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A statistical model is proposed for the description of the spatial structure of a packed bed of
spherical-like particles in terms of one- and two-bead distribution functions. This is the first
step toward the full modeling of the radiation field in an annular photocatalytic reactor, mainly
where the interaction between radiation and the packed beads is concerned. The model has
been validated against tomography experiments performed on an up-scaled packing prototype.
The three-dimensional structure of its loose random packing has been digitized. On the basis of
this structural information, the experimental version of the one-bead distribution function, as
well as those of the conditional distribution and the solid volume fraction, could be constructed
without mediating models. Then the parameters of the proposed statistical model could be
determined by nonlinear regression. The agreement between the functions constructed
experimentally and their model-predicted counterparts with the set of regressed model
parameters is remarkable considering the highly structured shapes of their profiles. Exact
relationships have been established to scale those model parameters bearing dimensions to
packings with different bead radii.

Introduction

Photocatalytic reactions, catalyzed by light activated
solid semiconductors, constitute one attractive possibil-
ity among Advanced Oxidation Technologies (AOT) for
air and water decontamination, especially from organic
compounds.1,2 This particular technology is attractive
not only because of its effectiveness in destroying
contaminants but also because of its ability to be
operated with solar energy. Usually, titanium dioxide
is used as the catalyst.

In most cases of air or water decontamination, the
modeling of a fluid-solid heterogeneous photocatalytic
reactor requires (i) a fluid-solid catalyst interaction
model, (ii) a radiation emission-transport-reception
model, and (iii) a kinetic model for the reaction. The first
aspect has been extensively treated in the chemical
engineering literature, and the last one is still the
subject of a wide research effort in several fields
connected with environmental chemistry. This work is
a contribution to the problem of the radiation field in
heterogeneous reactors.

In the particular case of liquid-solid systems, most
of the published work deals with small particles (30-
300 nm) suspended in water. A problem only recently
rigorously solved has been the modeling and experi-
mental validation of a participating, chemically reacting
medium, including light absorption and scattering in a
suspended photocatalytic bed.3 However, in the past few
years, it became apparent that systems with suspended
particles, although very apt for kinetic studies, have the
technological drawback of the large costs associated with
catalyst separation and recovery. The proposed alterna-
tive is based on the use of immobilized catalysts,
including fluidized-bed reactors,4,5 catalytic wall reac-
tors,6 and packed-bed reactors.7-10

In catalyzed wall reactors, the radiation field can be
modeled without major difficulties because of the ab-
sence of light scattering.10-13 However, in those cases
where a liquid phase is being treated, the photocatalytic
reaction has been found, very often, to be controlled by
the limiting mass-transfer rates. Concerning photocata-
lytic packed-bed reactors, a first approximation has been
published by Raupp et al.7 A model for a gas-solid
packed-bed reactor was described as a one-dimensional
idealization based on the two-flux model for radiation
transport discussed by Maruyama and Nishimoto.14

With the exception of a Monte Carlo simulation of a
three-dimensional model of a reticulated-foam packed-
bed reactor,8 at the present time there is no systematic
approach available to assimilate a high-density bed of
packed solid particles of nonnegligible diameter to a
pseudohomogeneous medium with a consistent trans-
port model for electromagnetic energy.15,16

Heterogeneous photocatalytic reactions can be carried
out with the solid semiconductor, usually titanium
dioxide, immobilized on a preferably transparent sup-
port in fixed-bed configurations. A typical example of a
fixed-bed photocatalytic reactor is that with a packed
bed of small spherical beads made of silica (ca. 0.001
m) coated with titanium dioxide. The reactor could have
an annular configuration with a tubular UV lamp placed
coaxially with the annular space filled with the packing.

The precise modeling of the reactions occurring in this
particular reactor cannot be made without an equiva-
lently detailed knowledge of the activation phenomenon
corresponding to the first kinetic step. Activation,
produced by illumination with light of the appropriate
energy, requires a rigorous description of the existing
radiation field. The light spatial distribution is the
result of two main types of interactions: (i) a mechanism
of direct irradiation of a catalytic bead from the lamp
and (ii) a mechanism of direct exchange of photons
between closely placed beads. This cooperative phenom-
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enon (i.e., the bead-to-bead exchange) is mostly a two-
particle event that can be precisely modeled, including
absorption, reflection, refraction, and transmission,
provided that we have at our disposal a statistical
description of the spatial distribution of beads in the
packing.

This is so because the structure of the bed is not
uniform. One must especially consider that because of
the strong radiation absorption properties of the em-
ployed semiconductors, particularly in the case of
titanium dioxide, photocatalytic packed beds cannot be
too thick along the characteristic direction of radiation
propagation. Hence, for all practical reactor configura-
tions, wall effects on the packing structure will propa-
gate to a significant part of the existing reaction space
between the containing walls that limit the annular
space.

To support the radiation-exchange model of a realistic
statistical description of the solid structure, two differ-
ent distribution functions have been obtained: (i) the
one-particle distribution function, giving the probability
of finding the center of a bead at a given position in
space, and (ii) the two-particle distribution function,
which tells us the probability of finding a pair of
particles close to each other from the knowledge of the
distribution function of each particle separately and of
the pair of correlation functions.

A thorough discussion of the physical models pre-
sented in this work, as well as detailed mathematical
derivations, can be found in the Supporting Information
of this paper.

The Reactor

The proposed device is an annular packed-bed pho-
tocatalytic reactor operating either as a one through or
in a partial recycle loop. The reactor packing consists
of a bed of silica spheres of dp ≈ 0.001 m average
diameter, partially or totally covered with a thin film
of TiO2 photocatalyst and confined between concentric
cylinders of radii Re ) 0.050 m and Ri ) 0.025 m,
respectively, as schematically shown in Figure 1.

The length of the catalytic bed is L ) 0.60 m, and the
annulus inner wall is masked outside this region. Layers
of inert spheres (without catalytic coating) extend the
packing both from the bottom of its active region
downward and from its top end upward. This allows a
fully developed flow pattern to reach the catalytic
section of the bed and avoids the need for considering
end effects in the statistical description of the bed
structure.

If needed, for rather slow reactions, the continuous
reactor operation in a partial recycle loop allows one to
achieve large flow rates per pass without lowering the
overall residence time. Larger flow rates amount to
larger values of the Reynolds number, defined on the
basis of the superficial velocity of the fluid and the
diameter of the spheres in the packed bed. In this way,
highly turbulent flow regimes can be achieved, minimiz-
ing the importance of mass diffusion effects through the
film adjacent to the catalytic surface of the spheres. This
desirable effect brings about an increasing pressure drop
along the reactor axial direction and the possibility of
eroding the TiO2 of the spherical beads as its counter-
part.

