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Abstract. Coherence rephasing is an essential step in quantum storage
protocols that use echo-based strategies. We present a thorough analysis on how
two adiabatic rapid passages (ARPs) are able to rephase atomic coherences in
an inhomogeneously broadened ensemble. We consider both optical and spin
coherences, rephased by optical or radio-frequency (rf) ARPs, respectively. We
show how a rephasing sequence consisting of two ARPs in a double-echo scheme
is equivalent to the identity operator (any state can be recovered), as long as
certain conditions are fulfilled. Our mathematical treatment of the ARPs leads to
a very simple geometrical interpretation within the Bloch sphere that permits a
visual comprehension of the rephasing process. We also identify the conditions
that ensure the rephasing, finding that the phase of the optical or rf ARP fields
plays a key role in the ability of the sequence to preserve the phase of the
superposition state. This settles a difference between optical and rf ARPs, since
field phase control is not readily guaranteed in the former case. We also provide
a quantitative comparison between π -pulse and ARP rephasing efficiencies,
showing the superiority of the latter. We experimentally verify the conclusions
of our analysis through rf ARP rephasing sequences performed on the rare-earth
ion-doped crystal Tm3+:YAG, of interest in quantum memories.
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1. Introduction

Very recently, adiabatic rapid passages (ARPs) have drawn the attention of the optical quantum
storage community [1, 2], as they offer the possibility of rephasing atomic coherences. In
inhomogeneously broadened materials for quantum storage purposes, the fact that the atomic
coherences dephase is the key property that allows the storage. This is the case of echo-based
memories. At the same time, bringing the coherences back into phase is a necessity for retrieving
the stored information (see e.g. [3]). Both optical and spin coherences are usually involved in
the storage process. Optical coherences are needed to interact with the information-carrying
photons. Conversion to spin coherences is preferred in between the capture and the retrieval
stages of the storage protocol in order to take profit of their longer lifetime. In such schemes,
coherences of both types dephase and need to be rephased by optical and radio-frequency (rf)
means. The spin coherences are usually phased back together by the application of an rf π

pulse. However, disadvantages concerning π pulses have been pointed out. One is the need of
high field powers, which scale as the protocol bandwidth squared. Another one is the sensitivity
to the pulse area. Any departure from π is expected to affect the rephasing efficiency. Therefore,
several storage protocols avoid the use of π pulses, and the rephasing of optical coherences is
taken care of by other means [4–6]. However, some echo-based memories may involve the
active control of coherences by optical fields [7]. Then the use of optical π pulses is even more
problematic. Indeed an optical pulse is distorted as it propagates through the sample because
of light absorption [8]. As a consequence, the pulse area is no longer π after some threshold
depth in the sample, not to mention the transverse variation of intensity that alters the pulse area
uniformity across the light beam. These drawbacks have made researchers explore ARPs as an
alternative.

An ARP consists of a pulse whose frequency is chirped through a range that typically
goes from much lower to much higher frequencies than the ones in the inhomogeneous width
one wishes to rephase. The amplitude of the field can be either varied or kept constant (see
figures 3(g) and (h) below).

Adiabatic rapid passages have been extensively used in nuclear magnetic resonance (NMR)
through decades. Initially, in the early 1960s, it proved to be a means for intensity-insensitive
and frequency-selective adiabatic spin inversion [9]. Transfer to the optical domain came some
years later in the experiments by Loy [10, 11]. A rich investigation on pulse shape optimization
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(amplitude and phase modulation), from analytically [12–19] to numerically [16, 19–22] derived
or proposed methods, opened the way to increase the intensity insensitivity and/or the frequency
selectivity of the pulses.

In 1987, Kunz [23] approached the question of using ARPs for spin rephasing. He
highlighted the fact that rephasing is not possible with a regular ARP. Put in words more suitable
for the present context of quantum information storage, the reason he stated is the following:
the passage of the ARP leaves the spins with a phase that is a function of the spin transition
frequency of each particular atom. This phase needs to be compensated for in order to enable
spin refocusing. Kunz [23] and other research groups (see [24, 25] and references in [26]) raised
a variety of more complex pulses, generally combining regular ARPs or half ARPs as building
blocks, that provided phase compensation. However, rather early, Conolly et al [27] realized
that just adding a second identical ARP is enough to compensate for the phase induced by
the first, and they proved it experimentally. Here, words need to be carefully chosen not to
mislead the reader. The phase compensation occurs in the reference frame that rotates at the
instantaneous frequency of the rephasing pulse field, and still further clarification is needed for
the term phase compensation to be exact since that frame changes abruptly from the first to the
second ARP. In the laboratory frame, the term ‘phase compensation’ is not appropriate. The
picture is more complicated and we will discuss it in detail in the section that follows. In any
case, coherences can be rephased indeed by the application of two ARPs. The pulses need not
be consecutive, which allows for storage time. Rf realizations in the context of NMR can be
found in [19, 28, 29]. More recently, interest in ARPs has risen in the quantum information
community. Specific implementations for coherence rephasing have been demonstrated in both
the rf [1, 2, 30] and the optical [7] domains in the context of broadband quantum memories.
Nevertheless, recent applications of ARPs are not limited to their rephasing capabilities. Their
use for optical-to-spin coherence transformation and back has been theoretically studied in [31],
showing that they preserve the collectivity of the superposition state of an atomic ensemble (i.e.
the phases of each of the components involved in a Dicke state). Other kinds of adiabatic pulses,
which satisfy the adiabatic condition (to be defined later) but which do not involve frequency
chirps, have also been developed. The Stark-chirped rapid adiabatic passage compensates
for the difficulty of chirping short (nanosecond) optical pulses by inducing a time-varying
shift in the atomic transition through a far off-resonance adiabatic optical pulse. Another
time-delayed close-to-resonance adiabatic pulse performs the population transfer between two
optical states [32, 33]. As another example, the stimulated Raman adiabatic passage relies on
the adiabatic variation of the amplitude of two detuned and time-delayed pulses to generate
a population transfer between two spin states by optical means (see [34] and references
therein).

