
card(B)] is reached in all examples. |P̂| is the number of final
products to be processed in the blenders to meet the customer
demands. Table 2 provides the total component consumption
cost, the changeover cost in blenders and product tanks, and
the number of blending runs and order delivery operations in
product tanks at the best solutions. In Tables 1 and 2, the MPU

instances of Examples 4−14 refer to MP instances that are
constrained to have a unique recipe in all campaigns of the
same final product. An interesting finding is obtained by
replacing the rigorous nonlinear inventory equations by the
approximate linear inventory modeling of Cerda ́ et al.6 in the
proposed MINLP formulation. Almost the same results shown
in Table 1 are still found. Therefore, the linear inventory
modeling of Cerda ́ et al.6 already provides a precise tracking of
the component tank inventory, thus avoiding the use of some
nonlinearities in the MINLP model.
Compared with the values provided by the MILP approach

of Cerda ́ et al.6 for Examples 4−14, a growing increase in the
minimum operating costs with the problem size is observed
when using the proposed MINLP formulation. Such a
comparison is given in the Supporting Information. The
increase of the operating costs is almost exclusively due to the

use of nonlinear correlations for estimating the RON, MON,
and RVP properties.

8.2. Comparison of the Results with Previous
Approaches. Castillo-Castillo and Mahalec12,13 applied two
different methodologies to solve the MP versions of Examples
{4, 8, 12, 14}, using the nonlinear correlations of Healy et al.19

to predict the octane numbers of gasoline blends. A comparison
with the results reported by Castillo-Castillo and Mahalec12,13 is
shown in Table 3. In our work, a product transition implies that
two different products are produced in a pair of consecutive
runs performed in the same blender. In contrast, Castillo-
Castillo and Mahalec12,13 assumed that a changeover occurs
whenever a new production run is performed in a blender. If
our changeover criterion were used, the optimal blend costs
reported by Castillo-Castillo and Mahalec12,13 for Examples {4,
8, 12, 14} would decrease to {4613.0; 8165.4; 15366.8;
21203.1} and {4612.7; 8163.1; 15362.6; 21203.1}, respectively.
Therefore, the optimal values for Examples 4 and 8 at which
every approach performs the same number of blend runs are
mostly similar. However, this is not the case for Examples 12

Table 1. Computational Results for Examples 4−14 Using
the MILP−NLP Solution Strategy

MILP Approximate Model NLP Model

example
cost

(× 103 $)
CPU time

(s)
cost

(× 103 $)
CPU time

(s)

4−5 SP 4596.69 0.36 4612.68 0.03
MP 4596.69 0.34 4612.68 0.06

6 SP 5252.87 0.33 5271.48 0.02
MP 5252.87 0.47 5271.48 0.11

7 SP 8153.85 1.6 8183.07 0.11
MP 8153.85 3.5 8183.07 0.13

8 SP 8133.85 1.5 8163.07 0.02
MP 8133.85 7.5 8163.07 0.02

9 SP 10645.20 8.5 10663.30 0.14
MP 10647.52 3.2 10664.79 0.11

10 SP 11367.47 5.0 11374.31 0.11
MP 11391.38 4.5 11406.06 0.13
MPU 11391.38 13.9 11406.15 0.13

11 SP 13344.81 412.0 13358.01 0.14
MP 13379.04 357.7 13403.23 0.27
MPU 13379.04 356.8 13403.29 0.39

12 SP 14884.67 1388.4 14921.24 0.30
MP 15319.08 30.8 15341.67 0.28
MPU 15319.08 31.8 15342.60 0.53

13 SP 18121.43 470.3 18193.65 0.38
SPU 18124.65 512.6 18198.60 0.41
MP 18780.48 198.1 18699.61 0.33
MPU 18780.48 125.5 18699.82 0.28

14 SP 20495.30 1229.2 20512.54 0.66
SPU 20495.30 1262.2 20519.63 0.25
MP 21424.06 20.1 21181.10 0.70
MPU 21424.06 53.1 21195.95 0.27
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and 14, because two and three more runs are executed in our
best solutions. As a result, the proposed MILP-NLP algorithm
is able to get an extra cost-savings of 20.93 and 21.88 (× 103 $)
for Examples 12 and 14, respectively.
8.3. Solving the MP Instances of Examples 4−14

