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Abstract

Acute myeloid leukemia (AML) consists in a cancer of early hematopoietic cells

arising in the bone marrow, most often of those cells that would turn into white

blood cells (except lymphocytes). Chemotherapy is the treatment of choice for

AML but one of the major complications is that current drugs are highly toxic

and poorly tolerated. In general, treatment for AML consists of induction

chemotherapy and post-remission therapy. If no further post-remission is

given, almost all patients will eventually relapse. Histamine, acting at histamine

type-2 (H2) receptors on phagocytes and AML blast cells, helps prevent the
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production and release of oxygen-free radicals, thereby protecting NK and

cytotoxic T cells. This protection allows immune-stimulating agents, such as

interleukin-2 (IL-2), to activate cytotoxic cells more effectively, enhancing the

killing of tumor cells. Based on this mechanism, post-remission therapy with

histamine and IL-2 was found to significantly prevent relapse of AML. Alterna-

tively, another potentially less toxic approach to treat AML employs drugs to

induce differentiation of malignant cells. It is based on the assumption that many

neoplastic cell types exhibit reversible defects in differentiation, which upon

appropriate treatment results in tumor reprogramming and the induction of

terminal differentiation. There are promissory results showing that an elevated

and sustained signaling through H2 receptors is able to differentiate leukemia-

derived cell lines, opening the door for the use of H2 agonists for specific

differentiation therapies. In both situations, histamine acting through H2

receptors constitutes an eligible treatment to induce leukemic cell differentia-

tion, improving combined therapies.
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1 Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of

hematopoietic progenitor cells arising in the bone marrow that fail to differentiate,

to respond to normal regulators of proliferation, and that do not undergo

programmed cell death or apoptosis. Leukemic cells that interfere with normal

hematopoiesis can escape into the peripheral blood and result in organ infiltration,

most threateningly the CNS and lung. This malignant alteration is characterized by

a loss of normal hematopoietic function leading to bone marrow failure that is the

most common underlying cause of death. The genetic reprogramming of leukemic

cells renders them ineffective at generating mature neutrophils, monocytes, red

cells, and platelets. Thus, the main sign of bone marrow failure is infection caused

by a large range of pathogens including gram-positive and gram-negative bacteria,

Candida species, and Aspergillus species (Anderlini et al. 1996).
It has been estimated about 20,830 new cases of AML and 10,460 deaths only in

the United States for 2015 (Siegel et al. 2015). AML is more common in the elderly,

with a median age at diagnosis of 67 years, but it represents 15–20% of childhood

acute leukemias (Pui et al. 2004). Risks factors for acquiring AML include expo-

sure to ionizing radiation, benzene, and cytotoxic chemotherapy. Almost 15% of

patients with AML develop the disorder after the use of chemotherapy for solid

cancer treatment.

There are two main systems that have been used to classify AML: The French-

American-British (FAB) classification and the World Health Organization (WHO)

classification. Depending on the cell type from which leukemia develops and how
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mature the cells are, FAB system divides AML into subtypes from M0 to M7. On

the other hand, WHO classification is newer and defines subsets of AML based on

morphologic and cytogenetic characteristics (Table 1).

AML treatment options depend on the subtype as well as on the prognostic

features. However, in the last decades, chemotherapy has been the treatment of

choice, sometimes followed by allogeneic hematopoietic stem cell transplantation.

One of the major complications of chemotherapy is that the current drugs are highly

toxic and poorly tolerated, especially by older patients (Estey and D€ohner 2006). In
general, treatment for AML consists of induction chemotherapy (combination of

cytarabine and the anthracycline drugs), less frequently central nervous system

prophylaxis (to prevent CNS relapse), and post-remission therapy. Up to 70% of

patients will achieve remission with the induction protocol; however, if no further

post-remission is given, almost all patients will eventually relapse. Remission rates

and overall survival depend on different features among them: age of the patient,

cytogenetics (chromosomal aberration), secondary molecular changes within the

leukemic clone, previous bone marrow disorders (e.g., myelodysplasia), and

comorbid illnesses.