Two papers provide enlightening analysis of how rephasing by two ARPs happens. These
are [26], by Hwang and Shaka, and [35], by de Graaf and Nicolay. The latter authors use the
most spread-out approach in NMR, that is, three-dimensional (3D) geometrical representations
of the trajectory of the effective magnetic field (the control vector, in a language better suited to
this paper) and that of the magnetization vector (the Bloch vector) under the effect of the former.
Hwang and Shaka proposed a much more concise approach by choosing a rotation matrix
treatment of the effect of each ARP. Then, a rephasing or any other sequence is constructed
as the product of the rotation matrices corresponding to the building blocks. In this way,
conclusions can be drawn very easily: to know the effect of a given sequence one just needs
to identify the rotation (axis and angle) its associated matrix represents. However, in Hwang
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and Shaka’s case of study (suppression of the huge water resonance to improve the quality of
NMR spectra) only the average magnetization was of interest. Very early in their calculation, an
integral is performed over the inhomogeneous width (artificially created from a homogeneous
line through field gradient pulses applied only during the free evolution stages of the echo
sequence). Therefore, the evolution of each frequency class through the sequence cannot be
traced. Moreover, as there was no inhomogeneous broadening during the ARP pulse (the field
gradient is off), the analysis of the effect of the latter on different frequency classes was not of
interest. Furthermore, the building block in their computation of the ARP-based double-echo
sequence was taken as τ–ARP–τ (where τ represents a free evolution interval of length τ ), so
the effect of just an ARP was not individualized. To summarize, Hwang and Shaka’s approach,
although inspiring, is not well suited in the context of quantum storage, where one wishes to
know the exact evolution of each component of a Dicke state through each step of the storage
protocol.

In this paper, we propose a matrix treatment of the rephasing sequence involving two ARPs,
in the Bloch sphere formalism. Unlike Hwang and Shaka, we will analyse each frequency
class individually and the effect of each single operation in the sequence. We will start by
revisiting and extending the analysis of the matrix computation for one ARP only, already
undertaken in previous work by some of the authors of the present one [1]. Later, we will
make use of the ARP matrix to build up the matrix associated with a rephasing sequence.
We will see that this matrix approach allows a simple understanding of how the rephasing
works and why two ARPs are needed to rephase an inhomogeneously broadened ensemble
of atomic coherences. A geometrical interpretation derived from the matrix treatment will
provide a visual comprehension of the process. We will draw comparisons with π pulses and
regular π -pulse-based echo sequences in terms of rephasing efficiencies. We will also analyse
the role of the rephasing field phase, as well as the phase preservation characteristics of the
ARP-based rephasing sequence, particularly relevant for quantum memories. At this point, a
significant distinction between rf and optical rephasing will be highlighted, originating in the
different capabilities each technology provides for controlling the (rf or optical) field phase.
We will present experimental verification of the critical conditions that enable rephasing.
Rf spin rephasing experiments are performed on a rare-earth ion-doped crystal, a thulium-
doped YAG, a material that has been actively studied as a candidate for quantum memories
[36–38].

The paper is organized as follows. In a theoretical section, we will deal with the derivation
of the matrix expression for an ARP from the Bloch equations, the matrix construction of
a two-ARP rephasing sequence, the comparison with π pulses and considerations on phase
preservation. The experiments will be presented in section 3. Finally, some concluding remarks
will be given.

2. Theory

The ARP matrix will be derived thanks to successive frame changes. The first one is well known
and uses the rotating frame within the rotating wave approximation (RWA). It allows an accurate
and consistent relation between the excitation field phase and the atomic state phase. The second
frame change takes the tipping control vector as a polar axis. It provides a simpler interpretation
of the different angles in our geometric interpretation.
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2.1. One adiabatic rapid passage

2.1.1. The ARP matrix. In this section, we aim at obtaining a matrix expression for an ARP. We
will disregard decoherence effects. In what follows, we will use the Bloch sphere representation
for the dynamics of a two-level system, whose states will be denoted by |a〉 and |b〉, in
interaction with an external oscillating field A(r, t). The field can be either electric or magnetic,
depending on the nature of the ARP, optical or rf, respectively. In such representation, the two-
level system state is expressed by the Bloch vector B defined as

[B]R =

 ρab + ρba

i(ρba − ρab)

ρbb − ρaa

 , (1)

where ρi j represents the element 〈i |ρ| j〉 of the density matrix operator ρ and the notation [ ]R

indicates that the vector coordinates are given in the laboratory reference frame R of Cartesian
axes û, v̂, ŵ. We express the field as

A(r, t0 + t) =A0(t) cos (ω0t + φ(t)) , (2)

where A0(t) is a real vector, ω0 and φ(t) are real quantities and t0 is the central instant of the
ARP. In the Bloch sphere representation, the parameters that define the field compose the control
vector in the following way:[

β̃(t0 + t)
]

R
=

2�(t) cos (ω0t + φ(t))
0

ωab

 , (3)

where �(t) is the Rabi angular frequency of the field and ωab = (Eb − Ea)/h̄ is the angular
frequency of the transition between states |a〉 and |b〉 of energies Ea and Eb, respectively. In the
case of an optical field, we have �(t) = µab · A0(t)/h̄, with µab = 〈a|er|b〉 the electric dipole
moment of the transition (−e is the electron charge). We have chosen the relative phase of states
|a〉 and |b〉 so that µab is real. Thus, � is real as well. In the case of a magnetic field, we have
� = γ B1, where γ is the gyromagnetic factor and B1 is the component of the oscillatory field
perpendicular to the quantization axis.

In the Bloch sphere representation, Schrödinger’s equation takes the simple form

Ḃ(t) = β̃(t) ×B(t) (4)

in the absence of decoherence. Equation (4) describes the precession of B around β̃. The last
statement might mislead the reader to think that the dynamics of B are rather simple. As a matter
of fact, β̃(t) is a vector that oscillates at frequency ω0 + φ̇(t). Therefore, a vector precessing
around it describes a complicated trajectory.

The picture becomes simpler if we change to a reference frame where the unit vector
ˆ̃
β = β̃/|β̃| is static. We will perform the transformation in two steps. First, we will change
from the laboratory frame R to the reference frame R′ that rotates around the vertical axis at
frequency ω0 + φ̇(t) with phase φ(0) at t = 0. R′ is known as the rotating frame. The matrix

C1(t) =

 cos(ω0t + φ(t)) sin(ω0t + φ(t)) 0
− sin(ω0t + φ(t)) cos(ω0t + φ(t)) 0

0 0 1

 (5)

performs the frame change from R to R′ through the operation [B(t0 + t)]R′ = C1(t)[B(t0 +
t)]R. This change of reference frame is equivalent to applying the transformation
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ρab(t0 + t) 7→ ρ ′

ab(t0 + t) = ρab(t0 + t) exp(−i(ω0t + φ(t))), ρi i 7→ ρ ′

i i = ρi i (with i = a, b) to the
density matrix. As regards the control vector, its coordinates in the frame R′ are given by[

β̃(t0 + t)
]

R′

=

�(t) [1 + cos(2(ω0t + φ(t)))]
−�(t) sin(2(ω0t + φ(t)))

ωab

 . (6)

Taking the RWA, the above expression reduces to[
β̃(t0 + t)

]
R′

=

�(t)
0

ωab

 . (7)

The Bloch vector dynamics in frame R′ are ruled by[
Ḃ(t)

]
R′

=
[
Ḃ(t)

]
R
− (ω0 + φ̇(t))ŵ×B(t)

= β̃(t) ×B(t) − (ω0 + φ̇(t))ŵ′
×B(t)

= β(t) ×B(t) (8)

with a new control vector β defined as

[β(t0 + t)]R′ =

 �(t)
0

1 − φ̇(t)

 (9)

and 1 = ωab − ω0. The dynamics of B in frame R′ given by (8) are much simpler than in frame
R. Indeed, in R′ and under the RWA, the fast oscillatory behaviour of the control vector has
been ruled out. What is left is just its smooth variation as �(t) and φ̇(t) evolve during the ARP.
The smoothness of that variation is ensured by the adiabatic condition to be described shortly.
The Bloch vector now precesses around the slowly varying axis β̂(t) with angular frequency
|β(t)|.