It is well-known that in annular packed beds with
(De - Di)/dp > 20 the two containing walls are far

enough apart to act independently and will not simul-
taneously affect the bead distribution.17 The annular
reactor packing satisfies this condition because (De -
Di)/dp ≈ 25. In addition to this, the aspect ratio referring
to the diameter of the annulus inner wall is Di/dp ≈ 50,
sensibly larger than Di/dp ≈ 20, which is considered to
be the lower value of the aspect ratio for the wall
curvature to have any measurable effect on the bead
distribution.18

Under these conditions, the annular reactor packing
confined between cylindrical walls can be approximated
as a slab between parallel-plane surfaces at a distance
of De - Di from one another.

Model of the One-Particle Distribution
Function

The description of the direct lamp-to-bead exchange
requires the knowledge of the distribution of single
beads in the packing. A model of the spatial distribution
of single spheres in the reactor bed must account for (i)
the effect of the reactor walls on the packing structure
and (ii) the effect of the volume exclusion between
spheres of nonnegligible diameter, propagating the
distorsive wall effects deeper inside the packing.

These two effects preclude the possibility of consider-
ing the bed as homogeneous and isotropic, at least for
sets of structural parameters within the range of
practical interest. This is more so because the thickness
of an annular photocatalytic reactor employing titanium
dioxide as the catalyst is always small.

We denote by f (1)(r1) d(3)r1 the probability of a bead
having its center contained in the elementary volume
d(3)r1 about the generic position r1. The function f (1)(r1)
is the corresponding one-bead distribution function.

Under the conditions discussed in the previous sec-
tion, allowing one to approximate the annular reactor
packing as a slab between parallel-plane surfaces, f (1)-
(r1) is a function of a single variable x1, running along
an axis perpendicular to the slab boundaries. Therefore,

Figure 1. Reactor configuration.
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by choosing a unit area perpendicular to the x1 axis, we
may write

where f (1)(x1) dx1 is the probability of a bead having its
center contained in the elementary volume of thickness
dx1 around the location x1.

A model of the one-particle distribution function has
been proposed based on the following physical picture:

(a) There is a layer of beads leaning against each one
of the reactor walls, with the bead centers precisely at
a distance x1 ) 1 from its neighboring wall.

(b) A gap zone without bead centers follows from this
layer in the direction toward the inside of the packing.
This is a consequence of the volume-exclusion effect of
the beads in the first layer upon neighboring inner ones.
This gap stretches from x1 ) 1 to x1 ) x0 > 1, with x0 an
adjustable parameter depending on the compactness of
the packing.

(c) As the distance from the wall increases beyond this
gap, the distortion effect of the walls on the packing
structure weakens. Successive bead layers become more
diffuse until a uniform distribution is asymptotically
reached at the core region of the packing.

The proposed model of the one-bead distribution
function, fulfilling all of these requirements, is (given
in the Supporting Information)

In eq 2, δ(x1-1) is the Dirac delta “function”, which is
zero everywhere, except at x1 ) 1, where it is un-
bounded; H(x1-x0) is the Heaviside step function, which
is zero for x1 - x0 < 0 and equals unity for x1 - x0 > 0;
and

From this model of the one-bead distribution function,
it follows that the corresponding volume fraction of
solids is

A thorough discussion of the physical model and the
detailed derivations of the results in this and in
subsequent sections can be found in the Supporting
Information of this paper.

Two-Bead Correlation Function

When other possible indirect contributions (like mech-
anisms involving three or more beads simultaneously)
are neglected, the prevailing two-body energy exchange
is a short-range phenomenon. This is so because this
mechanism involves a “test” particle at the generic
position r1 and those in the shell of nearest neighbors,
whose positions are collectively represented by r2.

The contributions to this indirect exchange mecha-
nism are sketched in Figure 2. A fraction of the total
energy reaching the differential area d(2)A1 on the
surface of the bead at the position r1 comes from beams
reflected on differential areas d(2)A2 of neighboring beads

at position r2, as shown in Figure 2a. The rest of the
energy reaching the differential area d(2)A1 by this bead-
to-bead mechanism is due to beams refracted and
partially absorbed by the other beads at position r2
around the central bead at r1. This contribution is
sketched in Figure 2b.

The statistical description of the above-described
bead-to-bead exchange requires the knowledge of the
spatial distribution of a pair of beads. The joint prob-
ability distribution f (2)(r1,r2) of the compound event
consisting of particle “1” at r1 and particle “2” at r2 can
be written in terms of the correlation function g(r1,r2)
defined as follows:

The conditional probability distribution f (2/1)(r2/r1) that
particle “2” be at r2, given the certain fact that particle
“1” is at the position r1,

can also be written in terms of g(r1,r2) as follows:

Once again, we will take advantage of the fact that,
because of our reactor characteristics, the annular
packing confined between cylindrical walls can be
approximated as a slab between parallel-plane surfaces.
By exploitation of the invariance and symmetry proper-
ties of the function f (2)(r1,r2) arising from this fact, in
Appendix I it is shown that the following expression
holds:

where only the minimum set of independent variables
has been retained. The same arguments lead us to
conclude that

All of the surrounding beads effectively participating
in the energy exchange with a central “test” particle are
contained inside a sphere of radius Fnc. Beads located
at larger radial distances from the central particle do
not contribute effectively in two-body radiation ex-
change with it. Therefore, both f (2)(r1,r2) and g(r1,r2) can

f (1)(r1) d(3)r1 ) f (1)(x1) dx1 (1)

f (1)(x1) ) Cδ(x1-1) + H(x1-x0) æ(x1) (2)

æ(x1) ) n∞ - n∞e-b(x1-x0){cos[a(x1-x0)] +
(b/a) sin[a(x1-x0)]}, x1 > x0 (3)

η(x1) ) CπrP
3[1 - (x1 - 1)2]H(2-x1) H(x1) +

πrP
3∫-1

1
dú(1-ú2) æ(x-ú) H[(x1-ú)-x0] (4)

Figure 2. Contributions to the bead-to-bead exchange mecha-
nism: (a) contribution to the total energy reaching the differential
surface area d(2)A1 on the bead at the position r1, after a reflection
on a differential surface area d(2)A2 of a neighboring bead at the
position r2; (b) contribution due to a beam refracted and partially
absorbed by the bead at the position r2 before reaching the
differential surface area d(2)A1.

f (2)(r1,r2) ≡ f (1)(r1) f (1)(r2) g(r1,r2) (5)

f (2/1)(r2/r1) ≡ f (2)(r1,r2)/f
(1)(r1) (6)

f (2/1)(r2/r1) ) f (1)(r2) g(r1,r2) (7)

f (2)(r1,r2) ) f (2)(x1;x1+F cos θ) (8)

f (2/1)(r2/r1) ) f (1)(x1+F cos θ) g(x1;x1+F cos θ) (9)
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be considered short-range functions that are equal to
zero outside a sphere of radius Fnc.