Using the MILP−MINLP Approach. The multiperiod
instances of Examples 4−14 were also solved using the
MILP−MINLP solution strategy. Computational results are
shown in Table 4. It can be observed that the total CPU time is
rather evenly allocated to the solution of the MILP and MINLP
models. Moreover, it presents a moderate increase, with regard
to the MILP−NLP strategy for the larger examples (Examples

11−14) mostly due to the solution of the MINLP. Computa-
tional results provided by the MILP−NLP and the MILP−
MINLP strategies for Examples 4−14 are compared in Table 5.
Both approaches provide the same best solutions for Examples
4−9, while some slight improvements in operating costs are
obtained for Examples 10−14 through the MILP−-MINLP
method at the expense of a reasonable increase of the
computational cost.
From Table 5, the following conclusions can be drawn: (i)

the MILP−MINLP methodology just yields slightly better
results for larger examples; (ii) the MILP−NLP usually solves
the MP examples at low CPU time and always finds near-

Table 2. Values of the Different Cost Items for Examples 4−14 Using the MILP−NLP Strategy

Switching Cost (×103 $)

example component cost (× 103 $) in blenders in product tanks blend runs (BR) delivery runs (DR) total cost (× 103 $)

4−5 SP 4592.68 20 2 20 4612.68
MP 4592.68 20 2 20 4612.68

6 SP 5231.48 40 3 22 5271.48
MP 5231.48 40 3 22 5271.48

7 SP 8123.07 60 4 26 8183.07
MP 8123.07 60 4 26 8183.07

8 SP 8123.07 40 4 26 8163.07
MP 8123.07 40 5 25 8163.07

9 SP 10588.80 60 14.5 5 29 10663.30
MP 10590.29 60 14.5 6 29 10664.79

10 SP 11299.81 60 14.5 6 32 11374.31
MP 11331.56 60 14.5 6 32 11406.06
MPU 11331.65 60 14.5 6 32 11406.15

11 SP 13283.78 60 14.5 8 39 13358.28
MP 13328.73 60 14.5 8 39 13403.23
MPU 13328.79 60 14.5 8 39 13403.29

12 SP 14853.33 60 14.5 8 45 14927.83
MP 15267.17 60 14.5 8 45 15341.67
MPU 15268.10 60 14.5 8 45 15342.60

13 SP 18136.89 40 14.5 8 54 18191.39
SPU 18144.10 40 14.5 8 60 18198.60
MP 18645.11 40 14.5 8 50 18699.61
MPU 18645.32 40 14.5 8 50 18699.82

14 SP 20458.04 40 14.5 9 61 20512.54
SPU 20465.13 40 14.5 9 62 20519.63
MP 21126.60 40 14.5 8 54 21181.10
MPU 21141.45 40 14.5 8 57 21195.95

Table 3. Comparison with the Results Reported by Castillo-Castillo and Mahalec12,13

Our MILP−NLP Method Castillo-Castillo and Mahalec12 Castillo-Castillo and Mahalec13

example objective value CPU time (s) gap (%) objective value CPU time (s) gap (%) objective value CPU time (s) gap (%)

4 4612.68 0.4 0.0 4633.0 15 0.01 4632.7 3.0 0.0
8 8163.07 7.5 0.0 8205.4 10 800a 0.03 8203.1 6.0 0.0
12 15341.67 31.1 0.0 15406.8 43 200a 0.16 15402.6 17.0 0.0
14 21181.10 20.8 0.0 21283.1 43 200a 0.19 21263.1 24.0 0.0

aCPU time limit.
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optimal solutions. Figure 2 shows the best solution found for
Example 9 (MP), using either approach, while Figures 3 and 4

present the results for the MP instances of Examples 12 and 14
discovered by the MILP−MINLP method.

