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Neutron matter under strong magnetic fields: A comparison of models
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The equation of state of neutron matter is affected by the presence of a magnetic field due to the intrinsic
magnetic moment of the neutron. Here we study the equilibrium configuration of this system for a wide range
of densities, temperatures, and magnetic fields. Special attention is paid to the behavior of the isothermal
compressibility and the magnetic susceptibility. Our calculation is performed using both microscopic and
phenomenological approaches of the neutron matter equation of state, namely the Brueckner-Hartree-Fock (BHF)
approach using the Argonne V18 nucleon-nucleon potential supplemented with the Urbana IX three-nucleon
force, the effective Skyrme model in a Hartree-Fock description, and the quantum hadrodynamic formulation with
a mean-field approximation. All these approaches predict a change from completely spin polarized to partially
polarized matter that leads to a continuous equation of state. The compressibility and the magnetic susceptibility
show characteristic behaviors which reflect that fact. Thermal effects tend to smear out the sharpness found for
these quantities at T = 0. In most cases a thermal increase of �T = 10 MeV is enough to hide the signals of
the change of polarization. The set of densities and magnetic field intensities for which the system changes it
spin polarization is different for each model. However, we found that under the conditions examined in this work
there is an overall agreement between the three theoretical descriptions.
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I. INTRODUCTION

The effects of magnetic fields on dense matter have been a
subject of interest for a long time (see, e.g., Ref. [1] and refer-
ences therein), particularly in relation to astrophysical issues.
The equation of state for magnetized matter is important for
the neutron star structure [2] and for the cooling of magnetized
stars [3–5]. Moreover, since neutrinos have a fundamental role
in cooling processes, their emission and transport properties
in the presence of magnetic fields have also been studied in
detail [4,5]. A wide range of observational data of periodic
or irregular radiation from localized sources has been related
to the presence of very intense magnetic fields in compact
stellar objects. These manifestations have been associated with
pulsars, soft γ -ray repeaters, and anomalous x-ray pulsars,
according to the energy released and the periodicity of the
episodes. Thus, they have been associated with different stages
of the evolution of neutron stars. The intensity of the magnetic
fields could reach values, in the case of magnetars, up to
1014–1015 G in the star surface and grows by several orders of
magnitude in its dense interior. The origin of such unusually
large intensities is still uncertain. A possible explanation
invokes a spontaneous phase transition to a ferromagnetic state
at densities corresponding to theoretically stable neutron stars
and therefore a ferromagnetic core in the liquid interior of such
compact objects. Such possibility has long been considered
by many authors within different theoretical approaches (see,
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e.g., Refs. [6–28]), but results were contradictory. Whereas
some calculations based on Skyrme [19,20] or Gogny [21]
interactions predicted such a transition to occur at densities
in the range (1–4)n0 (n0 = 0.16 fm−3), other calculations that
used modern two- and three-body realistic interactions, like
Monte Carlo [22], Brueckner-Hartree-Fock (BHF) [23–25],
Dirac-Brueckner-Hartree-Fock [26,27], or lowest-order con-
straint variational [28], excluded such a transition. Nowadays,
there is a general consensus that the ferromagnetic instability
predicted by the Skyrme forces at high densities is in fact
a pathology of such forces. Modifications of the standard
Skyrme interaction have been recently proposed [29,30] in
order to remove the instability.

Recently it was pointed out [31–33] that matter created
in heavy-ion collisions could be subject to very strong
magnetic fields, with distinguishable consequences on particle
production. In Ref. [31] a magnetic field is predicted in
noncentral heavy-ion collisions such that e B ∼ 102 MeV2,
which would be the cause of a preferential emission of
charged particles along the direction of the magnetic field.
Improvements in the description of the mass distribution
of the colliding ions [32] does not modify essentially the
magnitude of the fields produced. On the other hand, the
numerical simulations performed in Ref. [33] predicts values
e B ∼ m2

π MeV2, which are much larger than those in
Ref. [31].

Several models have been used to describe the effects of
magnetic fields in a dense nuclear environment and particularly
on the properties and the structure of neutron stars [34–51].
Among them, covariant field theoretical models have been
extensively used to study the role of the magnetic field
in hyperonic matter [36,37], instabilities at subsaturation
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densities [38–40], magnetization of stellar matter [44], satu-
ration properties of symmetric matter [45], and the symmetry
energy [46]. Nonrelativistic models have also been used in
this context [47–49]. Microscopic models based on realistic
nucleon forces, such as the recent lowest-order variational
calculations of Refs. [50,51], have also been used.

