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Dynamics of entanglement between two harmonic modes in stable and unstable

regimes

L. Rebón, N. Canosa, R. Rossignoli
Departamento de F́ısica-IFLP, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina

The exact dynamics of the entanglement between two harmonic modes generated by an angular
momentum coupling is examined. Such system arises when considering a particle in a rotating
anisotropic harmonic trap or a charged particle in a fixed harmonic potential in a magnetic field,
and exhibits a rich dynamical structure, with stable, unstable and critical regimes according to the
values of the rotational frequency or field and trap parameters. Consequently, it is shown that
the entanglement generated from an initially separable gaussian state can exhibit quite distinct
evolutions, ranging from quasiperiodic behavior in stable sectors to different types of unbounded
increase in critical and unstable regions. The latter lead respectively to a logarithmic and linear
growth of the entanglement entropy with time. It is also shown that entanglement can be controlled
by tuning the frequency, such that it can be increased, kept constant or returned to a vanishing
value just with stepwise frequency variations. Exact asymptotic expressions for the entanglement
entropy in the different dynamical regimes are provided.

PACS numbers: 03.67.Bg,03.65.Ud,05.30.Jp

I. INTRODUCTION

The investigation of entanglement dynamics and
growth in different physical systems is of great current
interest [1–3]. Quantum entanglement is well known to
be an essential resource for quantum teleportation [4] and
pure state based quantum computation [5], where its in-
crease with system size is necessary to achieve an expo-
nential speedup over classical computation [6, 7]. And a
large entanglement growth with time after starting from
a separable state indicates that the system dynamics can-
not be simulated efficiently by classical means [8], turning
it suitable for quantum simulations.

The aim of this work is to examine the dynamics of
the entanglement between two harmonic modes gener-
ated by an angular momentum coupling, and its ability
to reproduce typical regimes of entanglement growth in
more complex many body systems, when starting from an
initial separable gaussian state. The latter can be chosen,
for instance, as the ground state of the non-interacting
part of the Hamiltonian, thus reproducing the typical
quantum quench scenario [1, 2, 8]. The present system
can be physically realized by means of a charged parti-
cle in a uniform magnetic field within a harmonic po-
tential or by a particle confined in a rotating harmonic
trap [9–12], where the field or rotational frequency pro-
vides an easily controllable coupling strength. Accord-
ingly, it has been widely used in quite different physical
contexts, such as rotating nuclei [11, 12], quantum dots
in a magnetic field [13] and fast rotating Bose-Einstein
condensates within the lowest Landau level approxima-
tion [14–19]. In spite of its simplicity, the model is able
to exhibit a rich dynamical structure [20], with both sta-
ble and distinct types of unstable regimes, characterized
by bounded as well as unbounded dynamics, when con-
sidering all possible values of the field or frequency in
a general anisotropic potential. Nonetheless, being a

quadratic Hamiltonian in the pertinent coordinates and
momenta, the dynamics can be determined analytically
in all regimes, and the entanglement between modes can
be evaluated exactly through the gaussian state formal-
ism [21–25]. For the same reason, the Hamiltonian is also
suitable for simulation with optical techniques [26].

The main result we will show here is that due its non-
trivial dynamical properties, the entanglement dynamics
in the previous model can exhibit distinct regimes, in-
cluding a quasiperiodic evolution in dynamically stable
sectors, different types of logarithmic growth at the bor-
der between stable and unstable sectors (critical regime)
and a linear increase in dynamically unstable sectors.
The model is then able to mimic the three typical regimes
for the entanglement growth with time after a quantum
quench, arising in spin 1/2 chains with Ising type cou-
plings, according to the results of refs. [1, 8], which show
a linear growth for short range couplings, a logarithmic
growth for long range interactions and an oscillatory be-
havior for nearly infinite range interactions, when consid-
ering a half-chain bipartition. We also mention that the
static ground state entanglement of the present model
also exhibits critical behavior at the border of instabil-
ity [27]. Mode entanglement dynamics in related har-
monic models within stable regimes were previously stud-
ied in [28–30], while critical behavior and entanglement
in ultrastrong-coupled oscillators (through a different in-
teraction) were considered in [31]. Other relevant aspects
of entanglement dynamics and generation in spin systems
were discussed in [32–35].

In sec. II we discuss the exact dynamics of the system
and describe the different regimes arising for strong cou-
pling in anisotropic potentials. The entanglement evo-
lution in gaussian states is then examined in detail in
sec. III, including its exact evaluation through the co-
variance matrix formalism and the exact asymptotic be-
havior in the distinct dynamical regimes. Explicit results,
including the possibility of entanglement control through
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a stepwise varying frequency, are also shown. Conclu-
sions are finally provided in IV.