Table 1 WHO classification of AML

AML with certain genetic abnormalities AML with a t(8;21) RUNX1-RUNX1R1

AML with a t(16;16) or inv(16) CBFB-MYH11

AML with a t(9;11) MLL-AF9

APL (M3) with a t(15;17) PML-RARA

AML with a t(6;9) DEK-NUP214

AML with a t(3;3) or inv(3) EVI1-RPN1

AML (megakaryoblastic) with a t(1;22)

RBM15-MKL1

AML with myelodysplasia-related changes
AML related to previous chemotherapy or
radiation
AML not otherwise specified
Cases of AML that do not fall into one of

The above groups and is similar to the FAB

classification

Undifferentiated AML (M0)

AML without maturation (M1)

AML with maturation (M2)

Acute myelomonocytic leukemia (M4)

Acute monocytic leukemia (M5)

Acute erythroid leukemia (M6)

Acute megakaryoblastic leukemia (M7)

Acute basophilic leukemia

Acute panmyelosis with fibrosis

Myeloid sarcoma Also known as granulocytic sarcoma or

chloroma

Myeloid proliferations related to down
syndrome
Undifferentiated and biphenotypic acute
leukemias

Leukemias that have both lymphocytic and

myeloid features

Also called ALL with myeloid markers, AML

with

Lymphoid markers, or mixed phenotype acute

leukemias

t translocation, inv inversion
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Over the last few decades, the concept of differentiation therapy, whereby

immature cells may be stimulated to develop into their mature phenotype, aroused

considerable interest. Many efforts are in progress to evaluate new differentiation

drugs for the treatment of leukemia in which early hematopoietic progenitors

appear to exhibit maturation arrest. Treatment of acute promyelocytic leukemia

(APL) with the differentiation agents, vitamin A metabolite all-trans-retinoic acid

(ATRA) (Nowak et al. 2009) or arsenic trioxide (As2O3) (Chou et al. 2005), has

been successfully applied. In addition, factors that increase cAMP-mediated sig-

naling, such as cyclic nucleotide phosphodiesterase (PDE) inhibitors, augment the

ability of these approved therapies to induce differentiation in APL blast cells

(Lerner and Epstein 2006).

2 H2 Receptor Signaling and Physiology

The fact that classic antihistamines were not able to block histamine-induced

gastric secretion led the researchers to hypothesize the existence of a new histamine

receptor subtype (Ash and Schild 1966). Some years later, this hypothesis was

confirmed after the development of specific ligands able to block gastric acid

secretion (Black et al. 1972), naming this new receptor subtype as H2 receptor.

Numerous studies had found that H2 receptors act as potent stimulators of

intracellular cAMP accumulation (Leurs et al. 1995; Hill et al. 1997; Panula

et al. 2015). It has been demonstrated that the modulation of cAMP levels occurs

via the coupling and activation of Gαs G-protein subunit. This was experimentally

demonstrated by [α-32P]GTP labeling of Gαs subunits after receptor stimulation in

mammalian and insect cell expression systems (K€uhn et al. 1996; Leopoldt

et al. 1997), by using receptor-G-protein fusion chimeras, [35S]GTPγS binding,

and steady-state GTP hydrolysis (Kelley et al. 2001; Wenzel-Seifert et al. 2001).

In addition to Gαs coupling to adenylyl cyclase, H2 receptors couple to other

signaling systems. It has been shown that H2 receptors couple also to Gαq/11
proteins, resulting in inositol phosphate formation and increases in cytosolic Ca2+

concentration in some H2 receptor-expressing cells. Experiments equivalent to

those used to demonstrate receptor coupling to Gαs have shown that H2 receptor

can also activate Gαq proteins in both mammalian and insect cells (K€uhn
et al. 1996; Leopoldt et al. 1997). In gastric parietal cells, HL-60 cells, and

hepatoma-derived cells transfected with the canine H2 receptor cDNA, H2 receptor

stimulation has been shown to increase the intracellular free concentration of

calcium ions (Chew 1985, 1986; Malinowska et al. 1988; Mitsuhashi et al. 1989;

Chew and Petropoulos 1991; Delvalle et al. 1992; Seifert et al. 1992). Interestingly,

H2 receptor coupling to Gαq has been found in rat mammary carcinoma and

undifferentiated rat mammary cells and in human breast epithelial cell lines. In

these cases, the alternate coupling was correlated with the differentiation cell stage

suggesting a relationship between H2 receptor coupling to Gαq and the loss of a

regulatory mechanism of cell growth (Davio et al. 1995a, b, 2002).
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In addition, in CHO cells transfected with the rat but not human H2 receptor,

receptor stimulation produces both an increase in cAMP accumulation and an

inhibition of P2u-receptor-mediated arachidonic acid release (Traiffort

et al. 1992; Leurs et al. 1994). These observations suggest that these effects

might depend on the level of receptor expression or subtle differences between

clonal cell lines.