Due to its important applications as well as its intrinsic
theoretical interest, a comparison of predictions is in order.
Therefore, we have selected three models, of very different ori-
gins, to study the properties of infinite homogeneous neutron
matter in the presence of strong magnetic fields. They are the
BHF approach using the Argonne V18 nucleon-nucleon po-
tential supplemented with the Urbana IX three-nucleon force,
the covariant formulation known as quantum hadrodynamics
(QHD), and the nonrelativistic Skyrme effective potential.
It would be interesting to include a comparison with other
microscopic calculations, as for instance with the auxiliary
field diffusion Monte Carlo (AFDMC) method [22,52]. As an
interesting precedent, it must be mentioned that a comparison
between the BHF and AFDMC approaches was already done
in Ref. [23]. The results for the magnetic susceptibility of spin-
polarized neutron matter at zero temperature in the absence of
a magnetic field give remarkable agreement between the two
methods.

In the present work, we focus on the polarization of neutron
matter by analyzing its dependence with density, magnetic
field, and temperature. In order to understand this behavior,
we also consider the energy of the system and its pressure. In
addition, we pay special attention to some thermodynamical
coefficients: the isothermal compressibility and the magnetic
susceptibility. We consider a range of densities where nucleons
are the main degrees of freedom of hadronic matter, and
temperatures and field intensities range up to T = 10 MeV
and B = 1019 G, respectively.

This article is organized as follows. A brief review of the
properties of spin-polarized neutron matter and of the models
and approximations used is presented in the next section, and
the results are shown and discussed in Sec. III. A final summary
and the main conclusions are given in Sec. IV.

II. NEUTRON MATTER IN AN EXTERNAL
MAGNETIC FIELD

Spin-polarized neutron matter is an infinite nuclear system
made of two different fermionic components: neutrons with
spin up and neutrons with spin down, having number densities
n↑ and n↓, respectively. Hence, the total number density is
given by

n = n↑ + n↓. (1)

The degree of spin polarization of the system can be expressed
by means of the spin asymmetry density, defined as

W = n↑ − n↓. (2)

Note that the value W = 0 corresponds to nonpolarized neu-
tron matter, whereas W = n or W = −n means, respectively,
that the system is in a completely polarized state with all the
spins up (CPS-U) or down (CPS-D); i.e., all the spins are
aligned along the same direction. Partially polarized states
(PPS) correspond to values of W between −n and n.

In the following we present the main features of the three
approaches used to describe the properties of spin-polarized
neutron matter in the presence of an external magnetic field
B. We evaluate first, for the three approaches, the Helmhotz
free-energy density of the system F = E − T S, where the
energy density E includes the term describing the interaction
of matter with the external field, and the entropy density
S is evaluated in the quasiparticle approximation. Then, we
determine from F other macroscopic properties of the system
such as the pressure P , the magnetization of the system per unit
volume

M =
(

∂P

∂B

)
μ,T ,�

, (3)

the isothermal compressibility

K = − 1

�

(
∂�

∂P

)
N,T ,B

(4)

where � is the volume of the system, and the magnetic
susceptibility

χ =
(

∂M
∂B

)
N,T ,�

, (5)

which characterizes the response of the system to the external
field and gives a measure of the energy required to produce a
net spin alignment in the direction of the field.

From here on we use units such that � = 1, c = 1, and
kB = 1.

A. The BHF approach

The extension of the BHF approach for neutron matter in the
presence of a magnetic field and finite temperature starts with
the construction of the neutron-neutron G matrix. It describes,
in an effective way, the interaction between two neutrons for
any spin combination. This is formally obtained by solving the
well-known Bethe-Goldstone equation

〈�k3σ3,�k4σ4|G(ω)|�k1σ1,�k2σ2〉 = 〈�k3σ3,�k4σ4|V |�k1σ1,�k2σ2〉

+ 1

�

∑
σi

�ki ,σj
�kj

〈�k3σ3,�k4σ4|V |�kiσi,�kjσj 〉
Qσiσj

(�ki,�kj )

ω − εσi
− εσj

+ iη
〈�kiσi,�kjσj |G(ω)|�k1σ1,�k2σ2〉, (6)
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where σ = ↑ , ↓ indicates the spin projection of each
neutron in the initial, intermediate, and final states; V is
the bare nucleon-nucleon interaction; and Qσiσj

(�ki,�kj ) = [1 −
νσi

(�ki)][1 − νσj
(�kj )] [where νσ (�k) is the occupation number

defined in Eq. (9)] is the Pauli operator which allows only
intermediate states compatible with the Pauli principle, and
ω is the so-called starting energy defined as the sum of the
nonrelativistic single-particles energies ε↑(↓) of the interacting
neutrons. Note that Eq. (6) is a coupled-channel equation.