8.4. Optimal Product Recipes. Table 6 shows the product
recipes selected at the best solutions of Examples 4−12 (MP).
Similar results for the SP instances are provided in the
Supporting Information. It is observed that the optimal product
recipes for both versions of Examples 4−8 are exactly the same,
thus indicating no limitation in the available amounts of the
preferred gasoline components. This recipe pattern still remains
without changes for the SP instances of Examples 9 and 10,
featuring a constant component flow rate from upstream units
over the entire time horizon.
In contrast, Example 9 (MP) presents some shortages in the

amount of the preferred component C4, because of higher
product demands and a decreasing feed flow rate of C4 with
time. Therefore, the optimal recipe of product P4 with the
lowest RON specification experiences some small changes. As a
result, the total component cost slightly increases and the
optimal values for the SP and MP instances of Example 9 are
no longer equal (see Table 6).
Looking at Figure 2, it is observed that the inventory level in

the component tank devoted to C4 drops to zero at time = 150
h. Moreover, there are no inventories in product tanks at the

Table 4. Results for the MP Instance of Examples 4−14
Using the MILP−MINLP Approach

MILP Approximate Model MINLP Model

example
cost

(× 103 $)
CPU time

(s)
cost

(× 103 $)
CPU time

(s)

4 MP 4596.69 0.4 4612.68 0.75

6 MP 5252.87 0.5 5271.48 2.4

7 MP 8153.85 2.0 8183.07 6.9

8 MP 8133.85 1.9 8163.07 95.4

9 MP 10647.52 21.4 10664.79 46.0

10 MP 11391.38 3.6 11405.96 6.6
MPU 11391.38 3.6 11406.15 4.8

11 MP 13379.00 354.9 13402.96 408.8
MPU 13379.00 400.5 13403.19 411.5

12 MP 15319.08 73.4 15340.43 235.3
MPU 15319.08 71.9 15342.60 110.1

13 MP 18780.48 194.0 18697.39 395.6
MPU 18780.48 194.3 18699.82 43.7

14 MP 21424.06 141.0 21180.58 343.7
MPU 21424.06 140.3 21186.19 385.5

Table 5. Comparing Results Provided by the MILP−NLP
and the MILP−MINLP Approaches

MILP−NLP Approach MILP−MINLP Approach

example
cost

(× 103 $)
CPU time

(s)
cost

(× 103 $)
CPU time

(s)

4−5 MP 4612.68 0.4 4612.68 1.2

6 MP 5271.48 0.6 5271.48 2.9

7 MP 8183.07 3.6 8183.07 8.9

8 MP 8163.07 7.5 8163.07 97.3

9 MP 10664.79 3.3 10664.79 67.4

10 MP 11406.06 4.6 11405.96 10.2
MPU 11406.15 14.0 11406.15 8.4

11 MP 13403.23 358.0 13402.96 763.7
MPU 13403.29 357.2 13403.19 812.0

12 MP 15341.67 31.1 15340.43 308.7
MPU 15342.60 32.3 15342.60 182.0

13 MP 18699.61 198.4 18697.39 589.6
MPU 18699.82 125.8 18699.82 238.0

14 MP 21181.10 20.8 21180.58 484.7
MPU 21195.95 53.4 21186.19 525.8

Figure 2. Best solution found for the MP instance of Example 9.
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horizon end. Interestingly, the product recipes chosen by the
MILP model are slightly modified when solving the NLP.
Almost all the selected gasoline components remain the same
but their relative proportions undergo some small changes.
This pattern is observed in almost all examples. Note that the
recipe of the product assigned to any nonfictitious run is still a
problem variable when solving the NLP subproblem. Recipe
changes are expanded to other products in Examples 10−12,
because of increasing shortages of the preferred components
C2 and C4 (see Figure 3). In addition, there appears to be a
need to run multiple campaigns of some final products to
reduce the feedstock cost. At Example 14, shortages of
component C2 continue to grow and the available amount of
component C3 is not sufficient to cover such a limitation of
component C2. As a result, the low-cost component C9 is
incorporated in the recipes of P1−P4 until reaching the RVP
upper limit (0.905 bar) for product P3. Component C9 has a
low RON of 81 and a high RVP (2.068 bar). The low RON of
C9 is compensated by incorporating or increasing the volume
fraction of component C8 in the blend recipes.
The nonlinear correlation of Healy et al.19 provides RON

values for the blends lower than those obtained with the linear
correlation used by Cerda ́ et al.6 As a result, the stocks of the

preferred components [C2, C4, and C6] are depleted earlier
and the optimal blends given by the MINLP approach
incorporate or contain higher proportions of the less-preferred
gasoline components [C3, C5, and C9].