Two-Bead Correlation Function in Packed
Spherical Beads: Physical Background

In a packed bed of rigid spheres, each bead must be
in contact with other beads that hold it in its place, thus
restraining its motion possibilities. Therefore, the first
shell of nearest neighbors in contact with the central
particle is, at least, partially built. Its degree of comple-
tion will depend, other factors aside, on the “test”
particle proximity to a containing wall, which precludes
the completion of a compact packing arrangement.
Therefore, we may expect that this shell will be com-
pleted to a lesser degree for central beads located closer
to the walls, where the wall distortion effects on the
packing structure are more important than those lo-
cated in the core region.

The solid volume fraction of a close-packed homoge-
neous arrangement of rigid beads is ηCP ) 0.742. This
is the upper bound of η in an infinite, perfectly arranged
system without distorting wall effects. On the other
hand, the solid-phase behavior is observed for η > ηLS
) 0.47 in rigid-sphere systems.19

As η decreases in the range ηLS < η < ηCP, the
spherical beads have their motion possibilities still
restrained and collectively behave like an increasingly
random, and therefore less compact, solid phase. This
behavior is common to all systems of rigid spheres
irrespective of the size of the beads, in regions far from
their boundaries where the spatial structure is held
together only by the interactions between rigid beads.

To propose a model for the two-bead correlation
function for our nonisotropic and nonuniform packing,
we are going to borrow from statistical mechanics the
results obtained for dense isotropic and uniform systems
of rigid spheres. To extend these results to our case, we
will consider the central particle as if it were embedded
in different uniform and isotropic media, each one with
a different solid volume fraction η*. The η* values are
chosen among the actual η values found by surveying
the central particle surroundings along every radial
direction, as we will see later on.

Abundant experimental results allow us to know with
great accuracy the behavior of the pair correlation
function in rigid-sphere fluids or in real fluids that
approximate the rigid-sphere interaction, like argon or
xenon.19

In these homogeneous and isotropic systems, with a
uniform solid volume fraction η, the pair correlation
function depends on the distance between the bead
centers, F, and not on the particular positions of the
spheres. As long as the system of rigid spheres is
homogeneous and isotropic, this remains true for all of
its possible states: gas, liquid, or solid.

Apart from its dependence on the radial distance F,
the pair correlation function for a homogeneous and
isotropic system of hard spheres only depends on the
phase “dimensionless density” η (i.e., on our solid
volume fraction).

Because this behavior is a consequence of the singular
nature of the hard-sphere interaction, it is shared by
all homogeneous and isotropic large collections of rigid
spheres behaving as a solid phase, no matter what the
bead single diameter could be.

In a finite packing of rigid spheres, a solid system
with these characteristics can be approximated by the

packing core region if it is far enough from its containing
boundaries. In this region, the spatial structure is held
together only by the interaction forces between beads
and is free from the interference of boundary effects.

In this region, the solid-phase spatial structure at a
radial distance F from an arbitrarily singled-out bead
is described by the pair correlation function also de-
pending on η as a parameter. To account explicitly for
this dependence, we will adopt the following notation:

where η is a parameter for each homogeneous and
isotropic solid system.

Two-Bead Correlation Function in Packed
Spherical Beads: A Mathematical Model

An assembly of randomly packed spheres can repre-
sent certain features of the structure of dense simple
liquids. For a liquid of rigid spheres, the radial distribu-
tion function from statistical mechanics shows the
general mathematical form found for randomly packed
spheres.20 However, because the results from statistical
theories of classical fluids are not applicable without
further considerations to packing densities as high as
those of a loose packed bed, outright quantitative
agreement cannot be expected.

A large body of numerical simulations has given
strong evidence for the adequacy, over an extensive
range of parameters, of various approximate theories
for the pair correlation function in classical fluids. The
simplest of these, and, on the basis of comparisons
against numerical simulations, the most satisfactory,
is the Percus-Yevick (PY) theory.19

A close form of the pair correlation function g(F;η) for
a homogeneous and isotropic fluid of rigid spheres was
obtained by Wertheim21 on the basis of the PY theory.
The Wertheim (W) solution behaves satisfactorily be-
yond the range of η for which the approximations on
which the PY theory is based are considered valid. In
fact, the W solution is able to approximate results of
exact numerical simulations up to η ≈ ηLS.

Because of the volume-exclusion effect of the central
particle on its immediate surroundings, the two-particle
correlation function must be zero in the interval 0 < F
< 2, irrespective of whether the system is homogeneous
and isotropic or not. Beyond F ) 2, the W analytical
solution for the case of an infinite, isotropic medium is
expressed in the form

where the dependence of the pair correlation function
on the uniform solid volume fraction has been made
explicit.

A generic nth term, gn(F;η) in eq 11, behaves as
follows:

for n ) 1, 2, ..., ∞. The interpretation of eq 12a,b is that,
for a given F, only one term of eq 11 is different from
zero, namely, the one whose label n satisfies the

g(r1,r2) ) g(F;η) (10)

g(F;η) ) ∑
n)1

∞

gn(F;η) (11)

gn(F;η) ) 0; F < 2n or F > 2n (12a)

gn(F;η) > 0; 2n < F < 2n + 2 (12b)
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condition 2n < F < 2n + 2, with n an integer number.
As a result of this, eq 11 offers a description of g(F;η) in
terms of concentric layers, with each one relieving the
preceding layer as F increases in the interval 2 < F <
∞.