II. MODEL AND EXACT DYNAMICS

A. Hamiltonian

We consider two harmonic systems with coordinates
and momenta Qµ, Pµ, µ = x, y, coupled through their
angular momentum Lz = QxPy − QyPx. The Hamilto-
nian is

H = H0 − ΩLz , (1)

H0 =
P 2
x + P 2

y

2m
+

1

2
(KxQ

2
x +KyQ

2
y) . (2)

Eq. (1) describes, for instance, the motion in the x, y
plane of a particle of charge e and mass m within a har-
monic trap of spring constants K̃µ in a uniform field H

along the z axis [11, 12], if Ω = e|H|
2mc stands for half the

cyclotron frequency and Kµ = K̃µ +mΩ2.
It also determines the intrinsic motion of a particle in a

harmonic trap with constants Kµ which rotates around
the z axis with frequency Ω. In this case [11, 12], the
actual Hamiltonian is H(t) = R(t)H0R

†(t), with R(t) =
e−iΩLzt/~ the rotation operator, but averages of rotating
observables O(t) = R(t)OR†(t) evolve like those of O
under the time-independent “cranked” Hamiltonian (1).

Replacing Qµ = qµ/
√

mΩ0/~, Pµ = pµ
√
~mΩ0,

with qµ, pµ dimensionless coordinates and momenta
([qµ, pν ] = iδµν , [qµ, qν ] = [pµ, pν ] = 0) and Ω0 a ref-
erence frequency, we have H = ~Ω0 h, with

h = h0 − ωlz, h0 =
1

2
(p2x + p2y + kxq

2
x + kyq

2
y) , (3)

lz = qxpy − qypx = −i(b†xby − b†ybx) , (4)

where kµ = Kµ/(mΩ2
0) and ω = Ω/Ω0 are dimensionless

(Ω0 can be used to set |kx| = 1) and bµ =
qµ+ipµ√

2
are

the boson annihilation operators associated with qµ, pµ.
The lz coupling (4) is then seen to conserve the associ-
ated total boson number N =

∑

µ=x,y b
†
µbµ, being in fact

the same as that describing the mixing of two modes of
radiation field passing through a beam splitter [5]. No-
tice, however, that [h0, N ] 6= 0 unless kx = ky = 1 (stable
isotropic trap).

B. Exact evolution

The Heisenberg equations of motion ido/dt = −[h, o]
for the operators qµ, pµ (with t = Ω0T and T the actual
time) become

dqx
dt = px + ωqy ,

dqy
dt = py − ωqx

dpx

dt = −kxqx + ωpy ,
dpy

dt = −kyqy − ωpx
, (5)

and can be written in matrix form as

i
d

dt
O = HO , (6)

O =







qx
qy
px
py






, H = i







0 ω 1 0
−ω 0 0 1
−kx 0 0 ω
0 −ky −ω 0






. (7)

The system dynamics is then fully determined by the
matrix H. We may write the general solution of (6) as

O(t) = U(t)O , U(t) = exp[−iHt] , (8)

where O ≡ O(0).
In spite of their simplicity, Eqs.(5) can lead to quite

distinct dynamical regimes according to the values of
ω and kµ, as the eigenvalues of H, which is in general
a non-hermitian matrix, can become imaginary or com-
plex away from stable regions [20]. Moreover, H can also
become non-diagonalizable at the boundaries between
distinct regimes, exhibiting non-trivial Jordan canonical
forms [20]. Nonetheless, as

H2 =







kx + ω2 0 0 −2ω
0 ky + ω2 2ω 0
0 ω(kx + ky) kx + ω2 0

−ω(kx + ky) 0 0 ky + ω2






,

(9)
the eigenvalues of H are determined by 2× 2 blocks, and
given by λ± and −λ±, with

λ± =
√

ε+ + ω2 ±∆ , , (10)

where ε± =
kx±ky

2 and ∆ =
√

ε2− + 4ω2ε+.

We can then write the solution (8) explicitly as







qx(t)
qy(t)
px(t)
py(t)






=







uxx uxy vxx vxy
uyx uyy −vxy vyy
wxx wxy uxx −uyx

−wxy wyy −uxy uyy













qx
qy
px
py






,(11)

where

uxx
yy

= (∆±ε
−
) cosλ+t+(∆∓ε

−
) cosλ

−
t

2∆ ,

uxy
yx

= ±ω
(∆∓ε

−
+2ε+)

sinλ+t

λ+
+(∆±ε

−
−2ε+)

sinλ
−

t

λ
−

2∆ ,

vxx
yy

=
(∆±ε

−
+2ω2)

sinλ+t

λ+
+(∆∓ε

−
−2ω2)

sinλ
−

t

λ
−

2∆ ,

vxy = ω(− cosλ+t+cosλ
−
t)

∆ , wxy = −ε+vxy ,

wxx
yy

=
−(∆±ε

−
)(∆±ε

−
+2ε+)

sinλ+t

λ+
+(∆∓ε

−
)(∆∓ε

−
−2ε+)

sinλ
−

t

λ
−

4∆ .