8.5. Using the Same Recipe in All Production Runs of
a Final Product. For large examples, multiple runs of the same
product are performed to minimize the total component cost,
but not necessarily share a common recipe. Because such
production campaigns can be allocated to the same product
tank, the scheduler may desire to adopt the same recipe in all
runs. Such constrained problems are identified by the
superscript “U”. Multiple runs are executed at the best
solutions of the SP instances of Examples 13 and 14, and the
MP versions of Examples 10−14. By incorporating eq 37 in the
formulation of either the NLP subproblem or the MINLP
model, new solutions are found using a unique recipe in all
campaigns of a final product. Computational results for the SPU

instances of Examples 13 and 14 and the MPU versions of
Examples 10−14 are shown in Tables 1 and 2 and Tables 4 and
5, respectively. As expected, the common recipe constraint
usually produces a slight increase in the optimal total cost.
Figures illustrating the best unique-recipe solutions for
Examples 13 and 14 (SP) and Examples 10−14 (MP), and

Figure 3. Best solution found for the MP instance of Example 12. Figure 4. Best solution found for the MP instance of Example 14.
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the blend recipes selected for every final product are provided
in the Supporting Information.
Compared with the multiple-recipe solutions, there is no

change in the gasoline components included in the blends; only
their volume fractions suffer some minor modifications.
Another common feature of the optimal recipes, even in the
presence of component shortages, is that the RON lower limit
specified for each final product is strictly satisfied in all
examples. In this way, quality giveaways are avoided. Limiting
specifications for the other blend properties are never active,
except for the RVP upper limit in Example 14. Values of the
blend properties at the best solutions of Examples 10−14
(MPU) are given in the Supporting Information.
8.6. Using the Nonlinear Correlations of Stewart20 To

Predict the Octane Numbers. To corroborate the computa-
tional efficiency of the proposed MILP−NLP algorithm to
solve nonlinear blend scheduling problems, the multiperiod
versions of Examples 8−14 were again solved, but this time
using the nonlinear correlations of Stewart20 to predict octane
numbers. Computational results shown in Table 7 confirm the
good performance of the proposed MILP−NLP solution
algorithm.
In all cases, the minimum RON specification is strictly

satisfied. Therefore, it can be concluded that the Stewart20

correlation predicts higher RON values and lower operating

costs than Healy et al.19 for Examples 4−14. When the
Stewart20 correlation is used, DICOPT fails to improve the
initial solution found by solving the first NLP, because of error
problems that are due to the denominator of the RON
expression tending to zero.
By analyzing the solutions yielded by the MILP and NLP

models when using the Healy et al.19 correlation, it is observed
negative deviations from ideal mixing for products P1−P4 and a
positive deviation for P5 at Examples 4−12 (MP). As a result,
the total operating cost increases when solving the NLP

Table 6. Optimal Product Recipes at the Best Solutions of the MP Versions of Examples 4−12

Component Fraction (%)

example product C1 C2 C3 C4 C5 C6 C7 C8 C9

4−5 P1 39.34 40.00 20.00 0.66
P4 8.58 22.42 44.00 25.00

6 P1 39.34 40.00 20.00 0.66
P3 47.95 43.00 9.05
P4 8.58 22.42 44.00 25.00

7−8 P1 39.34 40.00 20.00 0.66
P2 31.14 45.00 22.00 1.86
P3 47.95 43.00 9.05
P4 8.58 22.42 44.00 25.00

9 P1 39.34 40.00 20.00 0.66
P2 31.14 45.00 22.00 1.86
P3 47.95 43.00 9.05
P4 7.91 24.82 42.27 25.00
P5 31.05 40.00 20.00 8.95

10 P1 39.34 40.00 20.00 0.66
P2 31.14 45.00 22.00 1.86
P3 29.17 43.00 9.83 18.00
P4 6.85 29.57 30.84 25.00 7.74
P5 31.05 40.00 20.00 8.95