In an ARP, the frequency of the external field is varied through a wide range, from values
much smaller than ωab to values much larger than ωab (or inversely, depending on the sign of
φ̈). In an ideal positively chirped ARP, the instantaneous detuning of the external field from
the atomic frequency, 1 − φ̇(t), varies from ∞ to −∞. At the same time, �(t) stays bounded,
i.e. |�(t)| � ∞. Therefore, in the course of the ARP, the unit vector β̂(t0 + t) somehow goes
from ŵ′ to −ŵ′, with ŵ′ the vertical axis of frame R′ (ŵ′

≡ ŵ). The exact trajectory and
instantaneous angular velocity of [β̂(t0 + t)]R′ will depend on the specific way in which �(t)
and φ̇(t) are varied during the ARP, as well as on the detuning 1. The simplest case, occurring
for a constant �, a linearly chirped frequency (φ(t) = r t) and zero detuning halfway through
the ARP (1 = 0), is depicted in figure 1. The precession of the Bloch vector is also represented.

We mentioned above that a second change of the reference frame is useful to further
simplify the trajectory of the Bloch vector. In this case, we will change from R′ to a reference
frame R

′′

where the vertical axis ŵ′′ is instantaneously parallel to β(t0 + t). This can be achieved
through the matrix

C2(t) =

cos θ(t) 0 − sin θ(t)
0 1 0

sin θ(t) 0 cos θ(t)

 , (10)
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Figure 1. Bloch sphere scheme of an ARP satisfying 1 = 0 and
|�(±T/2)/φ̇(±T/2)|�1. We have chosen φ̇(t) = r t with r > 0 and �(t) =

�. At t = −T/2, the control vector β points upwards. The control vector
slowly starts turning upside down. During the lapse −�/(2φ̇(−T/2))T . t .
�/(2φ̇(−T/2))T , the control vector stays off the vertical axis. This is a very
small fraction of T given the assumption mentioned above. Halfway through
the passage, the control vector is in the equator. At the end of the passage, the
control vector points downwards. All throughout the passage, the Bloch vector
precesses around the control vector, describing the cones shown in the figure. On
each snapshot, the Bloch vector is represented at an arbitrary position within the
cone.

which ensures [B(t0 + t)]R′′ = C2(t)[B(t0 + t)]R′ . The angle θ(t) is defined as

cos θ(t) =
1 − φ̇(t)[

�(t)2 + (1 − φ̇(t))2
]1/2 , sin θ(t) =

�(t)[
�(t)2 + (1 − φ̇(t))2

]1/2 (11)

and is sketched in figure 1. In R
′′

, β(t0 + t) takes the form

[β(t0 + t)]R′′ =

 0
0[

�(t)2 + (1 − φ̇(t))2
]1/2

 . (12)

Thus [β̂]R′′ is static. The dynamics now become[
Ḃ(t)

]
R′′

=
[
Ḃ(t)

]
R′

− θ̇ (t)v̂′
×B(t)

=
[
β(t) − θ̇ (t)v̂′

]
×B(t). (13)

The dynamics simplify under the adiabatic approximation. It assumes that B essentially
precesses around β, i.e.

θ̇ (t)2
�|β(t)|2 (14)

or, equivalently,∣∣∣∣∣�̇(t)(1 − φ̇(t)) + �(t)φ̈(t)[
�(t)2 + (1 − φ̇(t))2

]3/2

∣∣∣∣∣ < 1. (15)

The adiabatic approximation assumes that the precession rate (generalized Rabi frequency)
is much faster than the control vector tipping rate. The condition is usually found in the literature
expressed as

�2

r
>1 (16)
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obtained for the worst-case scenario (1 = 0) occurring for a chirp such that �̇ = 0 and φ̈(t) = r
(linear chirp).

If (15) is valid, the dynamics reduce to[
Ḃ(t)

]
R′′

= β(t) ×B(t). (17)

Integration yields

[B(t0 + tb)]R′′ = U (tb, ta)[B(t0 + ta)]R′′, (18)

U (tb, ta) =

cos χ(tb, ta) − sin χ(tb, ta) 0
sin χ(tb, ta) cos χ(tb, ta) 0

0 0 1

 , (19)

χ(tb, ta) =

∫ tb

ta

[
�(t ′)2 + (1 − φ̇(t ′))2

]1/2
dt ′, (20)

where χ(tb, ta) represents the total precession angle.
We have now gathered all the necessary elements to build a matrix expression for an ARP.

The matrix associated with an ARP connecting the initial and the final states is

MARP = C1(T/2)−1C2(T/2)−1U (T/2, −T/2)C2(−T/2)C1(−T/2) (21)

with T the duration of the ARP. Due to the inclusions of C1 and C2, MARP acts on the reference
frame R. It is worth noting that C1 and C2 are only necessary to be known at the instants of the
beginning and end of the ARP.

2.1.2. Far off-resonance initial and final conditions. As we have said above, an ideal ARP
is the one where β departs from ŵ′ at t0 − T/2 and reaches −ŵ′ at t0 + T/2, in the case of a
positive chirp (from lower to higher frequencies). We can simply understand that by analysing
the case of an ARP-driven population inversion experiment. The Bloch vector is initially parallel
to ±ŵ′. The ARP will most efficiently drive the Bloch vector all the way to the ∓ŵ′ direction
only if β is initially parallel (or anti-parallel) to B and remains so all throughout the passage. In
practical realizations, this condition is most closely satisfied if∣∣∣∣ �(±T/2)

1 − φ̇(±T/2)

∣∣∣∣ � 1. (22)

The detuning should be larger than the Rabi frequency or, in other words, the initial and
final excitations should be far off-resonance. The expression has to be satisfied for any atomic
detuning 1 within the inhomogeneous broadening 0inh.