As many other GPCRs, H2 receptor signaling is tightly regulated by receptor

desensitization and internalization after agonist stimulation (Smit et al. 1996;

Fukushima et al. 1997). Desensitization of the H2 receptor involves both GPCR

kinases GRK-2 and GRK-3 but not GRK-5 or GRK-6 (Rodriguez-Pena et al. 2000;

Shayo et al. 2001). Remarkably, the regulation of the H2 receptor by GRK-2 relies

on a dual mechanism, while the kinase activity is implicated in receptor internali-

zation and recycling, the RGS (regulator of G-protein signaling) homology domain

of GRK-2 is responsible for H2 receptor desensitization (Fernandez et al. 2011).

Interestingly, GRK-2-mediated desensitization has proved to be involved in the

lack of hematopoietic cell maturation promoted by H2 receptor stimulation. When

GRK-2 is downregulated, H2 receptor-mediated cAMP response is higher and more

sustained, allowing cells to differentiate after treatment with H2 agonists

(Fernández et al. 2002). This fact results therapeutically relevant and will be

extensively discussed later. Concerning receptor internalization, a role of dynamin,

β-arrestin, and clathrin has also been reported (Fernandez et al. 2008), and the

GTPase dynamin has been identified as a binding partner for the H2 receptor, both

in vitro and in vivo (Xu et al. 2008).

Regulation of gastric acid secretion represents the paradigmatic function of

histamine that is mediated by the activation of H2 receptors. However, along the

years, several other functions of histamine were assigned to its action over H2

receptor. In addition to the stomach, the H2 receptor is expressed in the brain,

smooth and cardiac muscle cells, chondrocytes, endothelial and epithelial cells,

neutrophils, eosinophils, monocytes, macrophages, dendritic cells, and T and B

cells (Jutel et al. 2009).

Histamine has been typically considered an effector molecule for chronic and

immediate hypersensitivity (Pearce 1991). However, growing evidence suggest that

it is a potent modulator of the immune system. At low physiological concentrations,

histamine can act as an immunostimulant exerting its action mainly through H1

receptors. On the other hand, at higher concentrations, histamine released by

basophils, mastocytes, or tumor cells acts as immunosuppressor through H2

receptors, activating suppressor T cells and inhibiting T helper cytokine production

(Jutel et al. 2006). Histamine also inhibits the production of reactive oxygen species

(ROS) in isolated monocytes, neutrophils, and leukemic cells recovered from

patients with myelomonocytic and monocytic forms of AML (FAB classes M4

and M5) (Hellstrand et al. 1994; Ching et al. 1995; Reher et al. 2012; Aurelius

et al. 2012; Werner et al. 2014). This effect on ROS production has a great impact

on clinical use of H2 ligands to treat hematopoietic-related malignancies in general

and AML in particular and will be further discussed. Remarkably, it has been

reported that the effect on the oxidative burst of granulocytes and monocytes is
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not mediated by cAMP accumulation, and it has been provided substantial evidence

for ligand-specific conformations of the H2 receptor, suggesting that H2 receptor-

biased signaling might be an important concept to consider for clinical treatment

design (Reher et al. 2012; Werner et al. 2014).

3 Histamine Dihydrochloride and H2 Agonists
for the Treatment of Acute Myeloid Leukemia

Signs and symptoms of AML are caused by the lack of normal blood cells and their

replacement with leukemic cells. Although the leukemic cells themselves are

derived from white blood cell precursors, they have no infection-fighting capacity,

and therefore AML makes the patient susceptible to infections (Anderlini

et al. 1996).

The pathophysiology of AML permits to envisage at least two treatment

strategies, the most obvious and conventional involves chemotherapy, aiming to

kill malignant cells. However, due to the high toxicity and lack of specificity of

most chemotherapeutic agents, an alternative therapy has been suggested based on

the possibility of differentiate abnormal undifferentiated malignant cells to their

differentiated counterparts. This strategy allows acquiring the lineage specificity

and functional characteristics of mature cells. This approach is termed “differentia-

tion therapy” and is based on the hypothesis that many neoplastic cell types exhibit

reversible defects in the course of differentiation, which, upon appropriate treat-

ment, result in tumor reprogramming with a concomitant loss of proliferative

capacity and induction of terminal differentiation or apoptosis (Nowak et al. 2009).

As discussed before, histamine receptors have a role in immune cell life cycle

and differentiation (Jutel et al. 2006, 2009), making them suitable targets for the

treatment of AML. With varied results, both strategies are in different steps of

development. They are depicted in Fig. 1 and will be discussed below.