The single-particle energy of a neutron with momentum �k
and spin projection σ in the presence of an external magnetic
field B is given by

εσ (�k) = k2

2m
+ Re[Uσ (�k)] ∓ κB, (7)

where the real part of the single-particle potential Uσ (�k)
represents the average potential “felt” by a neutron in the
nuclear medium. The minus (plus) sign in the last term corre-
sponds to neutrons with spin up (down), and κ = −1.913μN

is the anomalous magnetic moment of the neutron with μN

the nuclear magneton. In the BHF approximation Uσ (�k) is
given by

Uσ (�k) = 1

�

∑
σ ′,�k′

νσ ′ (�k′)

×〈�kσ,�k′σ ′|G(ω = εσ (�k) + εσ ′(�k′))|�kσ,�k′σ ′〉A, (8)

where the occupation number of a neutron with spin projection
σ at zero temperature is

νσ (�k) =
{

1, if |�k| � kFσ
,

0, otherwise,
(9)

with kFσ
= (6π2nσ )1/3 being the corresponding Fermi mo-

mentum, and the matrix elements are properly antisym-
metrized. We note here that the so-called continuous prescrip-
tion [53] has been adopted for the single-particle potential
when solving the Bethe-Goldstone equation. It has been shown
by Song et al. [54] that the contribution to the energy from
three-hole-line diagrams (which account for the effect of
three-body correlations) is minimized when this prescription
is adopted. This presumably enhances the convergence of
the hole-line expansion of which the BHF approximation
represents the lowest order. We also note that the present
BHF calculation has been carried out using the Argonne V18
potential [55] supplemented with the Urbana IX three-nucleon
force [56], which for the use in the BHF approach is reduced
first to an effective two-nucleon density-dependent force by
averaging over the coordinates of the third nucleon [57].

The total energy per unit volume is easily obtained once a
self-consistent solution of Eqs. (6)–(8) is achieved

E = 1

�

∑
σ �k

νσ (�k)

(
k2

2m
+ 1

2
Re[Uσ (�k)]

)
− κWB, (10)

where W is the spin asymmetry density defined in Eq. (2).

For further purposes, it is convenient to introduce the
effective mass m∗

σ (k) defined as

m∗
σ (k)

m
= k

m

(
dεσ (k)

dk

)−1

, (11)

where m is the bare neutron mass.
At the BHF level, finite temperature effects can be intro-

duced in a very good approximation just by replacing the zero
temperature limit of the occupation number, Eq. (9), by its full
expression

fσ (�k,T ) = 1

1 + exp{[εσ (�k,T ) − μσ (T )]/T } , (12)

into the formulas shown in Eqs. (6), (8), and (10). Here μσ (T )
is the chemical potential of a neutron with spin projection σ .

These approximations, valid in the range of densities and
temperatures considered here, correspond to the “naive” finite
temperature Brueckner-Bethe-Goldstone expansion discussed
by Baldo and Ferreira in Ref. [58]. The interested reader is
referred to this work and references therein for a formal and
general discussion on the nuclear many-body problem at finite
temperature.

In this case, however, the self-consistent procedure implies
that, together with the Bethe-Goldstone equation and the
single-particle potential, the chemical potentials of neutrons
with spin up and down must be extracted at each step of the
iterative process from the normalization condition

nσ = 1

�

∑
�k

fσ (�k,T ). (13)

This is an implicit equation which can be solved numerically.
Note that the G matrix obtained from the Bethe-Goldstone
equation (6) and also the single-particle potentials depend
implicitly on the chemical potentials.

Once a self-consistent solution is achieved, the entropy per
unit volume is calculated in the quasiparticle approximation

S = − 1

�

∑
σ �k

(fσ (�k,T )ln[fσ (�k,T )]

+ [1 − fσ (�k,T )]ln[1 − fσ (�k,T )]), (14)

which together with the energy density E are used to evaluate
the Helmhotz free energy density F .

Finally, for fixed values of the total density n, the temper-
ature T , and the external field B, the physical state is simply
obtained by minimizing F with respect to the spin asymmetry
density W . We note that this minimization implies that in
the physical state μ↑ = μ↓, i.e., there is only one chemical
potential which is associated to the conservation of the total
baryonic number.

B. The QHD model

QHD is a covariant formulation of field theory, where
the nuclear interaction is mediated by the exchange of the
following mesons: the scalar isoscalar σ meson, the vector
isoscalar ω meson, and the vector isovector ρ meson. We
adopt here the FSU-Gold model [59], where a meson self-
interaction is added to the ordinary nucleon-meson vertices.
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The Lagrangian density reads

L = ψ̄

(
i �∂ − m + gσσ − gω �ω − gρ

2
τ · �ρ + κσμνF

μν

)
ψ

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − g2

3
σ 3 − g3

4
σ 4 − 1

4
WμνWμν

+ 1

2
m2

wω2 + C

4
ω4 − 1

4
Rμν · Rμν + 1

2
m2

r ρ
2 + Dρ2 ω2,

where we have used ω2 = ωμωμ, ρ2 = ρμρμ, Wμν =
∂μων − ∂νωμ, Rμν = ∂μρν − ∂νρμ, σμν = i[γμ,γν]/2, and
Fμν is the electromagnetic tensor. Furthermore gσ ,gω,gρ,
g2,g3,C, and D are the coupling constants. We note that in
the above expression the index σ should not be confused with
the spin projection of the neutron.