(12)
The matrix U(t) is real for any real values of ω, kµ and
t, including unstable regimes where ∆ and/or λ± can be
imaginary or complex [20]. It represents always a linear
canonical transformation of the qµ, pµ, satisfying

U(t)MU t(t) = M, M = i

(

0 I
−I 0

)

, (13)
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(I denotes the 2 × 2 identity matrix) which ensures the
preservation of commutation relations ([Oi,Oj ] = Mij).
It corresponds to a proper Bogoliubov transformation of
the associated boson operators.
For ω = 0, we recover from Eqs. (11)–(12) the

decoupled harmonic evolution qµ(t) = qµ cosωµt +
ω−1
µ pµ sinωµt, pµ(t) = pµ cosωµt − qµωµ sinωµt, where

ωµ =
√

kµ for µ = x, y. Off-diagonal terms uxy, uyx,
vxy, wxy in (12) are O(ω) for small ω.
On the other hand, in the isotropic case kx = ky = k

(where ∆ = 2ω
√
k and |λ±| = |

√
k ± ω|), [lz, h] = 0

and the evolution provided by Eqs. (11)–(12) is just the
rotation of identical single mode evolutions:

U(t) = exp[iωLzt] exp[−iH0t] , (14)

exp[iωLzt] =

(

R†(t) 0
0 R†(t)

)

, R†(t) =

(

cosωt sinωt
− sinωt cosωt

)

.

In particular, the Landau case (free particle in a magnetic
field) corresponds to kx = ky = ω2, where λ+ = 2ω and
λ− = 0.

C. Dynamical regimes

The distinct dynamical regimes exhibited by this sys-
tem for ω 6= 0 are summarized in Fig. 1. Let us first
consider the standard stable case kx > 0, ky > 0 (first
quadrant). The eigenvalues λ± are here both real and
non-zero in sectors A and B, defined by

ω2 < Min[kx, ky] (sector A) , (15)

ω2 > Max[kx, ky] (sector B) , (16)

when kx > 0, ky > 0. A is the full stable sector where
h is positive definite, whereas B is that where the sys-
tem, though unstable, remains dynamically stable [20]
(see also Appendix). If ω2 lies between these values (sec-
tor D), λ− becomes imaginary (with λ+ remaining real),
leading to a frequency window where the system be-
comes dynamically unstable (unbounded motion), with
sin(λ−t)/λ− = sinh(|λ−|t)/|λ−| in Eqs. (12).
At the border between D and A or B (ω2 = kx or

ω2 = ky), λ− = 0 (with λ+ > 0) and H becomes non-
diagonalizable if ky 6= kx, although H2 remains diagonal-
izable. The system becomes here equivalent to a stable
oscillator plus a free particle [20] (see Appendix), and
we should just replace sin(λ−t)/λ− by its limit t in Eqs.
(12), which leads again to an unbounded motion.
Considering now the possibility of unstable potentials

(kx < 0 and/or ky < 0, remaining quadrants), the dy-
namically stable sector B extends into this region pro-
vided kx > 0 > ky > −3kx (or viceversa) and

Max[kx, ky] < ω2 < −ε2−/(4ε+) , (17)

where the upper bound applies only when ε+ < 0 (i.e.,
−3kx < ky < −kx or viceversa). Eq. (17) defines a
frequency window where the unstable system becomes

Λ-=0

Λ+=0

Λ-=0
Λ+=Λ-

Λ±=0

Λ- imaginary

Λ- imaginary

1

2

AD

D
E

L

L

C

C
B F

Λ± complex

Λ± real

-4 -2 2 4
ky�Ω

2

-4

-2

2

4

kx�Ω
2

FIG. 1. Dynamical phase diagram of the system described
by Hamiltonian (1). The evolution of the operators qµ, pµ is
quasiperiodic in the dynamically stable sectors A, B, where
the eigenfrequencies λ± are both real, but unbounded in the
remaining sectors, with λ− imaginary in D, both λ± imagi-
nary in C, and λ± complex conjugates in E. At the borders
between these regions (except from the Landau point F ) the
matrix H is non-diagonalizable and the evolution is also un-
bounded, with λ− = 0 at the borders between D and A or
B, λ+ = 0 at the border between D and C, λ+ = λ− at the
curve separating E from B and C and λ± = 0 at the critical
points L. Dashed lines indicate the path described as ω is
increased at fixed kµ, showing that the system dynamics will
become unbounded (bounded) in a certain frequency window
when starting at 1 (2). The black line indicates the isotropic
case kx = ky , where entanglement will be periodic (see sec.
III).

dynamically stable (λ± real). Beyond this sector, either
λ− becomes imaginary (sectors D) or both λ± become
imaginary (sectors C) or complex conjugates (sector E,
where ∆ is imaginary), and the dynamics becomes again
unbounded. This is also the case at the borders between
D and B (λ+ > 0, λ− = 0) and also D and C (λ+ = 0,
λ− imaginary) where H is non-diagonalizable (see Ap-
pendix for more details).