3.1 Histamine Dihydrochloride as Chemotherapy Complement

AML first-line treatment is primarily chemotherapy that is divided into two phases:

induction and post-remission (or consolidation) therapy. The goal of the first phase

is to reach a complete remission, meaning that no disease can be detected with

available diagnostic methods (i.e., to reduce the number of leukemic cells to an

undetectable level). The length of remission depends on the prognostic features of

the original leukemia, and although chemotherapy induces remission in up to 80%

of patients with de novo AML, in general, all remissions will fail without additional

consolidation therapy (Grimwade et al. 1998, 2001; Farag et al. 2006). Therefore,

more therapy is necessary to eliminate non-detectable malignant cells and prevent

relapse, that is, to achieve a cure.

Natural killer (NK) cells are an important component of the innate immune

system, providing first-line defense against virus-infected cells and tumors. NK
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cells are cytotoxic to AML blasts as demonstrated by the graft-versus-leukemia

effect in patients with leukemia after bone marrow transplantation (Lotzová

et al. 1987; Barrett 2008), and higher NK-mediated cytotoxicity has been reported

to result in higher leukemia-free survival (Lowdell et al. 2002). Moreover, there are

studies suggesting that NK cells may be compromised in AML (Costello

et al. 2002; Fauriat et al. 2007). These observations support the role of these cells

in AML progression and are suggestive about their prognostic value helping to the

accurate prediction of disease outcome.

In this regard, interleukin-2 (IL-2) is a key cytokine in the activation of T and

NK cells (Waldmann 2006), and it is indicated for the treatment of metastatic renal

cell carcinoma and metastatic melanoma (Proleukin®, Novartis Pharmaceuticals

Corporation). However, any significant advantage of the use of IL-2 over no

treatment could not be demonstrated in large, randomized trials in patients with

AML (Blaise et al. 2000; Baer et al. 2008; Pautas et al. 2010; Kolitz et al. 2014).

This lack of in vivo efficacy in patients can be attributed to “tumor-induced

immunosuppression” of NK cells (Hellstrand 2002). Tumor-associated

macrophages and leukemic cells recovered from patients with myelomonocytic

and monocytic forms of AML (FAB classes M4 and M5) convert oxygen into ROS,

and these free radicals create a reduced environment that impedes the activation of

Fig. 1 Histamine actions on leukemic cell fate. Histamine or H2 agonists increasing intracellular

cAMP levels are able to induce leukemic cell differentiation. To achieve the effect, GRK-2-

mediated H2 receptor desensitization, PDE-mediated cAMP degradation, and/or MRP4-mediated

second messenger efflux should be inhibited. Histamine is also able to inhibit macrophage and

leukemic cells ROS production allowing IL-2 activation of NK cells or T cytotoxic cells with the

consequent leukemic cell death. Arrows indicate activation, while dotted lines indicate inhibition
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NK cells, including that by IL-2 (Murdoch et al. 2004; Romero et al. 2009; Aurelius

et al. 2012).

The mechanism of action of histamine through H2 receptors in AML consists in

the inhibition of the activity of NADPH oxidase and the consequent production of

ROS by tumor-associated monocytes and by leukemic cells themselves, conferring

protection from tumor-induced immunosuppression (Hellstrand 2002; Romero

et al. 2009; Martner et al. 2010). Therefore, the addition of histamine

dihydrochloride to IL-2 enables the activation of T cells and NK cells by IL-2

(Hellstrand et al. 1994). In vitro studies have shown that this effect of histamine is

mimicked by the H2-specific agonist dimaprit and blocked by the addition of the H2

antagonists ranitidine or cimetidine (Hellstrand and Hermodsson 1986; Brune

et al. 1996). It is worth noting that IL-2 plays also a crucial role in Treg cells

boosting immune regulation. IL-2-dependent activation of NK and T cytotoxic cells

depends on the application of high doses of IL-2, while infusion of relatively low

doses of IL-2 seems to selectively produce Treg cells boosting immune suppressive

mechanisms (Malek and Bayer 2004). This balance between immune activation and

suppression by IL-2 should be considered when therapeutic schemes are to be

developed. In addition, it has been described that histamine acting on H2 receptors,

and independently of cAMP modulation, is able to decrease the high constitutive

activity of Akt2 in U937 cells (Werner et al. 2016). These observations are very

significant considering that phosphorylation of this kinase is crucial for the regula-

tion of numerous downstream targets involved in cell growth, proliferation, sur-

vival, differentiation, and metabolism (Martelli et al. 2009; Vivanco and Sawyers

2002). Since Akt activation promotes AML progression (Martelli et al. 2006;

Vivanco and Sawyers 2002) and it is associated with a shorter overall survival

(Gallay et al. 2009; Min et al. 2003), it cannot be discarded the inhibition of Akt2

activation as a complementary mechanism by which histamine achieves its effects

as a potential clinical treatment for post-remission therapy.