In the mean-field approximation the meson fields σ,ω,ρ
are replaced by their corresponding in-medium expectation
values 〈σ 〉,〈ω〉, and 〈ρ〉, which obey the following equations
of motion:(
i �∂ − m + gσ 〈σ 〉− gωγ0〈ω〉+ 1

2gργ0〈ρ〉+ κσμνF
μν

)
ψ = 0,

(15)

m2
σ 〈σ 〉 + g2〈σ 〉2 + g3〈σ 〉3 = gσns, (16)

m2
ω〈ω〉 + C〈ω〉3 + 2D〈ρ〉2〈ω〉 = gωn, (17)

m2
ρ〈ρ〉 + 2D〈ω〉2〈ρ〉 = −gρn, (18)

where

n = 〈ψ̄γ0ψ〉 = 1

�

∑
σ �k

fσ (�k,T ) (19)

is the total number density,

ns = 〈ψ̄ψ〉 = 1

�

∑
σ �k

m∗

Eσ (�k)
fσ (�k,T ) (20)

is the scalar density, m∗ = m − gσ 〈σ 〉 is the neutron effective
mass, and

Eσ (�k) =
√

k2
‖ +

(√
m∗ 2 + k2

⊥ ∓ κB

)2

(21)

is the relativistic energy. Here one must distinguish the
momentum components parallel (k‖) and perpendicular (k⊥)
to the magnetic field. As in Eq. (7) the minus (plus) sign in
the above expression is for neutrons with spin up (down). The
single-particle energy is given in this model by

εσ (�k) = Eσ (�k) + gω〈ω〉 − 1
2gρ〈ρ〉, (22)

which corresponds to one of the eigenvalues of Eq. (15).
The energy per unit volume can be evaluated as the

component T 00 of the energy-momentum tensor

E = 1

�

∑
σ �k

fσ (�k,T )Eσ (�k)

+ 1

2
[(mσ 〈σ 〉)2 + (mω〈ω〉)2 + (mρ〈ρ〉)2]

+ 1

3
g2〈σ 〉3 + 1

4
g3〈σ 〉4 + 3

4
C〈ω〉4 + 3D(〈ω〉〈ρ〉)2.

(23)

The magnetization has a simple expression

M = κ

�

∑
σ �k

sfσ (�k,T )

√
m∗2 + �2k2

⊥ − sκB

Eσ (�k)
, (24)

where s = 1(−1) for σ = ↑ (↓).

C. The Skyrme model

The Skyrme model is an effective formulation of the nuclear
interaction [60]. It consists of a two-body contact potential
plus some terms having an explicit density dependence which,
in an effective way, represent the effect of the three- and
multibody forces. Using this interaction in the Hartree-Fock
approximation, one builds up an energy density functional. The
associated single-particle spectrum can be expressed in such a
way that the interaction contributes partly to the definition of
an effective mass and partly to a remaining potential energy.
In the present work we adopt the SLy4 parametrization from
Ref. [61].

In the presence of an external magnetic field B, the energy
density functional is the sum of the standard Skyrme density

FIG. 1. (Color online) Spin asymmetry as a function of the
density at B = 2.5 × 1018 G and T = 0 (a) and T = 10 MeV
(b) for the three models considered.
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functional plus the interacting term between matter and B,

E =
∑

σ

Kσ

2m∗
σ

+ 1

16
a (n2 − W 2) − κWB, (25)

where

Kσ = 1

�

∑
�k

k2fσ (�k,T ) (26)

is the kinetic density, and we have introduced the effective
nucleon mass m∗

σ for a definite spin polarization state,
defined as

1

m∗
σ

= 1

m
+ 1

4
(b0 n + s b1 W ) (27)

with as before s = 1(−1) for σ = ↑ (↓).
The single-particle spectrum is

εσ (�k) = k2

2m∗
σ

+ 1

8
vσ ∓ κB, (28)

which is obtained in a self-consistent way through the
functional derivative εσ (�k) = δE/δfσ (�k,T ). In Eq. (28) we

FIG. 2. (Color online) Same as Fig. 1 for B = 1019 G.

have used

vσ = a (n ∓ W ) +
∑
σ ′

[b0 + (2δσσ ′ − 1)b1]Kσ ′

+ α

3
t3(1 − x3)(n2 − W 2)nα−1, (29)

where the last term corresponds to the rearrangement contri-
bution.