If (22) is satisfied, the matrices C2(−T/2) and C2(T/2) reduce to

C2

(
−

T

2

)
= I, C2

(
T

2

)
=

−1 0 0
0 1 0
0 0 −1

 . (23)

Therefore, the mathematical treatment of the ARP matrix (21) will simplify significantly.
In what follows, we will assume (22) is valid.
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2.1.3. Eigensystem. In section 2.1.1, we have deduced an analytical expression for the ARP
matrix. However, we still do not have a feeling of what the effect of MARP is when applied to
an arbitrary Bloch vector. For getting it, we will calculate its eigensystem MARPai = λi ai . The
eigenvalues and eigenvectors are

λ1 = −1, λ2 = −1, λ3 = 1,

a1 =

0

0

1

 , a2(1) =

cos(ϕ(1))

sin(ϕ(1))

0

 , a3(1) =

cos(ϕ(1) + π

2 )

sin(ϕ(1) + π

2 )

0

 (24)

with

ϕ(1) =
1

2

[
−χ(1) + φ

(
−

T

2

)
+ φ

(
T

2

)]
. (25)

We see from the set of eigenvalues that MARP is a rotation matrix of angle π . The rotation axis
is a3. This is the first relevant conclusion of our analysis: the effect of an ARP on a Bloch vector
is equivalent to that of a π rotation about an axis contained in the equatorial plane of the Bloch
sphere. This in no way means that the Bloch vector actually performs this rotation. As we have
discussed above, in the frame R′, the Bloch vector precesses around the control vector as this
one goes from ŵ′ to −ŵ′. To get the motion in the frame R, we still need to compose that
motion with the rotation about ŵ involved in the R to R′ frame change. Indeed, the trajectory
of the Bloch vector is much more complex than a π rotation. However, if we take snapshots of
the Bloch vector right before and right after an ARP, a π rotation about an axis contained in the
equatorial plane of the Bloch sphere links the two pictures.

It is important to note that the rotation axis not only depends on parameters of the ARP
pulse, such as φ(±T/2) or the time profile of �(t) and φ̇(t). It also depends on the transition
frequency of the two-level system through χ . We have highlighted this dependence by stating
explicitly in (25) that χ and, hence, ϕ and a3 are functions of 1. This becomes relevant when
dealing with an inhomogeneously broadened ensemble. In such a case, each frequency class
experiences a π rotation about a different axis, although all of these axes are contained in the
equatorial plane of the Bloch sphere. For a given frequency class, the specific orientation of the
rotation axis is determined by χ(1).

2.1.4. Comparison with a π pulse. The ARP feature of being equivalent to a π rotation about
an axis contained in the equatorial plane reminds us of a π pulse. In the latter case, if the external
field is perfectly tuned to the two-level system, the Bloch vector performs a π rotation about an
axis contained in the equatorial plane. The differences between an ARP and a perfectly tuned π

pulse are, firstly, the rotation axes (except if the parameters for the ARP are especially chosen)
and, secondly, the fact that the Bloch vector does perform the rotation in the case of the π pulse.

Aside from that, the main dissimilarity between an ARP and a π pulse rises when it comes
to consider a spectral distribution of two-level systems. The dependence of these pulses on the
detuning is quite different. In the case of an ARP, we can see from (24) that the rotation axes
for a range of 1 values span out on the equatorial plane. Nonetheless, the rotation angle is
π for all the two-level systems, despite their detuning. On the other hand, in the case of a π

pulse, the rotation axes for a range of 1 values fan out on a vertical plane, let us say, the plane
u′w′. Moreover, the rotation angle is not π for everybody. It is rather given by the expression∫
(�(t)2 + 12)1/2 dt , that reduces to [1 + (1/�)2]1/2π for a square pulse. The point is to analyse
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how one and the other kind of dependence on 1 impacts on the result of a sequence containing
either an ARP or a π pulse.

Photon or spin echo. One of the most current uses of a π pulse is the photon or spin echo,
where the point is to rephase an inhomogeneous distribution of two-level systems. Starting
from a set of Bloch vectors oriented along, let us say, the v̂′ direction, the echo sequence,
consisting of a waiting time τ , a π pulse and another waiting time τ (symbolized τ–π–τ ), is
ideally intended to yield −v̂′-oriented Bloch vectors. For the application of such a sequence
to a detuned two-level system, we will define the rephasing error επ as the angle between the
equatorial component of the final Bloch vector for the case 1/� � 1 and the final Bloch vector
of the atom in resonance with the field. It can be shown that |επ | scales as (1/�)2 (the exact
expression for a square pulse is επ = sin(21τ)(1/�)2).

Due to the similarities between the ARP and the π pulse, it is valid to ask oneself whether
the former can be used as a rephasing pulse in an echo experiment. Rephasing, if it occurs, will
not necessarily happen with the Bloch vectors parallel to −v′. The direction of the rephased
Bloch vectors will rather be the one the resonant vector takes at the end of the sequence. In any
case, simple arguments immediately tell us that an ARP in an echo sequence does not seem a
clever choice. As the orientation of the Bloch vector in the equatorial plane is a crucial issue in
the rephasing experiment, an axial operation whose axis is variably oriented in the equatorial
plane, as an ARP, will evidently not work. Let us now consider quantitative arguments. For the
sequence τ–ARP–τ , we define εARP in the same way as we did for a π pulse. Simple calculations
yield that εARP scales as 12/r , where r is the mean value of the chirp rate φ̈(t) (the equality
εARP = 12/r is obtained for a linearly chirped ARP). Due to the adiabatic condition (16), we
deduce that |εARP| � (1/�)2

∼ |επ |. We conclude that an ARP is unsuited for substituting a
π pulse in a regular echo sequence. At least, it will be much less efficient than the standard π

pulse.

Population inversion. Another purpose for which π pulses and ARPs are often used is
population inversion. Let us compare the performances of both pulses. In this case, we will
define ε as the angle between the final Bloch vector and the desired vertical direction. For an
ARP we have εARP = 0 since, as we have seen, the ARP can be viewed as a π rotation about a
horizontal axis as long as (22) and (15) are satisfied. As regards the π pulse, for small 1/� we
get επ ' 21/�. It is clear, then, that the choice for population inversion purposes will be an
ARP rather than a π pulse.

2.2. Rephasing by two adiabatic rapid passages

2.2.1. The rephasing sequence matrix. As we have seen in the previous section, an ARP is
not able to rephase an inhomogeneously broadened ensemble of two-level systems unless 0inh

is small enough or the chirp is fast enough to fulfil 02
inh/r � 1. It is known [1, 2, 19, 27],

however, that two ARPs can produce the rephasing without any stringent condition other than
the fulfilment of (15) and (22) for the individual ARPs. In this section, we will analyse how the
rephasing by two ARPs happens.