11 P1 39.34 40.00 20.00 0.66
P2 31.14 45.00 22.00 1.86
P3 29.17 43.00 9.83 18.00
P4 8.98 23.59 22.43 25.00 20.00

7.84 26.54 28.95 25.00 11.67
5.05 35.07 34.88 25.00

P5 31.05 40.00 20.00 8.95
12 P1 20.05 13.47 40.00 6.48 20.00

10.98 18.91 40.00 10.11 20.00
P2 19.35 13.12 45.00 0.53 22.00
P3 11.57 10.36 43.00 17.07 18.00

19.38 41.29 10.30 11.03 18.00
P4 53.81 13.78 25.00 7.41
P5 18.80 14.31 40.00 20.00 6.89

Table 7. Results Found Using the Nonlinear Correlations of
Stewart20 and Healy et al.19

MILP−NLP Methods

Stewart20 Healy et al.19

example
(MP)

objective
function

CPU time
(s)

objective
function

CPU time
(s)

8 8119.01 1.1 8163.07 7.5
9 10620.02 3.2 10664.79 3.3
10 11359.11 3.7 11406.06 4.6
11 13358.65 100.4 13403.23 358.0
12 15306.10 73.2 15341.67 31.1
13 18599.16 46.9 18699.61 198.4
14 21102.31 131.5 21181.10 20.8
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formulation. In contrast, positive deviations from linear
blending are predicted by the Healy et al.19 correlation for
products P1−P2 and P4−P5 at Examples 13 and 14 (MP).
Consequently, the optimal value of the NLP model is lower
than the value of the approximate MILP.

9. CONCLUSIONS

A mixed-integer nonlinear programming (MINLP) continuous-
time formulation for the simultaneous optimization of gasoline
recipes and the scheduling of blending and order delivery
operations has been developed. The proposed model is an
extension of the MILP approach introduced by Cerda ́ et al.,6
which now includes a set of nonlinear equations to better
estimate key blend properties, such as octane numbers and
Reid vapor pressure (RVP), and exactly tracking inventory
levels in product tanks when multiple blend headers are
operated. Additional nonlinear constraints can also be
incorporated to force using the same recipe if multiple blending
runs yielding the same finished product are to be performed to
minimize the operating cost. The proposed MINLP for-
mulation is based on floating slots that are so named because
they are not preassigned to time periods but dynamically
allocated to them while solving the problem. Simple
mathematical expressions for choosing the number of blending
runs and floating time slots were also developed. A pair of two-
stage MINLP solution strategies has been defined: the mixed-
integer linear programming−nonlinear programming (MILP−
NLP) and the mixed-integer linear programming−mixed-
integer nonlinear programming (MILP−MINLP) methods. In
both cases, an approximate MILP model derived from assuming
ideal mixing provides a good initial integer point. After fixing
the integer variables, the resulting NLP is solved to determine
an MINLP near-optimal solution. When applying the MILP−
MINLP strategy using the MILP−integer solution as the
starting configuration slightly improved solutions are often
discovered in a few iterations.
Eleven benchmark examples first introduced by Li et al.10

and later studied by Li and Karimi11 and Castillo-Castillo and
Mahalec12,13 have been successfully solved using the two
solution approaches. The component flow-rate from upstream
units was assumed to be either constant (single period (SP)
scenario) or a piecewise constant function of time (multiperiod
(MP) scenario). For the latter case, the MILP−NLP algorithm
systematically finds near-optimal solutions at low computa-
tional cost. In turn, the MILP−MINLP approach discovers
slightly better solutions after three or four additional major
DICOPT iterations at the expense of an extra, usually
reasonable, CPU time. Single-period scenarios are more
difficult to tackle just for larger examples featuring limited
amounts of preferred gasoline components. A comparison with
the results reported in previous contributions shows that our
approach achieves a small cost-savings for large MP examples,
mostly because two or three more blending runs are executed.
If the scheduler desires to keep a unique recipe in all
production runs, the proposed approach can include an
additional constraint forcing that condition and producing a
slight increase in the feedstock cost. A common feature of the
optimal recipes in both versions of all examples, even in the
presence of component shortages, is that the minimum
research octane number (RON) specified for each final product
is always strictly satisfied. In this way, quality giveaways are
avoided. Limiting specifications for the other blend properties

are never active, with the exception of the RVP property under
severe shortages of preferred gasoline components.
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■ NOTATION