The critical curve ∆ = 0, i.e.,

ω2 = −ε2−/(4ε+) , (18)

where ε+ < 0, separates sectors B and C from E

and deserves special attention. At this curve, λ± =

λ =
√

ε+ + ω2 and both H and H2 become non-

diagonalizable, with λ real at the border between B and
E and imaginary at that between C and E. The eval-
uation of U(t) in Eq. (8) can in this case be obtained
through the pertinent Jordan decomposition of H (two
2× 2 blocks [20]), but the final result coincides with the
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∆ → 0 limit of Eqs. (12). This leads to the elements

uxx
yy

= cosλt∓ tε−
sinλt
2λ ,

uxy
yx

= ±ω tλ(ε+∓ε
−
/2) cosλt+(ω2±ε

−
/2) sinλt

λ3 ,

vxx
yy

= tλ(ω2±ε
−
/2) cosλt+(ε+∓ε

−
/2) sinλt

λ3 ,

vxy = ωt sinλt
λ , wxy = −ε+vxy ,

wxx
yy

= ε+tλ(ω2∓ε
−
/2) cosλt−(ε++2ω2)(ε+±ε

−
/2) sinλt

λ3 ,

(19)
which contain terms proportional to t. The evolution is,
therefore, always unbounded along this curve.
Finally, if both ∆ and λ =

√

ε+ + ω2 vanish, which
occurs when ε+ = −ω2 = −|ε−|/2, i.e.,

ω2 = kx = −ky/3 , (20)

(or ω2 = ky = −kx/3), the system exhibits a remarkable
critical point (points L in Fig. 1), where λ± = 0 and
sectors B, C, D and E meet. Here both H and H2 are
non-diagonalizable, with H represented by a single 4× 4
Jordan Block (inseparable pair [20]). By using this form
or taking the λ → 0 limit in Eqs. (19), we obtain in
this case a purely polynomial (and hence also unbounded)
evolution, involving terms up to the third power of t: The
elements of U(t) become

uxx
yy

= 1∓ ω2t2

uxy = ωt(1 + 2
3ω

2t2), uyx = −ωt ,
vxx = t(1 − 2

3ω
2t2), vyy = t ,

vxy = ωt2 , wxy = ω3t2 ,
wxx = −ω2t, wyy = ω2t(3 + 2

3ω
2t2) .

(21)

Nonetheless, we remark that Eq. (13) remains satisfied
(in both cases (19) and (21)).

III. DYNAMICS OF ENTANGLEMENT IN

GAUSSIAN STATES

A. Exact evaluation

Let us now consider the evolution of the entanglement
between the x and y modes, starting from an initially sep-
arable pure gaussian state. Since the evolution is equiva-
lent to the linear canonical transformation (8), the state
will remain gaussian ∀ t, which entails that entanglement
will be completely determined by the pertinent covari-
ance matrix [22, 23].
We may then assume that at t = 0, 〈qµ〉 = 〈pµ〉 = 0

for µ = x, y (〈O〉 = 0), such that these mean values will
vanish ∀ t (〈O〉t = 〈O(t)〉 = 0, as implied by Eq. (11)).
We may then define the covariance matrix as

C = 〈OOt〉 − 1

2
M

=











〈q2x〉 〈qxqy〉 〈qxpx+pxqx〉
2 〈qxpy〉

〈qxqy〉 〈q2y〉 〈qypx〉 〈qypy+pyqy〉
2

〈qxpx+pxqx〉
2 〈qypx〉 〈p2x〉 〈pxpy〉

〈qxpy〉 〈qypy+pyqy〉
2 〈pxpy〉 〈p2y〉











,(22)

which, according to Eqs. (8) and (13), will evolve as

C(t) = U(t)C(0)U t(t) . (23)

The entanglement between the two modes will now be
determined by the symplectic eigenvalue f̃(t) = f(t)+1/2
of the single mode covariance matrix Cµ(t) = 〈OµOt

µ〉t −
1
2M, submatrix of (23), where Oµ = (qµ, pµ)

t. Here f(t)
is a non-negative quantity representing the average boson
occupation 〈a†µ(t)aµ(t)〉 of the mode (aµ(t) is the local

boson operator satisfying 〈a2µ(t)〉 = 0), which is the same
for both modes (fx(t) = fy(t)) when the global state is
gaussian and pure. It is given by

f(t) =
√

〈q2µ〉t〈p2µ〉t − 〈qµpµ + pµqµ〉2t /4−
1

2
. (24)

Eq. (24) is just the deviation from minimum uncertainty
of the mode, and can be directly determined from the
elements of (23).
The von Neumann entanglement entropy between the

two modes becomes

S(t) = −Tr ρµ(t) ln ρµ(t)

= −f(t) ln f(t) + [1 + f(t)] ln[1 + f(t)] , (25)

where ρµ(t) denotes the reduced state of the mode. Eq.
(25) is an increasing concave function of f(t). For future
use, we note that for large and small f(t),

S(t) ≈ ln f(t) + 1 +O(f−1) , (26)

S(t) ≈ f(t)[− ln f(t) + 1] +O(f2) . (27)

Other entanglement entropies, like the Renyi entropies

Sα(t) =
ln Tr ρα

µ(t)

1−α , α > 0, and the linear entropy S2(t) =

1−Trρ2µ(t) (of experimental interest as Trρ2 and in gen-
eral Trρn can be measured without performing a full state
tomography [3, 36]), are obviously also determined by
f(t), since Tr ραµ = [(1 + fµ)

α − fα
µ ]