Except for its core region far from the containing
walls, our packing differs from those systems for which
the W pair correlation function has been derived in that
it is neither uniform nor isotropic. Besides, the solid
volume fraction in the core packing region is expected
to be η∞ ≈ 0.62, corresponding to the solid-phase region
of an isotropic and homogeneous system of rigid spheres
and halfway between ηLS and ηCP. The W close expres-
sion of g(F;η) is not applicable as a predicting tool to
packing densities as high as these. Outside the range
of η where the theory is valid, the W mathematical form
of the pair correlation will be adopted as a sensible
expression on which to lay a model of the first layer
surrounding a central bead in the narrow band of 2.0
< F < Fnc and for the dimensionless densities η of
interest here.

If we choose the test particle at positions increasingly
closer to the walls, its surroundings become more and
more structured as the wall effects on the bead spatial
distribution become stronger. By sampling a spherical
couch of radius F, with 2 < F < Fnc, surrounding the test
particle, we will find different values of η depending on
the radial direction chosen, as can be seen in Figure 3
for x ) x1 + F cos θ e 10.

As part of our model, we will assume that the
exclusion effect of the central bead on its nearest
neighbors propagates along each direction through its
nonhomogeneous environment, as it would have done
in a hypothetical homogeneous and isotropic packing
with a solid volume fraction η*. The η* values are chosen
among the actual η values found along every radial
direction from the test particle. Therefore, η* will
depend on every particular direction chosen.

The value of η* for the direction of search, θ, will be
chosen as the local value of η in the structured medium,
taken at the halfway position between the center of the
test bead, x1, and that of its closest neighbor, x1 + F cos
θ.

With this choice, η* will depend on the direction
considered as follows:

We will assume that the W expression of the pair
correlation function for homogeneous and isotropic

fluids is applicable to describe the first surrounding
layer around a central particle in a packed bed, as long
as we use the direction-dependent η* as the dimension-
less concentration.

In previous sections, we have argued that only those
pairs of beads with distances between centers, F, in the
interval 2 < F < Fnc < Fcp ) 3.266 are provisionally
considered to account for the bead-to-bead energy
exchange mechanism. Therefore, for our purposes in this
work, only the first layer contribution to the W expres-
sion of g(F;η*) will be retained.

The expression of g1(F;η) according to the W solution
is given in Appendix II, and its profiles for different
values of η are shown in Figure 4. The sharp peak
observed at F ) 2 corresponds to the beads in contact
with the central one. It is followed by a steep downward
slope until g1(F;η*) reaches a local minimum, as shown
in Figure 4. For values of F > Fmin, the local minimum
is overshot, the probability for a second layer begins to
build up, and g(F;η*) increases up to a local maximum.

A spherical volume with radius F ) Fmin will enclose
the entire first couch of beads surrounding the central
particle. Therefore, the choice of Fnc ≈ Fmin appears as
the natural one. With this choice, the values of g(F;η)
in the narrower but more realistic interval 2 < F < Fnc
≈ Fmin correspond to the statistical description of the
first shell of neighboring particles.

For the largest values of the parameter η*, it may
happen that the downward slope following the sharp
peak at F ) 2 is so steep that g(Fmin;η*) reaches a
relatively small and negative value. This unphysical
situation is corrected by requiring that g(F;η) always be
positive or zero.

With this model of the pair correlation function in the
packed bead and the symmetry considerations made in
the Supporting Inforamtion of this paper, eq 5 may be
written as

where 2 < F < Fnc and 0 < θ < π.
The conditional probability distribution f (2/1)(r2/r1),

defined in eq 7, may also be written in terms of g(F;η*):

Figure 3. Comparison of experimental, ηexp, against model
predicted, ηth, solid volume fractions as functions of the distance
from the wall with the parameter values of Table 1.

η* ) η(x1 + 1
2

F cos θ); 2 < F < Fnc; 0 < θ < π (13)

Figure 4. Pair correlation function g(F;η) as a function of F for
different value of η.

g(F;η*) ) g1(F;η*) (14)

f (2)(r1,r2) ≈ f (1)(r1) f (1)(r2) g1(F;η*) (15)

f (2/1)(r2/r1) ≈ f (1)(r2) g1(F;η*) (16)
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Equation 16 completes our model for the statistical
description of the packed-bed structure based on the
probability of occurrence of single beads and of pairs of
beads.

In the following sections of this paper, we will describe
the direct experimental measurement of both the one-
and two-bead distribution functions, as well as that of
the solid volume fraction. These results were obtained
by means of computer tomography experiments per-
formed on an up-scaled physical model of the packed
bed. The model adjustable parameters {C; n∞; a; b; x0}
will be regressed from these experimental data.

Experimental Validation of the Model

The statistical model of the annular packing bed has
been tested on a scaled-up prototype constructed so that
it retains the distinctive characteristics and assump-
tions made on the bench-scale packed-bed reactor. The
three-dimensional structure of the prototype packing
has been determined using computerized tomography.

The prototype, sketched in Figure 5, consists of a
rectangular acrylic box filled at random loose-packed
conditions (i.e., packing material poured without tamp-
ing)20,22,23 with glucose spheres of average diameter dp
) 1.089 × 10-2 m. Glucose was chosen as the bead
material for convenience because it resembles the
composition of the bodily tissues more closely than the
original silica beads, a crucial aspect to consider given
the fact that the bed structure was determined by
computerized tomography using a Elscint (Picker) model
98 instrument for human diagnosis.

The sizes of the glucose beads are about 10 times
larger than the silica ones to reduce the error in the
measurements of the diameters of the virtual circular
cuts resulting from the intersection of the spheres and
the plane wiped by the scanning beam.

The prototype meets the conditions necessary for the
front and back containing walls to act independently,
so that they will not simultaneously affect the bead
distribution at any point in the bed.17

According to the model of Martin,18 wall effects on the
packing structure die out within a 10-bead diameter
distance from the particular wall considered. The shape
and size of the box have been chosen so that an upper
central region in the packing of about 20-bead-diameter
width and 6-bead-diameter depth, free from distortions
from the lateral walls as well as from the bottom, could
be cut out as the working sample, which is sketched in

Figure 5. In this central core region, the only distortions
remaining are those due to the front and back walls,
whose impact on the spatial distribution of single beads
and of pairs of beads is precisely the objective of the
present study.

A total of seven virtual plane cuts, such as the one
shown in Figure 6, were made with the tomography
instrument in the core region. The successive plane cuts
were made at an average distance of 0.0056 m from each
other. Actually, every plane cut is a slab of approxi-
mately 1.0 × 10-3 m thickness. Except for very unlikely
local situations, two contiguous planes cut each bead
in the sample region, as is depicted in Figure 7.