Once again, we prefer to make use of the matrix representation of the process. The
sequence to be considered is the following: the coherences are created at t = 0, the system
evolves freely during a time τ1, a first ARP (henceforth called ARP A) is applied between
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tA − TA/2 = τ1 and tA + TA/2, the system evolves freely again during a time τ2, a second ARP
(henceforth called ARP B) is applied between tB − TB/2 = τ1 + τ2 + TA and tB + TB/2, the system
evolves freely during a time τ3. We read the coherence at instant t = τ1 + τ2 + τ3 + TA + TB . The
matrix associated with the sequence is

L = F(τ3)MARPB F(τ2)MARPA F(τ1) (26)

with

F(τ ) =

cos(ωabτ) − sin(ωabτ) 0
sin(ωabτ) cos(ωabτ) 0

0 0 1

 (27)

the matrix for the free evolution time τ in frame R, and

MARPJ = [C1,J (TJ/2)]−1 [C2 (TJ/2)]−1 UJ (TJ/2, −TJ/2) C2 (−TJ/2) C1,J (−TJ/2) (28)

the matrix for the ARP J = A, B. We have included the subindex J in C1 to indicate that
for each ARP, the matrix in (5) is to be calculated using the parameters ω0 and φ of ARP
J , henceforth noted as ω0,J and φJ (subindexation is made extensive to all the other ARP-
dependent quantities). As for C2, the subindex is unnecessary since we consider that (23) is
valid for both ARPs.

The matrix computation of L in (26) yields

L =

cos α − sin α 0
sin α cos α 0

0 0 1

 (29)

with

α = ωab(τ1 − τ2 + τ3) − χB(1B) + χA(1A) + φB(−TB/2) + φB(TB/2)

− φA(−TA/2) − φA(TA/2)

= ωab(τ1 − τ2 + τ3) + 2 [ϕB(1B) − ϕA(1A)] . (30)

We see that L is a counterclockwise rotation about ŵ of an angle that depends on parameters of
the ARPs but also on the atom transition frequency. For the sequence to succeed in rephasing an
inhomogeneous distribution, we need to get rid of the dependence on ωab. This can be achieved
by setting

τ3 = τ2 − τ1, (31)

χA(ωab − ω0,A) = χB(ωab − ω0,B) ∀ ωab ∈ 0inh, (32)

which leaves

α = φB(−TB/2) + φB(TB/2) − φA(−TA/2) − φA(TA/2). (33)

Fulfilling (31) is trivial: it is enough to set τ2 > τ1 and to impose the rephasing instant a
time τ2 − τ1 after the second ARP (note that τ1 = 0 or τ2 = 0 or τ1 = τ2 = τ3 = 0 are possible
situations; experimentally rf circuit and rf amplifier rise-times impose τi > 1 µs). As for (32),
the simplest way to satisfy it is to use identical amplitude time profiles and identical frequency
chirps for both ARPs. The phases need not be identical, though. Actually, it is the relative phase
between ARPs both at the beginning and at the end of the pulses that determines the rotation
angle of L or, in other words, the phase of the rephased coherence. If the phases of the ARP
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Figure 2. Field profile for two linearly chirped ARPs of constant �. The chirp
rate, chirp range and field amplitude are the same for both ARPs. (a) Both ARPs
have the same phase, i.e. φA(±T/2) = φB(±T/2). This sequence gives phase
preservation rephasing. (b) The ARPs have different phases, i.e. φA(±T/2) 6=

φB(±T/2). This sequence adds a phase factor to the rephased coherences.

fields are also equal, which makes the second ARP just a time-shifted version of the first, L is
the identity matrix. Another way of retrieving the identity matrix is to design the ARPs such
that φJ (TJ/2) + φJ (−TJ/2) = 2nπ , with n an integer.

2.2.2. Phase preservation. The above point about relative phases introduces a difference
between rf and optical rephasing. Current rf technology permits accurate and arbitrary control
not only of the amplitude but also of the phase of the rf field. The production of two identical
pulses, identical in both their envelope and carrier, as depicted in figure 2(a), is straightforward.
Spin rephasing with such ARPs preserves the phase of the initial superposition state (L = I).
On the other hand, the phase of an optical field is trickier to control. The current state-of-the-
art optical metrology offers to accurately lock a monochromatic cw laser on a stable reference
(stable cavity or atomic reference, eventually disseminated by a frequency comb). The optical
ARP pulses can then be produced from acousto-optical modulation, and the external modulator
allows one to control the relative phase between pulses. So the same situation as for the rf case
is found. However, if the laser coherence time is shorter than the rephasing sequence, no phase
control can be applied and the phase of the rephased coherence will be random. This is the
situation sketched in figure 2(b).

For the processing or storage of quantum information encoded in the phase of the carrier
photons (i.e. time-bin qubits), the above considerations become relevant.

Having said that, we must prevent the reader from thinking that phase randomization can
be avoided by preferring storage in the spin coherences. Access to those coherences, either
by conversion from optical ones or by electromagnetically-induced transparency, involves the
application of additional external light pulses. The random phase of those pulses results in phase
randomization of the retrieved qubit as well.

2.2.3. Geometric interpretation. The rephasing process by two ARPs is easily understood by
means of a simple geometric picture. We will go through the steps of the rephasing sequence
analysing their action on the Bloch sphere. We will content ourselves with a 2D picture of
what happens in the equatorial plane. In other words, we will only consider the effect of
these operations on the projection of the Bloch vector onto the uv plane. As we concluded
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Figure 3. (a)–(f) Two-dimensional (2D) geometrical representation of rephasing
by two identical ARPs. The plane uv is the equator of the Bloch sphere. The
initial vector B0 (a) describes a first rotation of angle θ1 = ωabτ1 during the
first free evolution period (b). Then, the first ARP applies a reflection in axis
s leading from B1 to B2 (c). A second rotation of angle θ2 = ωabτ2 follows,
corresponding to the second free evolution period (d). The Bloch vector gains
position B3. From there, the second ARP takes it to B4 by means of a reflection
in axis s (e). Finally, the last free evolution period applies a rotation of angle
θ3 = ωab(τ2 − τ1) that leaves the Bloch vector at its initial position (f). (g), (h)
Amplitude (g) and frequency (h) time dependences of the rephasing field.

in section 2.1.3, the effect of one ARP can be mapped in the Bloch sphere to a π rotation
about an axis contained in the equatorial plane oriented at a counterclockwise (positive) angle
ϕ(1) = 1/2 [−χ(1) + φ (−T/2) + φ (T/2)] from the axis v̂ (see (24) and (25)). The 2D version
of this operation is a reflection in the mentioned axis. We will restrict ourselves to the case of
two totally identical ARPs. Then, the rotation (3D) or reflection (2D) axis is the same for both
ARPs. We will note this axis s, as shown in figure 3.