As a widely distributed local mediator and neurotransmitter, histamine acts on a

multitude of cell types in addition to cells of the immune system and blood cells,

including smooth muscle cells, neurons, and endocrine and exocrine cells, having

many systemic effects, mediated mainly by H1 and H2 receptors such as anaphy-

laxis, vasodilation, gastric acid secretion, and neurotransmission (Panula

et al. 2015). Consequently, the use of subcutaneous histamine dihydrochloride

may result in vasodilation and hypotension and other related adverse events.

Information about the tolerability of histamine dihydrochloride with or without

concomitant IL-2 was obtained from the phase III trial in patients with AML in

complete remission (Brune et al. 2006), reviews (Mekhail et al. 2000), and the EU

summary of product characteristics (http://www.ema.europa.eu). Since histamine is

a potent vasoactive agent, the use of histamine dihydrochloride has been frequently

(>30%) associated with flushing, headache, fatigue, and pyrexia (Hellstrand 2002).

Other less frequent vasodilatation-related adverse events include hypotension and

tachycardia (Martner et al. 2010). Because histamine dihydrochloride and IL-2 are

administered by subcutaneous injection, injection-site adverse events such as

injection-site granuloma and erythema may occur, and this type of reaction is the

F. Monczor et al.
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most common cause of dose reduction or treatment interruption (Brune et al. 2006).

Anyway, in the phase III trial, combined histamine dihydrochloride and IL-2

therapy had an acceptable tolerability profile.

At his point, histamine tolerability needs to be established in a wider AML

population, not restricted to stringent clinical trial inclusion criteria, and over the

longer term. Moreover, the use of specific H2 agonists instead of histamine could

constitute a genuine strategy to avoid undesired effects produced by the activation

of other histamine receptor subtypes. In conclusion, histamine dihydrochloride and

IL-2 as post-consolidation immunotherapy significantly prolonged leukemia-free

survival compared with no treatment having an acceptable tolerability profile and

seems to be a useful therapy option for adult patients with AML in remission.

3.2 H2 Histamine Ligands as Leukemic Differentiation Agents

As mentioned before, the aim of differentiation therapy is to reprogram neoplastic

cells with a treatment that suppresses the exacerbated proliferative capacity of

tumor cells and induces terminal differentiation or apoptosis. Differentiation induc-

tion as a therapeutic strategy has the greatest impact on hematopoietic

malignancies, most notably on leukemia.

Treatment of acute promyelocytic leukemia with differentiation agents such as

vitamin A metabolite all-trans-retinoic acid (ATRA) (Nowak et al. 2009) or arsenic

trioxide (As2O3) (Chou et al. 2005) has been successfully applied. In addition,

factors that increase cAMP-mediated signaling, such as cyclic nucleotide phospho-

diesterase (PDE)-4 inhibitors, augment the ability of these approved therapies to

induce differentiation in acute promyelocytic leukemia blast cells (Lerner and

Epstein 2006). Efforts to identify others and potentially more effective differentia-

tion inducers for the treatment of leukemia have remained a focus of major interest.

Cyclic AMP was the first second messenger reported, and since then numerous

studies have shown its participation in many physiological and/or pathophysiologi-

cal processes including cell cycle regulation. The signaling pathway mediated by

this cyclic nucleotide has emerged as a key regulator of blood cell proliferation,

differentiation, and apoptosis in malignant cell populations (Kobsar et al. 2008).

Cyclic AMP-elevating agents, including histamine H2 agonists, are able to

induce granulocyte differentiation in the human promyelocytic cell line HL-60

(Chaplinski and Niedel 1982; Nonaka et al. 1992). In M1 mouse myeloid leukemia

cells as well as in the human promonocytic leukemia U937 cell line, dibutyryl

cAMP (db-cAMP) but not H2 agonists induces cell maturation (Honma et al. 1978;

Shayo et al. 1997). In this regard, it was demonstrated the important role of the

kinetic of the cAMP signaling in U937 cell differentiation (Lemos Legnazzi

et al. 2000; Shayo et al. 2004). Interestingly, cAMP can also potentiate granulocytic

differentiation of ATRA- or arsenic trioxide-induced maturation of human APL

cells (Zhu et al. 2002; Guillemin et al. 2002; Nguyen et al. 2013).