The intersection of a bead by a plane produces a
circular trace on it, with a diameter that is either equal
to or smaller than dp. When the centers of two circular
traces on contiguous planes are aligned on the same
vertical line, we can ensure that they belong to the same
bead and that the bead center will be in the space
between these two planes. The possibility of two circular
traces on contiguous planes, aligned on the same
vertical and belonging to two different beads, is dis-
missed as a very unlikely event.

Figure 5. Scaled-up prototype consisting of a rectangular acrylic
box filled at random with glucose spheres of 10-2 m diameter. The
bed structure was determined by computed tomography.

Figure 6. One among seven plane virtual cuts made with the
tomography instrument across the core region.

Figure 7. Intersections of beads and virtual cutting planes
showing shadowy circular intersections with diameters equal to
or smaller than dp. Two circular traces on contiguous planes
aligned on the same vertical line belong to the same bead. The
ball of radius Fnc includes the couch of nearest neighbors sur-
rounding the chosen central bead.
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On the basis of two concentric circular traces on
contiguous cuts and their respective diameters, the
spatial location of each bead can be determined. Because
the average bead radius is known beforehand, a vertical
coordinate value can be assigned to the bead center
between the two planes. This procedure allows one to
determine the spatial location of every bead because the
coordinates on the cutting planes can be directly mea-
sured. Therefore, the spatial structure of the entire
sample core can be expressed in terms of the positions
of the centers of all beads by processing the images of
the sequence of cuts.

Experimental Construction of the One-Bead
Distribution Function

Once the spatial structure of the entire core sample
has been reconstructed as discussed in the previous
section, we may consider a transversal virtual slice of
differential width, parallel to both the front and back
walls, as sketched in Figure 8. We may think of this
slice as moving from a position by the front wall toward
the back wall by a small stretch at a time.

The moving differential slice incorporates new bead
centers while leaving behind others, according to the
uneven distribution it finds along the direction of its
virtual motion, until half of the distance between the
front and back walls is entirely swept. At every new
position, the number of bead centers inside the slice is
recorded automatically and accumulated to previous
counts.

Then, this counting procedure is repeated, starting
from the back wall up to the half-distance between the
two confining walls. The cumulative counts registered
at equal distance, x1, from each one of the walls are
added up to give Nexp(x1). This experimental procedure
approximates the integral function

where AT is the cross-sectional area of the working
sample; xM ) D/2dp is the position of the midpoint
between the two confining walls; and the factor of 2 in
the denominator of the left-hand side of eq 17 takes into
account the fact that we are accumulating, on the
average, a number of beads 2-fold as large as the one
corresponding to each position x1 in the interval 0 < x1
< xM.

Substitution of eqs 2 and 3 into eq 17, followed by
integration, gives the theoretical explicit form of the

cumulative function Nth(x1) in terms of the set of
parameters {C; n∞; a; b; x0}

which is valid for x1 > x0.
For x1 . x0, eq 18 tends to the linear expression

The experimental cumulative number of beads, Nexp,
as a function of the distance to the wall, x1, is compared
against the theoretical profile in Figure 9 for the set of
parameters of Table 1. The agreement between the
model predictions and experiments is quite satisfactory
over the entire range of x1. Besides, the linear asymp-
totic form of eq 19 with a slope equal to n∞ is confirmed
by the experimental results. The profile of f (1)(x1)
obtained from eqs 2 and 3, with the parameters of Table
1, is shown in Figure 10. The vertical spike at x1 ) 1 is
an icon to denote the Dirac delta function of eq 2.

Experimental Construction of the Volume
Fraction of Solids

To construct the local volume fraction of solids, we
may address our attention to the virtual experiment of
the previous section, which has been devised to deter-
mine the one-bead distribution function. As before, we
may consider a transversal virtual slice of differential
width ∆x1, at a distance x1 from either the front or the
back wall, as sketched in Figure 8. This slice is assumed
to be continuously moving toward the midpoint between
the front and back walls. At the midpoint region

Figure 8. Sketch of the f (1)(x1) construction procedure based on
the detailed structure of the packing.

Figure 9. Comparison of experimental, Nexp, against model
predicted, Nth, cumulative number of bead centers as functions of
the distance from the wall.

Table 1. Set of Values of the Model Parameters Obtained
by Nonlinear Regression of the Experimental Data of
Figure 9, Using the Model Equation (18)

parameter value parameter value

C (beads/m3) 1.50 × 106 n∞ (beads/m3) 9.11 × 105

a 3.76 x0 1.94
b 0.21

Nth

2AT
) [C -

2bn∞

a2 + b2] + n∞{(x1 - x0) -

e-b(x1-x0)

a(a2 + b2)
[(a2 - b2) sin a(x1-x0) -

2ab cos a(x1-x0)]} (18)

Nth

2AT
) [C -

2bn∞

a2 + b2] + n∞(x1 - x0) (19)

Nexp

2AT
) ∫0

x1dx f (1)(x); 0 < x1 < xM (17)
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between the containing walls, n∞ can be related to the
solid volume fraction, η∞, in a simple way:

Considering that in our prototype vp ) 6.76 × 10-7

m3/bead and that from the results in Table 1 n∞ ) 9.11
× 105 beads/m3, the asymptotic value of the volume
fraction of solids far from either wall is η∞ ) 0.616. This
value corresponds to an intermediate situation between
the loose random packing (η∞ ) 0.60) and the dense
random packing (η∞ ) 0.63).20

As can be seen in Figure 8, the beads contributing to
the solid volume fraction at a distance of x1 < xM from
either one of the two containing walls are those with
centers at a generic position yj from the same wall, such
that x1 - 1 < yj < x1 + 1.

Assuming that there is a bead at the generic position
yj, its cylindrical volume of intersection with the dif-
ferential slab at x1 is

The total volume of solids δVM(x1) contained in two
elementary slabs, each one at a distance x1 from its
nearest wall, can be calculated by adding up the
contributions from all of the beads found at positions
yj, which are at a distance of less than unity away from
x1:

The experimental local volume fraction of solids,
ηexp(x1), is obtained as the ratio of the volume of solids
in the sampling slabs, δVM(x1), to the volume of the
slabs, 2AT∆x1:

In Figure 3, the values of ηexp(x1) are compared with
those of ηth(x1) predicted with the model equation (4)
and the parameter values of Table 1. The agreement is
remarkable, especially in the region of x1 < 4, where

the effects of the confining walls are strong and the bead
layers are highly ordered.