The parameters a, b0, and b1 can be written in terms of the
standard parameters of the Skyrme model,

a = 4t0(1 − x0) + 2
3 t3(1 − x3)nα,

b0 = t1(1 − x1) + 3t2(1 + x2),

b1 = t2(1 + x2) − t1(1 − x1).

We have adopted M = κW for the magnetic moment of
the system. For given values of n, T , and B we solve in
a self-consistent way the set of Eqs. (25)–(29), obtaining
the spin polarization W and the chemical potential μ that
reproduces the density. The physical state corresponds to that
configuration (among CPS-U, CPS-D, and PPS) which gives
the lowest value of F .

We want to point out that here the physical state corresponds
to a minimum of F , in contrast with previous investigations of

FIG. 3. (Color online) Spin asymmetry as a function of the mag-
netic field intensity for n/n0 = 0.2 and T = 0 (a) and T = 10 MeV
(b) for the three models considered. The magnetic filed intensity is
given in units of 1018 G.
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two of the authors [49], where a transformed thermodynamical
potential was used.

III. RESULTS AND DISCUSSION

Before we present our results we would like to make a com-
ment on the validity and limitations of the models considered.
Generally speaking, the validity of most of the nuclear models
is questionable in the limit of high densities and high isospin
asymmetries where the description of nuclear matter requires
the inclusion of additional degrees of freedom and phenomena
such as, e.g., hyperons, meson condensates, or the chiral and
quark-gluon plasma phase transitions. In addition, the reader
should also note that in the case of nonrelativistic models, such
as BHF and Skyrme, causality is not always guaranteed at high
densities. To avoid such problems and to highlight the aim
of this work, we have restricted our calculations to densities
below 2.5 n0. The density and temperature domain chosen
ensures an a priori reasonable agreement among the different
theoretical descriptions. Taking into account the smallness of
the neutron magnetic moment, we also expect that even the
largest magnetic field considered in this work, B = 1019 G,
will not modify essentially the dynamical regime of the
nuclear interactions. We finish this comment by mentioning

FIG. 4. (Color online) (a) Average effective mass as a function
of the density at T = 0 MeV for B = 1019G. (b) Average effective
mass as a function of the magnetic field intensity for n/n0 = 0.2 and
T = 0. The magnetic filed intensity is given in units of 1018 G.

that although the SLy4 parametrization considered here shows
an anomalous spontaneous magnetization at n � 4 n0 [48] we
do not expect it to have any influence in the subsaturation
density region. Possible effects on the medium-range densities
will be noted.

In the following we discuss the results obtained for
homogeneous neutron matter under a strong magnetic field,
with the models and approximations described in the previous
section. In all the figures, we show results corresponding to
the physical state, i.e., that within the possible configurations
CPS-U, CPS-D, and PPS which gives a minimum value of
the free-energy density F . As the density, temperature, and
field intensity changes, the system can pass from one global
configuration to another. For example, for fixed temperature
and intensity B the system can pass from CPS-D to PPS as
the density increases. In a similar way, for fixed density and
temperature, an increase of the magnetic intensity leads the
system from a PPS to a PPS-D. We define as threshold density
nt (threshold field Bt ) the value of the density (field) where the
minimum free energyF changes from one state of polarization
to another for fixed values of B and T (n and T ).

We consider first the spin asymmetry density W , which
gives us information about the global state of polarization of

FIG. 5. (Color online) Neutron-up and neutron-down effective
masses as a function of the density for T = 0 MeV and B =
2.5 × 1018 G (a) and B = 1019 G (b). Results are shown only for
the BHF and Skyrme models.
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the system. In particular, Figs. 1 and 2 show the ratio W/n
in terms of the total neutron density and different magnetic
field intensities and temperatures. At zero temperature [see
Figs. 1(a) and 2(a)] and for very low densities, the system is
completely polarized (W/n = −1) up to a threshold density,
nt , where it changes to partially polarized, with predominance
of spin-down states (−1 < W/n < 0). A comparison of the
B = 2.5 × 1018 G (Fig. 1) and B = 1019 G (Fig. 2) cases
shows that the threshold density increases with B. However,
its precise location depends on the model used. For instance for
B = 1019 G at T = 0 [see Fig. 2(a)], we obtain nt/n0 = 0.55
for Skyrme, nt/n0 = 0.65 for BHF, and nt/n0 = 0.85 for
QHD. It must be noted that beyond the threshold, both BHF
and QHD predict always a monotonous growth, reaching
asymptotically the nonpolarized state (W/n = 0) at high
densities. On the contrary, for the Skyrme model, the system
is always in a partially polarized state. This behavior is
a consequence of the well-known ferromagnetic instability
predicted by the Skyrme model at high densities.