−1 (α > 0).
The initial covariance matrix C(0) will be here assumed

of the form

C(0) = 1

2







α−1
x 0 0 0
0 α−1

y 0 0
0 0 αx 0
0 0 0 αy






, (28)

where αµ = 2〈p2µ〉, such that αµ =
√

kµ if the system
is initially in the separable ground state of h0, as in the
typical quantum quench scenario [1]. For fixed isotropic
initial conditions we will just take αx = αy = 1.
For these initial conditions, we first notice that for

small t, Eqs. (12) and (24) yield

f(t) ≈ (αx − αy)
2

4αxαy
(ωt)2 +O(t4) , (29)

which indicates a quadratic initial increase of f(t) with
time for any anisotropic initial covariance. Eq. (29) is
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Sectors Average occupation Entanglement entropy

A, B Quasiperiodic Quasiperiodic

C f(t) ∝ e(|λ−
|+|λ

−
|)t S(t) ≈ (|λ−|+ |λ−|)t

D f(t) ∝ e|λ−
|t S(t) ≈ |λ−|t

E f(t) ∝ e2|Im(λ)|t S(t) ≈ 2 |Im(λ±)|t
Borders A-D, B-D f(t) ∝ t S(t) ≈ S0(t) + ln t

Border B-E f(t) ∝ t2 S(t) ≈ S1 + 2 ln t

Points L f(t) ∝ t4 S(t) ≈ S2 + 4 ln t

Line kx = ky Periodic (αx 6= αy) Periodic (αx 6= αy)

TABLE I. The asymptotic evolution of the average occupation
(24) and the entanglement entropy (25) in the different dy-
namical sectors indicated in Fig. 1. Entanglement is bounded
in the stable sectors A, B, but increases linearly (with t) in
the unstable sectors C, D, E, and logarithmically at the bor-
der between stable and unstable sectors, provided kx 6= ky.
In the isotropic case kx = ky = k it remains periodic for any
value of k and anisotropic initial conditions.

independent of the oscillator parameters kµ and propor-
tional to ω2. However, for isotropic initial conditions
αx = αy, quadratic terms vanish and we obtain in-
stead a quartic initial increase, driven by the oscillator
anisotropy ε−:

f(t) ≈ ε2−ω
2

4α2
x

t4 +O(t6) . (30)

Eq. (27) implies a similar initial behavior (except for a
factor ln t) of the entanglement entropy.
Next, in the isotropic case kx = ky = k, the exact ex-

pression for f(t) becomes quite simple, since the rotation
is decoupled from the internal motion of the modes (Eq.
(14)), and entanglement arises solely from rotation and

initial anisotropy. We obtain

f(t) =
1

2

√

1 +
(αx − αy)2

4αxαy
sin2(2ωt)− 1

2
. (31)

Entanglement will then simply oscillate with frequency
4ω if αx 6= αy, being independent of the trap parameter
k, since the latter affects just a local transformation de-
coupled from the rotation. Eq. (31) holds in fact even if
k becomes negative (unstable potential) or vanishes.
In the general case, the previous decoupling no longer

holds and the explicit expression for f(t) becomes quite
long. The main point we want to show is that the differ-
ent dynamical regimes lead to distinct behaviors of f(t),
and hence of the generated entanglement entropy S(t),
which are summarized in Table I. We now describe them
in detail.

B. Evolution in stable sectors

In the dynamically stable sectors A and B of Fig. 1,
both λ± are real and non-zero, implying that the evolu-

10 20 30 40 50

Ωxt

0

1

2

3

S

A1

A2

A-D

B

D1D2

FIG. 2. The evolution of the entanglement entropy (25) be-
tween the two modes for ky = 0.3kx > 0 and frequencies
ω/ωy = 0.5 (A1), 0.95 (A2), 1 (A-D), 1.05 (D1), 1.7 (D2)
and 1.95 (B), where ωµ =

√

kµ and the label indicates the
corresponding sector in Fig. 1. S(t) is quasiperiodic in curves
A1, A2 and B, but increases logarithmically (on average) in
A-D, and linearly in D1, D2. The initial state is the separable
ground state of H0 (uncoupled oscillators).

tion of f(t) and S(t) will be quasiperiodic, as seen in Fig.
2 (curves A1, A2 and B). The initial state was chosen
as the ground state of h0 (αµ =

√

kµ in (28)). Starting
from point 1 in sector A (Fig. 1), the generated entangle-
ment S(t) remains small when ω is well below the first
critical value ωy =

√

ky (curve A1). As ω increases,
S(t) will exhibit increasingly higher maxima, showing a
typical resonant behavior for ω close to ωy (border with
sector D), where λ− vanishes. Near this border, S(t) will
essentially exhibit large amplitude low frequency oscilla-
tions determined by λ−, with maxima at t ≈ tm = mπ