Experimental Construction of the Conditional
Distribution Function

The conditional probability distribution f (2/1) that bead
2 is at x2 ) x1 + F cos θ given the fact that bead 1 is at
the position x1 will only depend on the central particle
distance to its nearest wall, x1, and on the projection of
the relative distance between the two particles on the
x1 axis, F cos θ, in the form of

as follows from eqs 7, 9, and 16.
To construct f (2/1) experimentally, we have to calculate

the number of beads per unit volume that can be found
in the average, at a distance F > 2 along the direction
µ from a central bead, located at a distance x1 from any
of the two end walls.

Once the spatial structure of the entire sample core
is known, we consider again a slice of differential
thickness, parallel to both the front and back walls and
located at a distance x1 from each of them at a time. To
determine the f (2/1) conditional distribution function, we
start by singling out a central or “test” particle (bead
“1”), one among the particles with its center in the slice
at the chosen position x1.

Let us assume that the position of the picked central
bead in the three-dimensional space is [(xi, yi, zi); x1 -
∆x1 < xi < x1 + ∆x1], where ∆x1 is the slab half-width.
Then we search for beads with centers in the spherical
layer of radius within the small interval [(F - ∆F, F +
∆F); F > 2.0] surrounding the central bead. For this, we
check for every other bead at a generic position (xj, yj,
zj), different from that of the central one, whether the
condition F - ∆F < Fij < F + ∆F where F > 2.0 and

is satisfied or not. When it is satisfied, we consider that
bead “2” at (xj, yj, zj) has its center at a distance F from
the central bead, except for the small tolerance (2∆F).
We are now in conditions to compute the corresponding
value of cos θ for the considered (i, j) pair as follows:

A one-dimensional grid of equally spaced values of µ
in the interval -1 < µji < 1 is defined. For a given value
of F, the values of µji calculated from eq 26 very unlikely
will coincide with one of the values of µ corresponding
to a node in the grid. Let us assume that the value µji
falls between the grid contiguous values µn and µn+1;
i.e., µn < µji < µn+1. In this case, the surrounding bead
is partitioned into two contributions:

and

Figure 10. Profile of f (1)(x1) obtained from eq 2 with the
parameters of Table 1. The vertical spike at x1 ) 1 is an icon to
denote the Dirac delta function.

η∞ ) vpn∞ (20)

δA(x1,yj) ) πrp
2[1 - (x1 - yj)

2]∆x1;
x1 - 1 < yj < x1 + 1 (21)

δVM(x1) ) ∑
j

δA(x1,yj) (22)

η exp(x1) )
δVM(x1)
2AT∆x1

(23)

f (2/1)(r2/r1) ) f (1)(x1+F cos θ) g1(F;η*) (24)

Fij ) [(xj - xi)
2 + (yj - yi)

2 + (zj - zi)
2]1/2 (25)

µji ) -cos θji )
(xj - xi)

Fij
; -1 < µji < 1; 0 < θ < π

(26)

wn(j,i) )
µn+1 - µji

µn+1 - µn
)

µn+1 - µji

∆µ
(27a)

wn+1(j,i) ) 1 - wn(j,i) (27b)
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In eq 27a, ∆µ is the constant incremental value of µ
between contiguous nodes in the one-dimensional grid.

The wn(j,i) contribution is assigned to the µn node,
while the wn+1(j,i) contribution is assigned to the µn+1
node.

Then, for the same given value of F, we repeat the
search for beads with centers at the generic position
(xj, yj, zj) in the spherical layer of radius in the small
interval [(F - ∆F, F + ∆F); F > 2.0] surrounding the same
central bead at the position [(xi, yi, zi); x1 - ∆x1 < xi <
x1 + ∆x1], until the possibilities are exhausted. The way
of assigning fractions of beads to the nodes of the µ grid
remains the same.

At this point we have experimentally established how
the beads at a distance F from a central bead at [(xi, yi,
zi); x1 - ∆x1 < xi < x1 + ∆x1] are distributed according
to the directional µ variable.

The procedure is repeated considering every bead in
the virtual slice at a distance x1 from either the front
or the back wall as the central particle, and in each case
the fractions of each bead are assigned to the nodes of
the µ grid and accumulated in them.

At the end of this stage of the calculations, we know
(i) the total number of central beads, n1(x1), in the two
virtual slices at a distance x1 from either the front or
the back wall, respectively, and (ii) the total number of
beads surrounding the central ones at a distance F,
distributed along the µ variable by accumulation of bead
fractions in the nodes of the µ grid, n2(x1-Fµn), n ) 1,
2, ..., N + 1, where N is the number of intervals in the
µ grid.

The average number of surrounding beads per unit
volume at a distance F from a generic central bead at
the position x1 can be calculated for every µ direction
as follows:

where (as is shown in Figure 11)

is the µ-independent elementary volume containing the
beads accumulated at a distance F from each one of the

n1(x1) central beads, along any of the directions µn, n )
1, 2, ..., N + 1.

The procedure is be repeated for different positions
x1, symmetrical with respect to the midpoint xM.

Comparison of the Model-Predicted Conditional
Distribution Function against Experiments

In this section, the values of the conditional prob-
ability distribution f exp

(2/1) are compared with those of
f th

(2/1) predicted with the model equation (24) and the
parameter values of Table 1 for the central bead at
different distances x1 from the nearest wall of our
prototype.

Figure 12 corresponds to the case in which the central
bead is resting against the confining wall (i.e., x1 ) 1)
and the surrounding beads are in contact with it (i.e.,
F ) 2). The conditional probability f (2/1) is represented
as the vector radius in polar coordinates, with the θ )
0 direction collinear with the x1 axis. The experimental
points are represented with open circles, while the
profile represented by the solid line is the model
prediction.

This representation remains invariant under an
arbitrary revolution around the θ ) 0 direction. The
average number of surrounding beads per unit volume
at a distance F ) 2 from a central bead, for every µ
direction, has been averaged over the local structure
around each one of a group of the 90 central beads found
at positions [(xi, yi, zi); x1 - ∆x1 < xi < x1 + ∆x1].

The experimental points gathered along the θ ) 90°
axis are remarkably close to what, according to the
model, should be the Dirac delta “function”, pictorially
represented in this figure with a vertical spike. This
accounts for the fact that there certainly are neighboring
beads in contact with the central one and, at the same
time, resting against the wall.