A similar description remains valid at higher temperatures
[see Figs. 1(b) and 2(b)], but the passage from CPS to PPS
becomes softer for QHD and Skyrme. Hence, the definition
of a threshold density no longer makes sense for those cases.
Additional details can be seen in Fig. 3, where W/n is depicted
as a function of B for a fixed density n/n0 = 0.2 and two

FIG. 6. (Color online) Free energy per particle as a function
of the density for T = 0 MeV and B = 2.5 × 1018 G (a) and
B = 1019 G (b).

temperatures. Clearly, for B = 0, there is no spin asymmetry
(W/n = 0) and the rate at which it changes from this value
to a completely polarized configuration (W/n = −1) is more
pronounced for QHD than for Skyrme and more for Skyrme
than for BHF. At T = 0 a quick change of slope is detected at
the transition point. The BHF result keeps this feature still at
T = 10 MeV. At the same temperature, the change from PPS
to CPS-D becomes a soft passage for both QHD and Skyrme.
From Figs. 1–3, we see that the temperature dependence of
the spin asymmetry is weaker for BHF than for the other two
models.

The effects of an external magnetic field on the single-
particle properties can have significative consequences, for
instance in the transport properties in a dense nuclear medium.
We examine in the following the neutron effective mass,
which is representative of the single-neutron properties. In
order to compare fairly the different predictions, we define a
spin-averaged effective mass m∗ = (m∗

↑ + m∗
↓)/2m for BHF

and Skyrme. It must be taken into account that within the
QHD model, m∗ is a scalar which does not have an explicit
dependence on the spin state. Let us also recall that the effective
mass has a momentum dependence in the BHF model and for
purposes of comparison we fix m∗

σ
∼= m∗

σ (kFσ
), where kFσ

is
the Fermi momentum of neutrons with spin projection σ . This
comparison is presented in Fig. 4, where m∗ is shown as a

FIG. 7. (Color online) Pressure as a function of the density for
T = 0 MeV and B = 2.5 × 1018 G (a) and B = 1019 G (b).
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function of the density at T = 0 and B = 1019 G in Fig. 4(a)
and as a function of the magnetic field intensity at T = 0 and
n/n0 = 0.2 in Fig. 4(b). In Fig. 4(a), we found a monotonous
decrease over the range of densities studied here. For the QHD
and Skyrme models the spin average effective mass decreases
approximately to one half of its vacuum value for n/n0 = 1.5,
whereas in the BHF case it exhibits a ∼20–22% decrease at
most. As seen in the lower panel, the effect of the magnetic field
on m∗ is small for all the models at n/n0 = 0.2. In particular,
for the QHD model m∗ is almost constant with B, whereas it
increases by about ∼1–2% for the Skyrme one and decreases
by about ∼5% in the BHF case.

We have checked that for higher densities the magnetic
effect on m∗ becomes negligible for both the BHF and QHD
models because for these two models (see Figs. 1 and 2)
the spin asymmetry W/n goes to zero as density increases,
the effect of the magnetic field therefore being less and less
important. On the contrary, for the Skyrme model the effect B
on m∗ becomes significant already for densities n/n0 > 0.3,
and it is emphasized as the density grows. This is again a
consequence of the ferromagnetic instability predicted by the
Skyrme model at high densities as mentioned before.

FIG. 8. (Color online) Isothermal compressibility as a function
of the density for T = 0 MeV and B = 2.5 × 1018 G (a) and
B = 1019 G (b).

We analyze now the effective mass corresponding to
different spin polarization states within the nonrelativistic
potentials. The dependence on the density at T = 0, depicted
in Fig. 5, shows some interesting features. In both cases
m∗

↓ is larger than m∗
↑, and the splitting, for a fixed density,

increases with B. For the BHF model, however, this difference
decreases as the density increases, and the two masses cross
at n/n0 ∼ 2.5. The reason is that in the BHF case, when
density increases, the effect of the magnetic field becomes
less important and is completely negligible when the system
reaches the nonpolarized state at high densities. On the other
hand, the Skyrme model shows a perceptible difference, even
for extreme densities, due to the ferromagnetic instability
predicted by this model. Furthermore, for densities n < nt , m∗

↓
saturates at its vacuum value for Skyrme. This is a consequence
of the particular SLy4 parametrization used, for which is
b0 + b1 = 0 for neutrons with spin down in the CPS-D state
[see Eq. (27)].

In the following we discuss some bulk thermodynamical
properties. The first one is the free energy per particle, F/N =
F/n, shown in Fig. 6 as a function of the density for T = 0
and for two magnetic field intensities. It must be mentioned
that, for the sake of comparison, the rest mass contribution was
subtracted in the QHD results.