2λ
−

(m odd), plus low amplitude high frequency oscillations
determined by λ+, as seen in curve A2.
As ω increases, the system enters dynamically unsta-

ble sectors for ωy ≤ ω ≤ ωx =
√
kx, and the evolution

becomes unbounded (curves A-D, D1 and D2, described
in next subsection). For ω > ωx, the system reenters the
dynamically stable regime and exhibits again the previ-
ous behaviors, with an oscillatory resonant type evolution
for ω above but close to ωx (curve B in Fig. 2).
Close to instability but still within the stable regime,

the maximum entanglement reached is of order ln |ω −
ωµ|: For ω close to ωµ (µ = x, y) on the stable side, and
for the initial conditions (28), f(t) will be maximum at
t ≈ tm, with

f(tm) ≈ ω|ε
−
|

λ2
+
λ
−

√

(
αxαy+ω2

λ+
)2 sin2

mπλ+

2λ
−

+α2
µ cos2

mπλ+

2λ
−

αxαy
, (32)

where λ+ ≈
√

2(ε+ + ω2
µ) and

λ− ≈
√

2ωµ|ε−||ωµ − ω|
ε+ + ω2

µ

, (33)
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FIG. 3. The maximum entanglement S(tm) reached in stable
sectors close to instability, as a function of the anisotropy
ratio ky/kx (see Eq. (32)). Top: Vicinity of border A-D (ω =
0.999ωy). Bottom: Vicinity of border B-D (ω = 1.001ωx).
The initial state is the separable ground state of H0 (αµ = ωµ)
in curves a and a separable isotropic state (αµ = 1) in curves
b.

implying f(tm) = O(|ωµ − ω|−1/2) and hence S(tm) =
O(− 1

2 ln |ωµ − ω|).

Expression (32) (and hence S(tm)) will tend to de-
crease for decreasing anisotropy, i.e., increasing ratio
ky/kx ≤ 1, as seen in Fig. 3 for m = 1, vanishing in
the isotropic limit ky/kx → 1 (where f(tm) = O(|kx −
ky|)1/2). On the other hand, the behavior for ky/kx → 0
will depend on the initial condition: If it is the ground
state of H0 (αµ = ωµ, curves a), f(tm) will vanish at the
first border ω ≈ ωy (top panel), where f(tm) = O(

√
ωy),

but diverge at the second border ω = ωx (bottom panel),
where f(tm) = O(1/

√
ωy), as obtained from Eq. (32). If

the initial state is fixed, however, f(tm) will approach
a finite value for ky/kx → 0, and exhibit a monotonous
decrease on average with increasing ratio ky/kx in both
borders (curves b in Fig. 3), as also implied by (32). We
also mention that the high frequency oscillations in f(tm)
and S(tm) observed in Fig. 3 stem from the λ+/λ− ratio
in the arguments of the trigonometric functions in Eq.
(32). For ω close to ωµ, this ratio is minimum around
ky/kx ≈ 1/5, which leads to the observed decrease in the
oscillation frequency of S(tm) in the vicinity of this ratio
(top panel).

0 0.5 1 1.5
0

4

8

Ω�Ωx

S

FIG. 4. The entanglement entropy between the two modes
attained at fixed time ωxt = 40, as a function of the (constant)
frequency ω, for the oscillator parameters and initial state of
Fig. 2. Entanglement is bounded for ω < ωy (sector A) and
ω > ωx (sector B), but is proportional to t in the instability
window ωy < ω < ωx (sector D).

C. Evolution in unstable sectors

Let us now examine in detail the evolution of S(t) in
the dynamically unstable regimes. At the critical fre-
quencies ω = ωµ, µ = y, x (borders A-D and B-D), λ−
vanishes and Eqs. (12) and (24) lead, for large t and the
initial conditions (28), to the critical evolution

f(t) ≈ t ω|ε
−
|

λ2
+

√

(
αxαy+ω2

λ+
)2 sin2 λ+t+α2

µ cos2 λ+t

αxαy
, (34)

where λ+ =
√

2(ε+ + ω2
µ) > 0. This entails a linear

increase, on average, of f(t) in this limit, and hence, a
logarithmic growth of S(t), according to Eq. (26):

S(t) ≈ S0(t) + ln t , (35)

where S0(t) = 1 + ln[f(t)/t] is a bounded function os-
cillating with frequency λ+. This behavior (curve A-D
in Fig. 2) is the ω → ωµ limit of the previous resonant
regime.
On the other hand, in the unstable sectorD (ωy < ω <

ωx), λ− becomes imaginary. This leads to an exponential

term in f(t) ( sinλ
−
t

λ
−

→ sinh |λ
−
|t

|λ
−
| ), which will dominate

the large t evolution: In this sector Eqs. (12), (24) and
(27) imply, for large t,

f(t) ∝ e|λ−
|t , S(t) ≈ |λ−|t , (36)

and hence, a linear growth (on average) of the entan-
glement entropy with time (curves D1, D2 in Fig. 2).
Therefore, in the unstable window ωy ≤ ω ≤ ωx, there
is an unbounded growth with time of the entanglement
entropy, which will originate a pronounced maximum in
the generated entanglement at a given fixed time and
anisotropy as a function of ω, as appreciated in Fig. 4.
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S2+4 ln t

S1+2 ln t
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0 50 100
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10

20

Ωx t

S

FIG. 5. Critical evolution of the entanglement entropy at the
border between sectors with distinct dynamics, for isotropic
initial conditions (αµ = 1). The lower, middle and upper
curve correspond respectively to the border A-D (at ky =
0.5kx, with ω =

√

ky), B-E (at ky = −1.5kx, with ω given
by (18)) and the critical points L (Eq. (20)). The asymptotic
behavior for large t (Eqs. (35), (38), (40)) is indicated.