Despite diverse extracellular signals activate GPCRs leading to an increase in

cAMP, signal specificity results from accurate adjustments at different levels of the
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cAMP-dependent pathway. Although cAMP is increased following H2 receptor

stimulation, in some leukemic cells differentiation fails to occur due to rapid

receptor desensitization. Recently, cAMP efflux across MRP transporters was

described in several systems as a regulator of intracellular cAMP levels modulating

biological responses (Osycka-Salut et al. 2014; Copsel et al. 2014; Ventimiglia

et al. 2015; Decouture et al. 2015). Both desensitization and extrusion processes

will be discussed below.

However, it is important to consider recent reports indicating that cAMP can

promote AML progression and protect myeloid leukemia cells against

anthracycline- and arsenic trioxide-induced apoptosis (Gausdal et al. 2013; Safa

et al. 2014). This suggests that the beneficial pro-differentiating and non-beneficial

pro-survival effects of cAMP should be weighed against each other.

3.2.1 H2 Receptor Desensitization Process as Pharmacological Target
Cyclic AMP is generated following the interaction of ligands with a receptor

coupled to a transducer G protein. The occupied receptor promotes the exchange

of GTP in the transducer, thus generating an activated subunit, which in turn

activates the effector adenylyl cyclase (Marinissen and Gutkind 2001). The activa-

tion of this membrane signal transduction machinery is transient because several

mechanisms are activated to terminate the stimulation and to return the cell to a

resting state. These include the phosphorylation of the receptor by different kinases

and the recruitment of β-arrestins, or inactivation of Gs via hydrolysis of GTP at a

rate controlled by the regulators of G-protein signaling (RGS) protein (Freedman

and Lefkowitz 1996). Activation of phosphodiesterases (PDEs) that are down-

stream of receptor/G-protein/effector coupling is an additional regulatory mecha-

nism that induces the termination of the stimulus distal to the generation of cAMP

(Conti et al. 1991).

Knowing that intracellular cAMP levels are important for leukemic differentia-

tion, it is reasonable to assume that by targeting the mechanisms that regulate its

intracellular levels, it would be possible to influence the ability of leukemic cells to

be differentiated. In this sense, a proof of concept was to stably overexpress H2

receptor to induce leukemic cell differentiation. In U937 cells, H2 receptor

overexpression triggered several mechanisms (namely, PDE activity induction

and GRK-2 overexpression) tending to restore cAMP basal levels comparable to

those of the naı̈ve cells. The results obtained in time-course, dose-response, and

desensitization experiments suggest that the mechanisms elicited as a consequence

of receptor overexpression are able to manage cAMP basal levels but are not able to

handle cAMP levels in stimulated conditions.

In spite of the onset of these regulatory mechanisms, the higher and sustained

increase of cAMP levels caused by H2 agonists in H2 receptor overexpressing U937

cells induces differentiation and hampers the proliferation of the overexpression

clone (Monczor et al. 2006). These findings provide new insights into the relevant

role of receptor stoichiometry in the effector regulation on cell behavior and further

suggest that this regulation may be externally manipulated to achieve beneficial

therapeutic effects in the future.
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There are seven members of the GRK family: GRK-1 through GRK-7. On the

basis of sequence homology, these can be classified into three groups: GRK-1 (also

known as rhodopsin kinase), GRK-2 and GRK-3 (also called β-adrenergic receptor
kinases 1 and 2), and finally GRK-4, GRK-5, GRK-6, and GRK-7. The mechanisms

by which GRK activity is regulated can be divided into three categories: subcellular

localization, alterations in intrinsic kinase activity, and alterations in GRK expres-

sion levels. Cytosolic GRK-2 and GRK-3 are translocated to the membrane after

receptor activation, in a process facilitated by the interaction with released Gβγ
dimers (Palczewski 1997; Penn et al. 2000). Although GRK-2, GRK-3, GRK-5,

GRK-6, and GRK-7 subtypes are ubiquitous, GRK-2 is particularly abundant in

peripheral blood leukocytes and in myeloid and lymphoid cell lines (Chuang

et al. 1992). GRK expression is tightly regulated and can be altered by different

extracellular factors (Penela et al. 2003). It has also been demonstrated that their

expression can be modified as a compensatory mechanism when the expression of

one member is modified (Fernandez et al. 2007).