Sets
B = blender headers
K = ordered set of time periods
I = ordered set of production runs in blenders
IPi = preceding runs of campaign i that can be processed in
parallel with i
ISi = succeeding runs of campaign i that can be processed in
parallel with i
P = final products
Pj = final products that can be stored in tank j
T = process time slots

Parameters
ctrbb,p,p′ = sequence-dependent changeover cost in blender b
ctd = penalty cost per unit time for tardy orders
demp = total demand of final product p to be satisfied
iijp,j = initial inventory of product p in the tank j ∈ Jp
iiss = initial inventory of gasoline component s
llimk = lower time limit for period k
MB = a relatively large number
pcapj = capacity of the product tank j
pdrp,j = delivery rate of product p from product tank j
pprg,p

max = maximum limiting value of property g per unit
amount of product p
pprg,p

min = minimum limiting value of property g per unit
amount of product p
qr = size of order r
rbb,p

max = maximum processing rate limit for final product p in
blender b
rbb,p

min = minimum processing rate limit for final product p in
blender b
rdrr = delivery rate of product for order r
scaps = capacity of the dedicated tank for component s
scosts = unit cost of component s
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smons = motor octane number of gasoline component s
sprg,s = value of property g per unit amount of component s
srmin = minimum amount of a customer order that can be
delivered by a product tank
srons = research octane number of component s
srvps = Reid vapor pressure of component s
svrs,k = feed flow rate of component s during period k
ulimk = upper time limit for period k
vcs,k = feed rate of blending component s during period k
vcs,p

max = maximum proportion of component s in the final
product p
vcs,p

min = minimum proportion of component s in the final
product p
τb,p,p′ = sequence-dependent changeover time in blender b

Binary Variables
XDJp,j,t = denotes the discharge of final product p from tank j
during the time slot s
XIJi,j,t = assigns production run i to product tank j during the
time slot t
XPJp,j,t = assigns the storage tank j to the final product p
during the time slot t
XRJr,j,t = denotes the discharge of order r from product tank j
during the time slot t
YBi,p = allocates production runs to final products
WBib = allocates production runs to blenders
WIik = assigns production runs to time periods
ZOi′,i = identifies overlapping of runs (i′,i)

Positive Continuous Variables
CBi = completion time of run i
CRr,j,t = completion time for the delivery of order r from
product tank j during the slot t
CRFr = time at which customer order r is satisfied
CTt = final time of slot t
LBi,b,p = length of the production run i within the range
[lbb,p

min, lbb,p
max]

LKFi,k = length of time between the beginning of period k
and the completion of run i
LKSi,k = length of time between the beginning of period k
and the start of run i
Lt = length of time slot t
PINVp,j,t = inventory of final product p in tank j ∈ Jp at the
end of slot t
PMONi,p = motor octane number of blend p produced by
run i
PRONi,p = research octane number of blend p produced by
run i
PRVPi,p = Reid vapor pressure of product p yielded by run i
QBi,p = amount of final product p yielded by run i
QPJi,p,j,t = amount of product p from run i discharged into
tank j ∈ Jp during the slot t
QSs,i,p = amount of component s ∈ S assigned to run i
producing product p
QSPs,i′,i = amount of component s consumed at the
preceding run i′ ∈ IPi after time SBi
QSSs,i,i′ = amount of component s consumed at the
succeding run i′ ∈ ISi before time CBi
RSs,i = consumption rate of component s during run i
SBi = starting time of run i
SINCs,i = inventory level of component s available at the
completion time of run i
SINFs = inventory level of component s at the end of the
scheduling horizon

SINIs,i = inventory level of component s available at the start
of run i
STt = starting time of slot t
SRr,j,t = starting time for the delivery of order r from product
tank j during slot t
TRBi,b = cumulative transition cost in blender b up to run i
TRJp,j,t = product transition cost in the product tank j
TTRBb = total transition cost in blender b
UPp,j,t = amount of product p unloaded from product tank j
during time slot t
URr,j,t = amount delivered for order r from tank j during time
slot t
USPs,i = amount of component s consumed up to time SBi
USSs,i = amount of component s consumed up to time CBi
VFRs,i,p = volume fraction of component s in blend p yielded
by run i
WBPi,b,p = identifies the final product yielded by production
run i in blender b
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