We now examine the behavior at the other sectors of
Fig. 1. In the unstable sectors C and E, where one or
both of the constants kµ are negative, λ± are imaginary
or complex (Fig. I). This implies an exponential increase
of f(t), as indicated in table I, entailing again a lin-

ear asymptotic growth of the entanglement entropy with
time: S(t) ≈ (|λ+| + |λ−|)t in C and S(t) ≈ 2|Im(λ±)|t
in E, neglecting constant or bounded terms.
On the other hand, at the border between sectors B

and E, which corresponds to the critical curve ∆ = 0
between both points L in Fig. 1, we obtain, for large t and
kx 6= ky (with the initial conditions (28)), the asymptotic
behavior

f(t) ≈ |ε−|
4ω2αxαy + ε2−
16ωλ

√
αxαy

t2 , (37)

where λ =
√

ε+ + ω2 > 0. This leads to

S(t) ≈ S1 + 2 ln t , (38)

with S1 ≈ 1+ln[|ε−| 4ω
2αxαy+ε2

−

16ωλ
√
αxαy

]. Hence, the unbounded

growth of f(t) and S(t) is here more rapid than that
at the previous borders A-D and B-D (ω = ωy or ωx)
(quadratic instead of linear increase of f(t)). At the bor-
der E-C the asymptotic behavior of f(t) is still exponen-
tial (i.e., linear growth of S(t)).
Finally, a further remarkable critical behavior arises at

the special critical points L, obtained for condition (20),
where all sectors B, C, D and E meet. We obtain here
a purely polynomial evolution of (f(t)+1/2)2, as implied
by Eqs. (21). For large t, this leads to a quartic increase
of f(t):

f(t) ≈ αxαy+ω2

6
√
αxαy

ω3 t4 , (39)

a

b

0 30 60 90 120
0

1

2

3

Ωxt

S

FIG. 6. Evolution of the entanglement entropy for a stepwise
varying frequency ω, starting from the separable ground state
of H0 (with ky = 0.5kx > 0). In curve a we have set ω/ωx =
0.5, 0.7, 0 and 0.21 for successive time intervals of length
ωx∆t = 30, such that the system is close to the first instability
at the second interval (0.7ωx ≈ 0.99ωy , with ωµ =

√

kµ),
while in curve b the only change is ω = 0.75ωx ≈ 1.06ωy

in the second interval, such that the system enters there the
unstable regime leading to a linear entanglement growth. This
plot shows that entanglement can be increased, kept constant
and returned to a vanishing value just by tuning the frequency
ω.

implying the following logarithmic increase of S(t):

S(t) ≈ S2 + 4 ln t , (40)

where S2 ≈ 1+ln[
αxαy+ω2

6
√
αxαy

ω3]. Hence, the increase is here

still more rapid than at both previous borders. These
critical behaviors are all depicted in Fig. 5.

D. Entanglement control

We finally show in Fig. 6 the possibilities offered by this
model for controlling the entanglement growth through
a stepwise time dependent frequency, starting from the
separable ground state of H0. After applying a “low” ini-
tial frequency ω = 0.5ωx for ωxt < 30, which leads to a
weak quasiperiodic entanglement, by tuning ω to a value
close to the first instability ωy =

√

ky for a finite time
(30 < ωxt < 60), it is possible to achieve a large entan-
glement increase (curve a). Then, by setting ω = 0 (i.e.,
switching off the field or rotation), entanglement is kept
high and constant, since the evolution operator becomes
a product of local mode evolutions. Finally, by turning
the frequency on again up to a low value, entanglement
can be made to exhibit strong oscillations, practically
vanishing at the minimum if ω is appropriately tuned.
Thus, disentanglement at specific times can be achieved
if desired. The entanglement increase at the second in-
terval can be enhanced by allowing the system to enter
the instability region for a short time, as shown in curve
b.
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FIG. 7. Evolution of the average occupation number f(t) (Eq.
(24)) and angular momentum 〈lz〉 for case a of Fig. 6.

The growth of the average occupation f(t) (and hence
the entanglement entropy S(t)) in the second interval is
strongly correlated with that of the average angular mo-
mentum 〈lz〉t, i.e., with the entangling term in H , as
seen in Fig. 7 for case a of Fig. 6. Nonetheless, while
the evolution of f(t) is similar to S(t), the average an-
gular momentum exhibits pronounced oscillations when
ω is switched off, since lz is not preserved in the present
anisotropic trap ([lz, h0] 6= 0). These oscillations persist
in the last interval, although shifted and partly atten-
uated. Here the vanishing of 〈lz〉t provides a check for
the vanishing entanglement, since in a separable state
〈lz〉 = 〈qx〉〈py〉 − 〈qy〉〈px〉 and for the present initial con-
ditions 〈qµ〉 = 〈pµ〉 = 0 for all times. Thus, f(t) = 0
implies here 〈lz〉t = 0, although the converse is not valid.
Though initially correlated, we remark that 〈lz〉t and

the average occupation f(t) do not have a fixed asymp-
totic relation in the whole plane. For instance, at the
stability borders ω = ωµ, 〈lz〉t increases on average as t2

for high t, i.e., as f2(t) (Eq. (34)), and the same relation
with f(t) holds in the unstable sector D (ωy < ω < ωx),

where 〈lz〉t ∝ e2|λ−
|t. Nonetheless, in an unstable poten-

tial at the critical curve ∆ = 0, 〈lz〉t ∝ t2 (on average)
for large t, increasing then as f(t) (Eq. (37)), while at the
critical points L we obtain 〈lz〉t ∝ t6, i.e., 〈lz〉t ∝ f3/2(t)
asymptotically (Eq. (39)).