In U-937 leukemic cell line, the decrease in GRK-2 expression correlates with an

increase of cAMP levels in response to different doses of H2 agonist, in time-course

cAMP accumulation experiments, and in desensitization assays. Hence, the reduc-

tion in GRK-2 expression determined a higher and prolonged cAMP response

mediated by H2 ligands allowing leukemic cell differentiation upon H2 agonist

treatment. These results establish an important correlation between duration and

intensity of a signal and cellular response, showing that as a consequence of

modulating the desensitization process, cells are able to switch from proliferation

to differentiation pathway (Fernández et al. 2002). Overall, it can be concluded that

GRK-2 plays a fundamental role modulating H2 receptor signaling and that this

kinase is to be considered a pharmacological target that, when intervened, is able to

determine cell differentiation.

Structurally, GRK-2 protein contains an N-terminal RGS-homology domain

(RH), a catalytic central domain (Kin), and a C-terminal region responsible for

membrane localization (Penela et al. 2003). More recent experiments showed that

the RGS domain and not kinase activity is necessary for H2 receptor desensitization

(Fernandez et al. 2011). This dual role of GRK-2 involving both functional domains

(Kin and RH) is depicted in Fig. 2.

3.2.2 Cyclic AMP Efflux Mediated by MRP4 as a Target in Acute
Myeloid Leukemia

Multidrug resistance protein 4 (MRP4) belongs to the C-branch of the superfamily

of ATP-binding cassette transporters (ABC, ABCC4). These transporters are capa-

ble of actively pumping a wide range of endogenous and xenobiotic substrates out

of the cells (Deeley et al. 2006). In particular, MRP4 has the ability to transport a

broad variety of drugs including antivirals (adefovir, ganciclovir, tenofovir),

antibiotics (cephalosporins), cardiovascular (thiazides, furosemide), and chemo-

therapeutic (methotrexate, 6-mercaptopurine, 6-thioguanine, topotecan) (Russel

et al. 2008). However, the pathophysiological actions of these proteins are quite

diverse, and transport of cytotoxic xenobiotics as a defense mechanism appears not
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to be the only important evolutionarily conserved function. Moreover, while several

members of the ABC family are established as drug transporters, others also

mediate transport of endogenous molecules. Indeed, MRP4 is capable of

transporting a wide range of endogenous and signaling molecules including folates,

bile acids, conjugated steroids, purine analogs, eicosanoids (prostaglandin E2,

thromboxane TXB2, and leukotriene B4), ADP, and cyclic and nucleotides

(cAMP and cGMP) (Russel et al. 2008). Remarkably, MRP4 is the major cAMP

efflux transporter, and as already said, this cyclic nucleotide is involved in the

regulation of cellular proliferation, differentiation, and apoptosis (Karin 1994).

Recently, MRP4 mRNA and protein expression were found to be regulated by

cAMP in Hela cells, vascular smooth muscle cells, megaloblastic leukemia M70e

cells, and pancreatic adenocarcinoma cell lines (Br€oderdorf et al. 2014; Carozzo
et al. 2015). MRP4 expression is regulated through a mechanism where the balance

between intracellular and extracellular cAMP plays a key role in the feedback

regulation of the transporter expression. Persistent cAMP intracellular levels induce

MRP4 promoter through the exchange proteins directly activated by cAMP

(EPAC)/Rap1 pathway, whereas extracellular cAMP inhibits it through ERK phos-

phorylation (Carozzo et al. 2015).

Fig. 2 Dual regulation of H2 receptor signaling by GRK-2. In the left panel, GRK-2 is able to

regulate H2 receptor signaling through the activity of two functional domains. While the domain

with kinase activity (Kin) phosphorylates the receptor in its C-term tail (circled Ps) inducing

receptor internalization and recycling, the RGS-homology domain (RH) directly interacts with the

G-protein inhibiting its activity. As mentioned in the main text, both processes modulate cAMP

receptor signaling and make of GRK-2 a suitable target for inducing leukemic cell differentiation.