There are no bead centers found in the interval 60 <
θ < 90, while a local maximum of f ((2/1) occurs at θ ≈
37°, corresponding to those beads on the second layer
trying to fit in the interstices between the beads of the
first layer. For a more detailed discussion of the results,
the reader is referred to the Supporting Information of
this paper.

Parts a-c of Figure 13 correspond to the case in which
the central bead is at the distance x1 ) 2.775 from the
confining walls. The number of surrounding beads per
unit volume at three different distances of F ) 2.0, 2.1,

Figure 11. ∆V is the µ-independent elementary volume contain-
ing the beads accumulated at a distance F from each one of the
n1(x1) central beads, along any of the directions µn, n ) 1, 2, ..., N
+ 1.

fexp
(2/1)(x1-Fµn/x1) ) 1

∆V
n2(x1-Fµn)

n1(x1)
; n ) 1, 2, ..., N + 1

(28)

∆V ) ∫0

2π
dφ∫µn-∆µ/2

µn+∆µ/2
dµ∫F-∆F

F+∆F
dF F2 )

(4π
3 )(2F2 + ∆F2)∆F∆µ (29)

Figure 12. Conditional probability f (2/1) represented as the vector
radius in polar coordinates, with the θ ) 0 direction collinear with
the x1 axis. The central bead is resting against the confining wall
(i.e., x1 ) 1) and the surrounding beads are in contact with it (i.e.,
F ) 2). The experimental points are represented with open circles,
while the profile represented by the solid line is the model
prediction. The average number of surrounding beads per unit
volume at a distance F ) 2 from a central bead, for every µ
direction, has been averaged over 90 central beads found at the
position x1.
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and 2.2 from the central one, for every µ direction, has
been averaged over the local structures surrounding
each one of the 54 central beads found at positions [(xi,
yi, zi); x1 - ∆x1 < xi < x1 + ∆x1].

In Figure 13a, the surrounding beads are in contact
with the central particle (i.e., F ) 2). The experimental
points gathered along the θ ) 152.6° vector radius are
close to what in our model should be the Dirac delta
“function”, pictorially represented in this figure with a
tilted spike. This delta “function” should be zero every-
where, except for the θ angle satisfying the condition

for the given values of F ) 2 and x1 ) 2.775, where it
becomes unbounded. This accounts for the fact that
there certainly are neighboring beads in contact with

the central one and, at the same time, they belong to
the first layer resting against the wall (x2 ) 1), while
the central bead does not (x1 > 1).

The local maximum of f (2/1) at θ ) 88.5° reveals the
existence of a fairly well structured second layer at a
distance a bit larger than x1 ≈ 2.775 from the wall.
Another local maximum of f (2/1) occurs at θ ≈ 35.3°,
corresponding to those beads of the less structured third
layer trying to fill the interstices between the beads in
the fairly well-defined second layer.

Parts b and c of Figure 13 correspond to cases where
the surrounding beads, although at positions close to
the central particle, are not strictly in contact with it.
The physical meaning of the profiles is similar to that
already discussed for Figure 13a. However, it should be
stressed that, as predicted by the model and confirmed
by experiments, f (2/1) decays sharply with small in-
creases of the radial distance F and that the relative
importance of the local minima changes in a very
noticeable fashion with small changes in F.

Figure 14 corresponds to the case where the “test”
particle is located at a radial position x1 ) 4.5 from the
wall, where the effect of the confining wall on the
packing structure is still important.

Considering the F ) 2 contour of Figure 14, we can
conclude that the difference between local maxima and
minima is less pronounced than those for positions
closer to the wall, anticipating the limit circular shapes
we expect to find in the homogeneous core region of the
packing. The average number of surrounding beads per
unit volume at a distance F ) 2 from a central bead, for
every µ direction, has been averaged over the local
structure around each one of a group of 38 central beads
found at positions [(xi, yi, zi); x1 - ∆x1 < xi < x1 + ∆x1].

The results predicted with the model follow satisfac-
torily the highly structured shape of the experimental
profiles with the central bead at different locations,
whether the surrounding particles were in contact with
it or not.

Model Parameters and the Bead Radius

The statistical model developed for the description of
the spatial structure of a packed bed of spherical-like
particles in terms of one- and two-bead distribution
functions has been checked against experimental data
taken from a scaled-up prototype made of spheres larger
than the ones in the packing of our bench-scale reactor.

Although the dimensionless parameters of Table 1 are
valid in both cases, the values of n∞ and C depend on

Figure 13. (a) Conditional probability f (2/1) represented as in
Figure 12. Every bead at the distance x1 ) 2.775 from the wall is
chosen as “the” central bead, and the surrounding beads are in
contact with it (i.e., F ) 2). The experimental points are repre-
sented with open circles, while the profile represented by the solid
line is the model prediction. The average number of surrounding
beads per unit volume at a distance F ) 2 from the central bead,
for every µ direction, has been averaged over 54 central beads
found about the position x1. (b) Same comments as those in Figure
12, except that the surrounding beads are close to the central one
but not strictly in contact with it (i.e., F ) 2.1). (c) Same comments
as those in Figure 12, except that the surrounding beads are a bit
farther from the central one (i.e., F ) 2.2).

x2 ) 1 ) x1 + F cos θ (30)

Figure 14. Conditional probability f (2/1) represented as before.
Every bead at the distance x1 ) 4.5 from the wall that has been
chosen is chosen at a time as “the” central bead, and the
surrounding beads are in contact with it (i.e., F ) 2). The average
number of surrounding beads per unit volume at a distance F ) 2
from the central bead, for every µ direction, has been averaged
over the 38 central beads found about the position x1.
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the averaged radius of the spheres of the prototype
packing and should be rescaled to be used in our bench-
scale reactor.

The packing of the prototype and that of the reactor
are both loose random packings and must show the
same η∞ values. From eq 20, this condition can be
written as

From the second equality of eq 31, we can change from
n′∞ to n∞ as follows:

On the same basis, we can claim that the packing of
the prototype and that of the reactor must show the
same η(1) values. Substitution of x1 ) 1 in eq 4 gives

Considering that the integral in the second term on
the right-hand side of eq 33a is proportional to n∞, that
term as a whole must remain unchanged for different
values of rp. Therefore, either from eq 33a or from eq
33b, we reach the following conclusion:

Choosing the primed parameters as those of the
prototype and considering that (r′p/rp)3 ) 1.29 × 103, we
have the parameter set of Table 2, which is valid in the
case of the packing of our bench-scale reactor. Equations
32 and 34 are not restricted to a particular ratio of bead
radii and are as general as the model for the one- and
two-bead distribution functions presented in this paper.