It is a well-known fact that neutron matter is not bound by
the action of nuclear forces. However, as seen in the figure, the

FIG. 9. (Color online) Same as Fig. 8 for T = 10 MeV.
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presence of a magnetic field of ∼2.5 × 1018 G leads to bound
state at low densities. The binding increases when the strength
of the field grows, and for fields B ∼ 1019 G neutron matter is
bound up to saturation density. At relatively low densities, the
kinetic energy and the repulsion between neutrons are reduced
and the effect of the magnetic field becomes the dominant one.
For medium and high densities the repulsive character of the
neutron-neutron interaction and the kinetic energy dominate
over the magnetic field and the system becomes unbound. We
note that there is good agreement between BHF and Skyrme
for densities up to n0.

To carry on with the study of some bulk thermodynamical
properties, we focus now on the pressure. It is shown as a func-
tion of the density for T = 0 in Fig. 7, where we have selected
a range of densities below the saturation value n0 and two
magnetic field intensities. As is required by stability conditions
the curves show a monotonous increasing behavior. A careful
inspection for all the models shows a slight change of slope
at the threshold densities nt , where the system changes its po-
larization state from CPS-D to PPS. We have checked that the
temperature variation within the range covered in this work has
no significative effects on the pressure for any of the models.

Up to this moment we have obtained compatible descrip-
tions of the equation of state, without discontinuities and

FIG. 10. (Color online) Isothermal compressibility as a function
of the magnetic field intensity for n/n0 = 0.2 and T = 0 MeV (a)
and T = 10 MeV (b). The magnetic field intensity is given in units
of 1018 G.

with some differences in the values of the density where the
system changes from CPS-D to PPS. Hence, it is interesting to
analyze some of the first derivatives of the thermodynamical
potentials. We choose as significant examples the isothermal
compressibility K and the magnetic susceptibility χ , as stated
in Sec. II.

In the first place, we show in Fig. 8 the isothermal
compressibility K as a function of the density at zero
temperature for B = 2.5 × 1018 G in Fig. 8(a) and B = 1019 G
in Fig. 8(b). For these magnetic intensities the compressibility
falls from relatively high values at very low densities, decreas-
ing monotonously with density until a peak appears at the
threshold density nt . The origin of this peak is due simply to
the change of the slope of the pressure at the threshold density
nt (see Fig. 7). Beyond this point, the compressibility behaves
in a very similar way for all the models. From the asymptotic
behavior exhibited, it can be said that under the hypotheses
assumed, neutron matter can be considered incompressible for
n/n0 > 2. We note also that for B = 2.5 × 1018 G the same
kind of peaks are present at very low densities but they are not
visible on this figure. In Fig. 9 it is shown that thermal effects
smear out the peaks within the Skyme and QHD descriptions.
Note that the BHF result is almost insensitive to thermal
effects, showing a peak similar to that of the zero temperature
case.

FIG. 11. (Color online) Magnetic susceptibility over κ2 as a
function of the density for T = 0 MeV and B = 2.5 × 1018 G (a)
and B = 1019 G (b).
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The dependence of K on the magnetic field intensity
at a fixed density n/n0 = 0.2 is exhibited in Fig. 10. For
T = 0 [Fig. 10(a)] there are two different regimes. In the
low-field region the compressibility resembles an inverted
parabola. For stronger fields, K reaches a plateau with an
almost constant value K ∼ 400 fm4. The change of regime
takes place at a threshold field intensity Bt , with an abrupt
change of slope. The value of Bt depends on the model.
The lower one, Bt = 2.86 × 1018 G, corresponds to QHD
whereas those of Skyrme and BHF are Bt = 4.60 × 1018 G
and Bt = 5 × 1018 G, respectively. The plateau can be easily
understood by taking into account that for values of B > Bt

the system is completely polarized, i.e., W = −n, and a further
increase of B has no effect on it. Consequently, the value of K
remains equal to that at B = Bt . The increment of temperature
[see Fig. 10(b)] seems to erase this abrupt change of slope
for the Skyrme and QHD models, whereas the BHF case
keeps the angular points still for T = 10 MeV. In addition,
the asymptotic values are smaller than the ones for T = 0.

Note that the isothermal incompressibility (K−1) was
studied in Ref. [62], at T = 0 and relatively low magnetic
intensities. Using the SLy7 parametrization of the Skyrme
model, a monotonous behavior was found for the low- to
medium-density regime.

Finally, we analyze the magnetic susceptibility, which is
very weak for neutron matter. However, as shown in the

FIG. 12. (Color online) Same as Fig. 11 for T = 10 MeV.

following, it provides valuable information about the character
of the change of spin polarization. In Fig. 11 the susceptibility
is shown as a function of the density for T = 0 and two
values of the magnetic field. For densities smaller than the
threshold density nt and zero temperature the magnetization of
the system is saturated. Therefore, a further increase of the field
intensity does not change the magnetization. Consequently,
we have χ = 0 for n < nt . A sharp increase is detected for
densities slightly above nt . Beyond that point, χ shows only
moderate variations in the QHD and BHF cases, whereas it
grows with an almost constant rate in the Skyrme one. In
Fig. 12, we see that thermal effects, as pointed out in similar
circumstances discussed in this section, smears out the abrupt
changes in the QHD and Skyrme cases while it seems to have
a small effect in the BHF one.