Figure 3 shows, with very simple elements, how rephasing by two ARPs works. We will
start from a Bloch vector B0 initially oriented along v̂ (figure 3(a)). From the geometrical point
of view, the rephasing sequence consists of the following (see figure 3):

(i) The first free evolution period: a rotation of θ1 = ωabτ1. This leads from B0 to B1

(figure 3(b)).

(ii) The first ARP: a reflection in axis s. This leads to B2 (figure 3(c)).

(iii) The second free evolution period: a rotation of θ2 = ωabτ2. This leads to B3 (figure 3(d)).

(iv) The second ARP: a second reflection in axis s. This leads to B4 (figure 3(e)).

(v) The third free evolution period: a rotation of θ3 = θ2 − θ1. The Bloch vector regains its
initial position B0 (figure 3(f)).

At instance (iv), we see that, to recover the initial vector B0, all we need to do is to let B4

describe an angle θ2 − θ1. That is equivalent to condition (31), compulsory for the rephasing to
take place, and is exactly what instance (v) is about.

New Journal of Physics 15 (2013) 055024 (http://www.njp.org/)

http://www.njp.org/


14

In figure 3, our choice of the angles ϕ, θ1 and θ2 has been totally arbitrary. Had we chosen
a different set of angles, the result would have been the same. As s, θ1 and θ2 are determined by
ωab, this proves that every Bloch vector in the inhomogeneous broadening regains its position
of departure. This guarantees rephasing. In other words, we see from figure 3 that L|2D, the
restriction of L to the equatorial plane, satisfies L|2D = I2×2.

Regarding the Bloch vector vertical component, which we have neglected so far, the two
3D π rotations combine to leave it unaffected. Hence, L = I.

If we consider ARPs with different phases (non-vanishing relative phase), the geometric
interpretation becomes a little trickier because two different axes sA and sB are involved.
Anyway, it is not hard to convince oneself that L is a rotation about ŵ of angle 2(ϕB − ϕA) =

φB(−TB/2) + φB(TB/2) − φA(−TA/2) − φA(TA/2), just as in (33).

2.2.4. Comparison with π -pulse rephasing. As stated in section 2.1.4, the error associated
with rephasing by a π pulse scales as (1/�)2. The same behaviour is found for ε2π , the error
corresponding to a rephasing sequence with two π pulses, either of the same or opposite rotation
axis (the errors for these two cases differ at higher order of 1/�). In fact,

ε2π = [(sin(21τ1) − sin(21(τ2 − τ1)) − 2 sin(1τ2) + 2 sin(1(τ2 − 2τ1))]

(
1

�

)2

. (34)

In contrast, rephasing by two ARPs is 1-independent as long as (22), (15) and (32) are fulfilled.
Therefore, its associated error, ε2ARP, is zero.

For an experimental comparison of ARP- and π -pulse-based rephasing, see [2].

3. Experiments

We have verified experimentally the rephasing time of the echo given by (31) and the phase
preservation of the initial superposition state (33) with two identical ARPs.

The material system used was the rare-earth ion-doped crystal Tm3+:YAG (dopant
concentration: 0.1 at.%), of interest in quantum storage applications [36–38]. We have focused
on rf ARP since accurate field control is available. A suitable rf spin transition is obtained in
Tm3+:YAG by ground level splitting under the application of an external magnetic field of a
fraction of Tesla. This transition is inhomogeneously broadened due to the slightly different
lattice environment seen by each Tm3+ impurity. A convenient optical transition at 793 nm is
used for initializing the system and probing its state. The technique used in the experiments was
optically detected NMR [39–42].

The optical aspects of the setup have been described extensively in [37, 38]. Basically, the
light beam, emerging from an external cavity diode laser, is amplitude and phase shaped by
acousto-optic modulators, driven by a high sample-rate arbitrary wave form generator (AWG,
Tektronix AWG5004). The crystal is cooled down to 1.7 K in a liquid helium cryostat. The
static magnetic field is generated by superconducting coils and oriented as in [37]. The rf ARP
field is supplied by a 10-turn, 20 mm long, 10 mm diameter coil oriented along the light pulse
wave vector (the [11̄0] axis of the cubic crystal lattice). The crystal sits at the coil centre. The rf
signal, generated by the AWG, is fed to the coil through a 500 W amplifier (TOMCO BT00500-
AlphaSA) and a ∼600 kHz bandwidth resonant circuit. The amplitude of the static magnetic
field (∼0.5 T) is chosen such that the spin transition frequency matches the rf circuit resonance
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Figure 4. (a) Span of Bloch vectors at the end of an AHP applied to
an inhomogeneously broadened ensemble of atoms. The vector lying along
û′ corresponds to the atom in resonance with the last frequency of the
AHP chirp (the central frequency of the interrupted ARP). The vectors in
the upper ([�(0)û′ + (0inh/2)ŵ′]/[�(0)2 + (0inh/2)2]1/2) and lower ([�(0)û′

−

(0inh/2)ŵ′]/[�(0)2 + (0inh/2)2]1/2) ends are the most detuned ones, at 1 =

±0inh/2. (b) Scheme of the plane of action of the rAHP control vector when
an additional constant phase δ is included in the field of the rAHP: φrAHP =

−r t2/2 + δ. This plane is rotated an angle −δ with respect to the plane u′w′,
where the initial AHP control vector acts (φAHP = r t2/2).

known to be close to 14 MHz. The inhomogeneous broadening of the spin transition in the
sample was measured to be 0inh∼500 kHz.

The ideal initial state right before the application of the ARP-based rephasing sequence
is that all the Bloch vectors of the atomic ensemble are aligned in the equatorial plane of the
Bloch sphere (û′, for example). We reach this situation in two steps, identical to those described
in [1]. First, we make use of the three-level 3 system of Tm3+:YAG under static magnetic
field [36] to deplete one of the spin sublevels (noted as level a) and fully populate the other
one (noted as level b) through optical pumping. In this way we set B = ŵ′. Then, the aim is
to rotate that vertical Bloch vector to the equator. The usual way of achieving this is to apply a
π/2 pulse. However, our limited rf power does not allow π/2 pulses short enough so that their
bandwidth would cover 0inh. Therefore, we turn to an ARP pulse that is interrupted at half its
way. The frequency is chirped from φ̇(−T/2) to φ̇(0). We will call such a pulse an adiabatic
half passage (AHP). If we neglect the inhomogeneous broadening and if the final frequency of
the AHP (or the central frequency of the interrupted ARP) is tuned to the sublevel transition, the
AHP (of positive chirp) turns the Bloch vectors from ŵ′ to û′, which is the desired situation.
However, because of the inhomogeneous broadening, the Bloch vectors at the end of the AHP
fan out typically from [�(0)û′

− (0inh/2)ŵ′] to [�(0)û′ + (0inh/2)ŵ′] (normalization omitted
to simplify the notation), as shown in figure 4(a). This departure from the desired orientation
û′ will not be relevant, as we will see, since two identical ARPs recover the initial state of any
Bloch vector (L = I). From this starting point, we execute the rephasing sequence described in
section 2.2.1. At the end of the sequence, we apply a reversed AHP (rAHP), that is, an AHP
where the frequency is chirped in the opposite sense between the same values of the previous
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AHP. If L satisfies L = I, the rAHP should bring all the Bloch vectors to ŵ′, which was the
state before the AHP. In fact, this is the main source of information in our experiments: the
comparison between the states right before the AHP and right after the rAHP.