Equations 32 and 34 are valid to scale the parameters
n∞ and C to any other loose random packing of different
bead radii.

Conclusions

The statistical model developed for the description of
the spatial structure of a packed bed of spherical-like
particles in terms of one- and two-bead distribution
functions proposed in this paper is the first step toward
the full modeling of the radiation field in an annular
photocatalytic reactor, mainly where the interaction
between the radiation field and the packed bed is
concerned.

The model has been validated against tomography
experiments on an up-scaled prototype, whose three-
dimensional structure of its loose random packing have
been digitized. On the basis of this three-dimensional

structure, the experimental versions of f (1), η, and f (2/1)

could be constructed without mediating models. Then
the parameters of the proposed statistical model could
be determined by nonlinear regression.

The agreement between the functions f exp
(1) , ηexp, and

f exp
(2/1), constructed experimentally, and their counter-

parts f th
(1), ηth, and f th

(2/1), predicted with the model
equations and the set of regressed model parameters,
is remarkable despite the highly structured shapes of
their profiles.

Exact relationships have been established to scale
those model parameters bearing dimensions, to pack-
ings of different bead radii; i.e., the obtained results are
of general application.
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Appendix I

Under the conditions discussed in the main text that
allow one to approximate the annular reactor packing
as a slab between parallel-plane surfaces, the function
f (2)(r1,r2) must remain invariant when the position
vectors r1 and r2 are displaced by the same arbitrary
vector r0, parallel to the packing-plane boundaries; i.e.,

Because of the arbitrariness on r0, we may choose y0 )
-y1 and z0 ) -z1 to give

Let us introduce a spherical coordinate system (F, θ,
φ) centered at (x1, y1, z1), with its θ ) 0 axis parallel to
the x1 axis of the original rectangular system, such that

Substitution into eq I.2 gives

The function f (2)(r1,r2) must also remain invariant when
the packing, locally assimilated to a slab, revolves as a

Table 2. Set of Values of the Model Parameters for the
Packing of the Bench-Scale Reactor

parameter value parameter value

C (beads/m3) 1.93 × 109 n∞ (beads/m3) 1.175 × 107

a 3.76 x0 1.94
b 0.21

η∞ ) (4π
3 )rp

3n∞ ) (4π
3 )(r′p)

3n′∞ (31)

n∞ ) (r′p
rp

)3

n′∞ (32)

η(1) ) πrp
3C + πrp

3∫-1

1-x0dú(1-ú2) æ(1-ú);
0 < x0 < 2 (33a)

η(1) ) πrp
3C; 2 < x0 (33b)

C ) (r′p
rp

)3

C′ (34) f (2)(r1,r2) ) f (2)(r1+r0;r2+r0) )

f (2)(x1,y1+y0,z1+z0;x2,y2+y0,z2+z0) (I.1)

f (2)(r1,r2) ) f (2)(x1;x2,y2-y1,z2-z1) (I.2)

x2 - x1 ) F cos θ (I.3)

y2 - y1 ) F sin θ cos φ (I.4)

z2 - z1 ) F sin θ sin φ (I.5)

f (2)(r1,r2) )

f (2)(x1;x1+F cos θ,F sin θ cos φ,F sin θ sin φ) (I.6)
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solid around the x1 axis by an arbitrary angle φ0

Given the assumed symmetries, we can choose φ ) φ0,
thus simplifying eq I.7 into eq 8 of the main text.

Appendix II

The contribution g1(F;η) to the function g(F;η) is

where

Supporting Information Available: Additional
experimental information for this paper, including
Figures 1S-9S. This material is available free of charge
via the Internet at http://pubs.acs.org.

Nomenclature

a ) frequency factor
AT ) cross-sectional area of the working walls, m-2

b ) damping coefficient
C ) constant defined in eq 2, m-3

f (1)(r1) ) probability distribution of one bead with its center
at position r1, m-3

f (2)(r1,r2) ) probability distribution of a pair of beads, m-6

g(r1,r2) ) correlation function defined in eq 5
H(x) ) heaviside step function
n∞ ) bead centers per unit packing volume in the core

region, m-3

N(x) ) cumulative number of beads, m-3

De ) external diameter of the annular bed, m
Di ) internal diameter of the annular bed, m
rp ) average bead radius ()dp/2), m
i ) position vector with components (xi, yi, zi) in a

rectangular frame of reference
vp ) average bead volume, m3

x ) rectangular coordinate running along an axis perpen-
dicular to the slab walls and increasing from either
inward, measured as a multiple of the average bead
radius

xM ) position of the midpoint between the two confining
walls

x0 ) distance from where the second layer starts
y ) generic position of the center of a bead

Greek Symbols

δ(x) ) Dirac delta “function”
η(x) ) local volume fraction of solids at the position x
η∞ ) volume fraction of solids in the uniform core region
ηcp ) mass volume fraction of a close-packed homogeneous

arrangement
ηLS ) mass volume fraction at the liquid-to-solid transition
æ(x) ) oscillating function defined in eq 3
z ) variable of integration
(F, θ, φ) ) spherical coordinate system centered at (x1, y1,

z1), with its θ ) 0 axis collinear to the x axis of the
rectangular system

F ) distance from the center of bead 1 to the center of bead
2 measured as a multiple of the average bead radius

Fnc ) radius of the sphere enclosing the nearest couch of
beads surrounding a central particle

Subscripts

exp ) experimental value
th ) theoretical value
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f (2)(r1,r2) ) f (2)[x1;x1+F cos θ,F sin θ cos(φ-
φ0),F sin θ sin(φ-φ0)] (I.7)

g1(F;η) ) 2
F(1 - η)2{A0 exp[t0(F2 - 1)] +

2
3

exp[tR(F2 - 1)]{[H0 - 1
2
(H1 + H2)] cos tI(F2 - 1)} -
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2

η (II.3)
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4η(f 2 + 1
8)1
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[x-

2(1 - 3η - 4η2) + x+(1 - 2.5η2)]
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4η(f 2 + 1
8)1
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1 - η ) (II.7)

tR ) -η[2 + (x+ + x-)
1 - η ] (II.8)

f )
(3 + 3η - η2)

4η2
(II.9)

x+ ) [f + (f 2 + 1
8)1/2]1/3

(II.10)

x- ) [f - (f 2 + 1
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(II.11)
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