The dependence of χ on the magnetic intensity is given in
Fig. 13. The density is fixed at n/n0 = 0.2 and temperature
at T = 0 [Fig. 13(a)] and T = 10 MeV [Fig. 13(b)]. A
description similar to that given for Fig. 10 holds here. As in
that case, the same threshold value Bt separates, in each model,
the high-intensity-field regime, where χ/κ2 � 0, from the
monotonous decreasing trend found for the low-intensity-field
domain. Since the susceptibility measures the rate of change
of the magnetization with the applied field, it is clear that as

FIG. 13. (Color online) Magnetic susceptibility over κ2 as a
function of the magnetic field intensity for n/n0 = 0.2 and
T = 0 MeV (a) and T = 10 MeV (b). The magnetic field intensity is
given in units of 1018 G.
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the system saturates spin in the CPS-D state, the susceptibility
goes to zero. This fact explains, as in the case of K , the plateau
exhibited by χ for B > Bt .

IV. CONCLUSIONS

In the present work we have analyzed the behavior of
neutron matter in the presence of an external magnetic field
for a wide range of densities, two temperatures, and several
magnetic field intensities. Magnetic effects are small due to
the smallness of the intrinsic magnetic moment of the neutron.
However, we have found that there are some observables that
give a clear signal of a change in the physical configuration
of the system in the low-density–low-temperature regime. In
order to give a discussion as general as possible, we have used
different models of the nuclear interaction. All of them have
been successfully used in different fields of the nuclear physics,
although they have very different theoretical foundations. They
are (i) the Brueckner-Hartree-Fock (BHF) approach using
the Argonne V18 nucleon-nucleon potential supplemented
with the Urbana IX three-nucleon force, (ii) the covariant
formulation known as quantum hadrodynamics (QHD) in its
FSU-Gold version within a mean-field approach, and (iii) the
SLy4 parametrization of the nonrelativistic Skyrme effective
potential in a Hartree-Fock scheme.

The spin asymmetry W is a key feature to understand
the behavior of the system. The results for W obtained by
the different models are in qualitative agreement. Within the
range of magnetic field intensities considered here, the system
is completely polarized for small densities up to a threshold
density nt , where it changes into a partially polarized state.
The value of nt increases with the magnetic field intensity.
There are some details, such as the location of nt , which
differ from one model to the other. However, they can be
understood in terms of the in-medium nuclear interaction.
Thermal effects tend to soften the passage from completely
to partially polarized and reduce the degree of polarization.

We have studied the effective mass due to its importance
in the single-particle properties. We have found that it is a
monotonous decreasing function of the density for the three
models. We have seen that the effect of the magnetic field
on m∗ is in general small for all the models at low densities,
becoming completely negligible at high densities for the
BHF and QHD models, whereas, in contrarst, for the Skyrme
force it becomes more important as density grows. This is
a consequence of the well-known ferromagnetic instability
predicted by these forces.

With regard to the equation of state, there are not signi-
ficative differences among the various predictions and only

weak clues about the change of polarization. The second
derivatives of the thermodynamical potentials, such as the
compressibility and the magnetic susceptibility, give clear
evidence of a change in the system. At zero temperature they
show an abrupt change of regime that becomes diffuse as the
temperature is increased in the QHD and Skyrme cases. The
isothermal compressibility, for example, has a nonmonotonous
behavior around the threshold density nt . This feature can have
significative consequences as, for instance, in the propagation
of density waves through the crust of neutron stars.

In conclusion, we have found robust results supported by
the three models. The change in the global polarization of the
system does not produce discontinuities in the thermodynam-
ical potentials. The remarkable change of the slope found in
the equation of state at the threshold point resembles a second-
order phase transition. However, a detailed examination of
the relevant second-order derivatives of the thermodynamic
potential does not show any discontinuity. Hence, we conclude
the system undergoes a continuous passage or experiences
a higher order phase transition. The consequences of the
nonmonotonous behavior of the compressibility near the
transition point requires further investigation.

To establish significative differences among the three mod-
els within the subject under study, additional information must
be taken into account. We can mention here the cooling rate of
a neutron star, which strongly depends on the magnetization
state of matter. In Ref. [63] it was shown that there is a decrease
of the neutrino opacity of magnetized matter with respect to
the nonmagnetized case. Of course, a realistic description of
this issue requires some refinements, such as the inclusion
of protons, leptons, and exotic degrees of freedom such as
hyperons in β equilibrium. This would be the natural extension
of the present work and will be considered in a near future.
However, we believe that a good understanding of the simpler
neutron matter case is the first step in such direction.
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