To be more precise about the AHP and rAHP, their phase characteristics for a linear chirp
are summarized as

φAHP(t) = r t2/2 and − T/26 t 6 0, (35)

φrAHP(t) = −r t2/2 and 06 t 6 T/2. (36)

For probing the mean state of the system at any time of the experiment, we measure the
intensity of a weak probe pulse tuned to the optical transition from state a to the uppermost
state of the 3 system. We assume the probe pulse is weak enough not to alter the distribution
of population between the levels. In such a case, the measured intensity I is a function of the
population of level a as I = I0 exp(−kρ̄aa), with I0 the beam intensity before hitting the sample,
k some positive constant determined by the opacity of the sample and ρ̄aa the ensemble average
of ρaa. Our conclusions will be drawn from the comparison between I before the AHP, Ii, and
I after the rAHP, If.

We performed two experiments. In the first, we aimed at testing the preservation of the
initial superposition state, i.e. L = I when the two ARPs are identical. In the second, we verified
the condition (31): τ3 = τ2 − τ1, which gives the rephasing time of the echo.

3.1. State preservation: validity of L = I for identical ARPs

For the particular ARPs used in this experiment, the rf field amplitude at the centre of the
circuit resonance yielded a Rabi frequency �max/(2π) = 141 kHz. The rf frequency was chirped
linearly from lower to higher frequencies through a range of 4 MHz during 100 µs. As a
consequence of its resonance profile, the rf circuit modulates �(t) even though the input
rf current amplitude was kept constant throughout the ARP: �(t) follows the circuit profile
as the frequency is swept. This ensures fulfilment of the far off-resonance initial and final
conditions (22). To monitor the fulfilment of the adiabatic condition (15), let us define the
quantity ζ(t) as the left-hand side of (15). Using the parameters described above, ζ is plotted
as a function of t and 1 in figure 5(a). We see that ζ < 1 is satisfied all through the ARP at the
central region of the inhomogeneous distribution. However, at the outer ends of the distribution,
ζ < 1 is violated during a short period that amounts to just 2% of the ARP length, at most. The
larger the value of 1, the higher ζ can get during the ARP and the longer the period where
ζ > 1. For a given 1 in the outer regions of the distribution, it can be seen that the sharp peak in
ζ occurs at t such that φ̇(t) ' 1. In such a situation, ζ reduces to r/�(t)2 (see (15)). Because
of the bell-like profile of the rf circuit response, at the outer regions of the sweep range �(t) is
not high enough to ensure ζ < 1. This explains the sharp peaks observed in figure 5(a). In any
case, we will see that this transient failure of the adiabatic character of the passages for some
atomic frequency classes does not invalidate the conclusions drawn from the experiment.

To ensure the preservation of the initial superposition state, i.e. L = I, quantum process
tomography [43] would be the proper experiment to carry out. Here, we will content ourselves
with simpler approximate tests.

The first and simplest test is to check if If = Ii. Figure 6(a) shows the intensity profile of
the probe beam as the rephasing sequence takes place. We will focus on the curve labelled ‘0’.
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Figure 5. Validity of the adiabatic approximation: ζ is defined as the lhs
of (15), plotted as a function of t and 1 for the experimental parameters
φ̇(t)(±T/2)/(2π) = ±2 MHz, T = 100 µs, φ/(2π) = 0.02(t/µs)2. 1 is varied
from −0inh/2 to 0inh/2. (a) �max/(2π) = 141 kHz: for 1 around the centre of
the inhomogeneous distribution we have ζ < 1 for all t ; for 1 at the outer
ends of the distribution, ζ > 1 during a very short time interval (6 0.02 T ). (b)
�max/(2π) = 262 kHz. The overall behaviour is similar to (a), except that ζ is
lower and thus ζ < 1 for a larger range of 1 values.
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Figure 6. (a) Probe intensity profile through a double ARP rephasing sequence.
An AHP (rAHP) is applied before (after) the sequence. The parameters for both
ARPs are �max/(2π) = 141 kHz and φ(t)/(2π) = 0.02(t/µs)2. Spin T2 in this
sample has been measured to be 510 µs. Several phases of the rAHP are tested.
For each curve, the rAHP phase is set to −r t2/2 + δ. The labels indicate δ/(2π).
(b) Experimental (symbols) and theoretical (line) ratios between final and initial
intensities as a function of the phase of the rAHP. Horizontal error bars in the
experimental data are smaller than symbol width.

At t = −50 µs, the intensity Ii corresponds to the transparency value (level a is depleted by
previous optical pumping). The intensity decreases slowly at the first stage, but close to t = 0
the intensity drop speeds up. It coincides with the short period where β is far off the vertical axis.
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Figure 7. ARP rephasing experiments with varying τ1. τ3 is adjusted to satisfy
τ3 = τ2 − τ1. (a) Stacked curves. (b) Superimposed curves.

At t = 0, I attains a value corresponding to ρ̄bb = ρ̄aa. After a free evolution time of 10 µs (the
probe beam is turned off during this and the remaining free evolution intervals), the first ARP
starts. The intensity varies slowly during the initial and final regions of the ARP, but it displays
a peak at half its way. The origin of this peak is the fact that the Bloch vectors fan out in a
circle section contained in the u′w′ plane at the end of the AHP, as depicted in figure 4(a). If all
the Bloch vectors were aligned on the equator at t = 0, no peak would be observed (for further
explanation of the origin of the peak, refer to [1]). Another point is that the intensity should be
the same on both sides of the peak (see figure 7 as an example). We estimate that the intensity
difference is due to imperfect matching of the rf frequency to the centre of the inhomogeneous
broadening. After a second free evolution time of 20 µs, the second ARP is applied. In this
case, we observe a dip instead of a peak, of the same origin as that of the latter (a peak in the
first ARP manifests as a dip during the second because the population at the beginning of the
second ARP is the opposite of that at the beginning of the first ARP). The last free evolution
interval of 10 µs takes place. Finally, the rAHP is applied. The intensity increases to a value If

close to Ii.
The experiment shows that If < Ii. However, we cannot yet conclude that the reason for If

being lower than expected is imperfect rephasing (L 6= I). As a matter of fact, the observed If is
totally compatible with the decrease induced by finite spin coherence lifetime T2. The latter was
previously measured to be ∼510 µs (results not shown). Taking into account the total time the
Bloch vectors stay in the horizontal plane throughout the sequence, one should expect a drop in
If of 7% due to decoherence. This is exactly the amount If differs from Ii in figure 6(a), curve
‘0’. Therefore, as far as this first test is concerned, rephasing is well achieved by the double ARP
sequence. The transient failure of the adiabatic condition for some frequency classes described
above does not seem to harm the rephasing efficiency.