IV. CONCLUSIONS

We have analyzed the entanglement generated by
an angular momentum coupling between two harmonic
modes, when starting from a separable gaussian state.
The general treatment considered here is fully analytic
and valid throughout the entire parameter space, in-
cluding stable and unstable regimes, as well as critical
regimes where the system cannot be written in terms
of normal coordinates or independent quadratic systems
(non-diagonalizableH2). Hence, in spite of its simplicity,
the present model is able to exhibit different types of en-

tanglement evolution, including quasiperiodic evolution,
linear growth, and also logarithmic growth of the entan-
glement entropy with time, which can all be reached just
by tuning the frequency. The model is then able to mimic
the typical evolution regimes of the entanglement en-
tropy encountered in more complex many-body systems.
Even distinct types of critical logarithmic growth can be
reached when allowing for general quadratic potentials.
The system offers then the possibility of an easily con-
trollable entanglement generation and growth, through
stepwise frequency changes, which can also be tuned in
order to disentangle the system at specific times. The
model can therefore be of interest for continuous vari-
able based quantum information.
The authors acknowledge support from CONICET

(LR,NC) and CIC (RR) of Argentina. We also thank
Prof. S. Mandal for motivating discussions during his
visit to our institute.

A. Appendix

In order to highlight the non-trivial character of the
present model when considered for all real values of the
constants kµ and frequency ω > 0, we provide here some
further details [20]. With the sole exception of the criti-
cal curve ∆ = 0 (Eq. (18)), the Hamiltonian (3) can be
written as a sum of two quadratic Hamiltonians,

h =
1

2
(α+p

2
+ + β+q

2
+) +

1

2
(α−p

2
− + β−q

2
−) , (41)

where p±, q± are related with qx,y, px,y by the linear
canonical transformation

q± =
qx,y−ηpy,x

(1+γη) , p± = px,y + γqy,x ,

γ = (∆− ε−)/(2ω) , η = γ/ε+ ,
(42)

such that [qr, ps] = iδrs, [qr, qs] = [pr, ps] = 0 for r, s =
±, and

α± =
1

2
+

ε− ± 2ω2

2∆
, β± =

∆

ω2
(∆α± − ε−) ,

with α±β± = λ2
± (Eq. (10)). Nonetheless, the coefficients

α±, β± can be positive, negative or zero, and may be-
come even complex, according to the values of kx, ky and
ω. We may obviously interchange p± with q± in (42) by
a trivial canonical transformation p± → q±, q± → −p±.
This freedom in the final form will be used in the follow-
ing discussion.
In sector A of Fig. 1, α±, β± in Eq. (41) are both

real and positive, and the system is equivalent to two
harmonic modes. Here λ± are both real. In sector B,
α+, β+ are positive but α−, β− are both negative, so that
the system is here equivalent to a standard plus an “in-
verted” oscillator. Nevertheless, λ± remain still real. In
sector C, α±β± < 0, and the effective quadratic poten-
tial becomes unstable in both coordinates (i.e., α± > 0,
β± < 0). Here λ± are both imaginary. In sector D, α+
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and β+ are positive but α−β− < 0, so that the potential
is stable in one direction but unstable in the other (i.e.,
α− > 0, β− < 0). Here λ+ is real but λ− is imaginary.
In sector E, both α± and β± are complex and q±, p± are
non hermitian [20]. Here λ± are complex conjugates.
At the border A-D, α+, β+, α− are all positive but

β− = 0 (or similar with β− ↔ α−), so that the system
is equivalent to a harmonic oscillator plus a free particle
(λ+ > 0, λ− = 0). The same holds at the border B-D,
except that α− < 0 (inverted free particle term). At the
Landau point F (kx = ky = ω2, where A, B, and D

meet), α+ > 0, β+ > 0 but α− = β− = 0. Finally, at the
border C-D, α+ > 0, β+ = 0 (or similar with β+ ↔ α+)
and α−β− < 0, implying λ+ = 0 and λ− imaginary.

The decomposition (41) no longer holds at the critical
curve ∆ = 0, which separates sector E from sectors C

and D. At this curve (including points L), the system
is inseparable, in the sense that it cannot be written as
a sum of two independent quadratic systems, even if al-
lowing for complex coordinates and momenta as in sector
E. While the matrix H2 (Eq. (9)) is always diagonaliz-
able for ∆ 6= 0, i.e., whenever the decomposition (41)
is feasible, both H and H2 are non-diagonalizable when
∆ = 0. Here λ± = λ, with λ real at the border between
B and E, imaginary between C and E and zero at the
points L. The optimum decomposition of h in these cases
is discussed in [20].
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