In the right panel, as a consequence of GRK-2 downregulation or inhibition, H2 receptor signaling

is increased and sustained over the time
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Aside from physiological expression in blood cells, MRP4 has also been found

in human leukemia cell lines (Oevermann et al. 2009; Copsel et al. 2011; Takeuchi

et al. 2012). As in vitro it was clearly demonstrated that MRP4 confers resistance to

nucleoside analog drugs and promotes the efflux of cyclic nucleotides, it has the

potential to affect leukemia development and treatment. Therefore, in the last

decade, the potential clinical relevance of this transporter has been specially

examined in patients with AML. A clinical study for adult AML revealed the

expression of MRP4 in blast cells with significant variability. Higher protein levels

of this transporter were detected in the less differentiated FAB subtypes M0 and

M1; however, its expression has no influence on treatment outcome using

cytarabine. Furthermore, MRP4 expression did not correlate with remission rate

and overall and relapse-free survival (Guo et al. 2009). On the contrary, a phase II

clinical study in adult patients with AML in first relapse treated with gemcitabine

and mitoxantrona revealed that higher expression of MRP4 and solute carrier

family 29 member A2 correlated with not achieving complete remission (Advani

et al. 2010).

When 53 children with de novo AML were evaluated, MRP4 mRNA expression

was found in all patients. Nevertheless, as in adult AML, MRP4 in childhood AML

was not associated with the failure to achieve remission (Steinbach et al. 2003).

Recently, frequent copy number alterations of MRP4 were observed in de novo

AML, and variable expression of this transporter was detected among AML

subtypes from 155 pediatric patients. Although some authors found the highest

levels of MRP4 in the less differentiated AML subtypes, in this study, MRP4

expression was found to be higher in the M7 AML subtype (Lian et al. 2013).

As MRP4 is the major cAMP efflux transporter, current evidences suggest that

MRP4 is implicated not only in chemotherapy resistance but also in cancer biology.

Indeed, the mere genetic silencing or pharmacologic inhibition of MRP4 reduced

tumor growth in a xenograft AML model. Furthermore, MRP4 knockdown induced

cell cycle arrest and apoptosis in vivo (Copsel et al. 2014). As it was mentioned

above, the finding that MRP4 overexpression confers nucleoside analog drugs

resistance has strong implications for leukemia chemotherapy (Adachi et al. 2002).

In particular, MRP4 expression was detected in KG-1, HL-60, U937, KG-1a,

and AML cell lines, and its expression decreases during leukocyte differentiation

promoting cAMP accumulation in differentiated cells (Oevermann et al. 2009;

Takeuchi et al. 2012). In accordance, it was demonstrated that besides playing a

role in drug-resistant leukemia cell lines, MRP4 regulates leukemia cell prolifera-

tion and differentiation through the endogenous MRP4 substrate, cAMP (Copsel

et al. 2011). The signaling pathway mediated by this cyclic nucleotide has emerged

as a key regulator of blood cell proliferation, differentiation, and apoptosis in

malignant cell populations (Kobsar et al. 2008). Thus, H2 agonist when combined

with MRP4 and PDE4 inhibitors induces cell cycle arrest and maturation in U937

cells. By using two well-characterized MRP inhibitors such as probenecid and

MK571 in intact cells and membrane vesicles, it has been shown that MRP

inhibition further enhanced H2 receptor-induced intracellular cAMP concentration,

allowing cell growth inhibition and differentiation. MRP pharmacological
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inhibition or knockdown modified the intracellular content of cAMP concomitantly

with an accentuated decrease in the proliferative rate of U937 cells. This inhibition

was even more pronounced when MRP inhibitors were combined with cAMP-

stimulating agents, such as H2 receptor agonists (Copsel et al. 2011; Werner

et al. 2015).

Altogether these findings indicate that agents that modulate or mimic cAMP

levels should be considered as a new alternative strategy for AML treatment, either

alone or in combination with chemotherapeutic drugs.

4 Final Considerations

Histamine, as a wide distributed local mediator and neurotransmitter, mediates

many cell functions and its receptors are potential targets for the treatment of

several diseases. Hematopoietic cells express histamine receptors, and their modu-

lation has the potential to ameliorate their pathologies. Among years, histamine

ligands prove to be of clinical utility and are among the top marketed drugs around

the world. This did not prevent the search and finding of novel therapeutic uses,

providing promising results concerning cancer treatment, specifically involving

AML. Up to now, two main strategies have been pursued: the complementation

of chemotherapeutics to allow immune rejection of cancer cells in a graft-versus-

host type of reaction and the induction of differentiation of malignant cells to

eliminate abnormal cell proliferation and to induce terminal differentiation

recovering the functionality of the original tissue. Thus, the treatment with hista-

mine or H2 agonists in combination with IL-2 or GRK2, PDE4, or MRP4 inhibitors

represents a therapeutic scheme with great potentiality. The results obtained in

preclinical and clinical studies grant further research to achieve optimized

treatments with fewer side effects.
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