The second test consists in monitoring If as the phase of the rAHP is varied from its optimal
value given by (36). If a phase −r t2/2 + δ is assigned to the linearly chirped rAHP, the control
vector during the rAHP will no longer act in the vertical plane u′w′. It will act in another vertical
plane rotated about ŵ

′ an angle −δ from the original one (see figure 4(b)). As a consequence,
this phase-shifted rAHP will be most suited for driving a Bloch vector that is contained in the
same plane at the end of the rephasing sequence. In other words, an rAHP of phase −r t2/2 + δ

will best fulfil its aim of returning the Bloch vectors to the vertical axis if L is a rotation matrix
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as in (29) with α = −δ. Thus, this experiment will allow us to check if α is indeed zero in the
case of a rephasing sequence with identical ARPs.

The curves obtained with different values of δ are exhibited in figure 6(a). The label of
each curve corresponds to δ/(2π). We observe that If varies as a function of δ, displaying
highest values around δ = 0 and lowest around δ = π . This means that when δ ' 0 (δ ' π ),
the rAHP guides the Bloch vectors mainly to the ŵ′ (−ŵ′) direction. The comparison of the
experimental ratio If/Ii with the predictions based on the theory in section 2.2.1 is presented in
figure 6(b). We observe that the maximum is somewhat shifted to the left of the expected value
δ = 0. The minimum ratio is also not as low as predicted by the theory. These differences might
be due to the slight mismatch between the centre of the frequency chirp range and the centre of
0inh and/or to the transient failure of the adiabatic condition for some frequency classes. In any
case, it is clear that the overall behaviour is compatible with a sequence matrix close to the one
obtained for L with α = (0.05 ± 0.1)2π .

3.2. Rephasing time condition: validity of τ3 = τ2 − τ1

For this experiment, the rf circuit was improved to reach a higher Rabi frequency: �max/(2π) =

262 kHz. This allowed us to better satisfy the adiabatic condition (15), as shown in figure 15(b).
The remaining parameters of the ARPs were kept identical to those in the previous experiment.

We studied the effect on If of varying τ1 while keeping τ2 constant. For each rephasing
sequence, we adapted τ3 to fulfil τ3 = τ2 − τ1 (equation (31)). The results are presented in
figure 7. Both panels contain the same data (just the way the data are displaying changes).
Firstly, we observe that the quality of the curves is better than in figure 6(a): the intensity levels
on both sides of the peak (or dip) are better balanced, which is a signature of better matching of
the rf frequency to the centre of the inhomogeneous broadening. Secondly, the curves look very
similar to one another, except, of course, for the positions of the ARPs. The resemblance is better
appreciated in figure 7(b), where we clearly see that If is the same for all curves. Here again, the
value of If (<Ii) is compatible with the spin decoherence and with the value of T2. Therefore,
we conclude that, as far as condition (31) is fulfilled, the performance of the rephasing sequence
is optimum, independently of the particular values of τ1 and τ2.

4. Summary

We have thoroughly analysed how rephasing of optical or spin coherences by two ARPs in a
double-echo scheme works. In the frame of the Bloch sphere formalism, we have theoretically
developed a matrix treatment for the sequence, where the resulting matrix L is the product
of the matrices associated with each building block. We first derived the matrix for a single
ARP, which turned out to be a rotation matrix of an angle π about an axis contained in the
equator of the Bloch sphere. The particular orientation of this axis within the equator depends
both on specific parameters of the ARP and on the atomic frequency. The latter dependence
is the reason why one single ARP cannot manage to rephase an inhomogeneously broadened
distribution of atomic coherences. A sequence involving two ARPs, however, is able to achieve
the rephasing. In our matrix approach, this is understood as L = I, as derived in our calculations
as long as some particular conditions are satisfied. We identify these key conditions. One can
be satisfied very easily: it is enough to wait a longer time between the two ARPs (time interval
τ2) than between t = 0 and the first ARP (time interval τ1). Then, the rephasing takes place
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at time τ2 − τ1 after the end of the second ARP. The second condition implies that the Rabi
frequencies and frequency chirps of both ARPs must be identical. The rephasing process can
be easily explained with the help of a very simple geometrical interpretation that is drawn from
our matrix treatment.

We have also analysed the capability of the sequence to preserve the initial state phase,
assuming the two conditions just mentioned are satisfied. This is of particular importance for
quantum memory applications. We have found that phase preservation is ensured if the optical
or rf fields of both ARPs have exactly the same time-varying phase, meaning that the second
ARP field must be a time-shifted copy of the first. This opens a discrepancy between optical
and rf rephasing, since the ability of controlling the field phase is different in the rf and optical
technologies. In addition, we have provided a quantitative comparison between rephasing by π

pulses, as in standard echo experiments, or by ARPs. The rephasing efficiency is superior in the
latter case.

We have verified experimentally the two rephasing conditions in the rare-earth ion-doped
crystal Tm3+:YAG. Optically detected NMR experiments evidenced the rephasing capabilities
of rf ARP rephasing sequences. If the finite lifetime of the coherence (T2) is taken into account,
the experiments compare rather satisfactorily to the theoretical predictions.
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[8] Ruggiero J, Chanelière T and Le Gouët J L 2010 J. Opt. Soc. Am. B 27 32–7
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[24] Robin Bendall M, Garwood M, Uǧurbil K and Pegg D T 1987 Magn. Reson. Med. 4 493–9
[25] Conolly S, Nishimura D and Macovski A 1989 J. Magn. Reson. (1969) 83 324–34
[26] Hwang T and Shaka A 1995 J. Magn. Reson. Ser. A 112 275–9
[27] Conolly S, Glover G, Nishimura D and Macovski A 1991 Magn. Reson. Med. 18 28–38
[28] Schupp D G, Merkle H, Ellermann J M, Ke Y and Garwood M 1993 Magn. Reson. Med. 30 18–27
[29] de Graaf R, Luo Y, Terpstra M and Garwood M 1995 J. Magn. Reson. Ser. B 109 184–93
[30] Julsgaard B, Grezes C, Bertet P and Mølmer K 2013 arXiv:1301.1500
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