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Purpose of review

The success of targeted therapies fostered the development of increasingly specific and effective
therapeutics for B-cell malignancies. However, cancer plasticity facilitates disease relapse, whereby
intratumoral heterogeneity fuels tumor evolution into a more aggressive and resistant form. Understanding
cancer heterogeneity and the evolutionary processes underlying disease relapse is key for overcoming this
limitation of current treatment strategies. In the present review, we delineate the current understanding of
cancer evolution and the advances in both genetic and epigenetic fields, with a focus on non-Hodgkin
B-cell lymphomas.

Recent findings

The use of massively parallel sequencing has provided insights into tumor heterogeneity, allowing
determination of intratumoral genetic and epigenetic variability and identification of cancer driver
mutations and (epi-)mutations. Increased heterogeneity prior to treatment results in faster disease relapse,
and in many cases studying pretreatment clonal admixtures predicts the future evolutionary trajectory of
relapsed disease.

Summary

Understanding the mechanisms underlying tumor heterogeneity and evolution provides valuable tools for
the design of therapy within an evolutionary framework. This framework will ultimately aid in accurately
predicting the evolutionary paths of B-cell malignancies, thereby guiding therapeutic strategies geared at
directly anticipating and addressing cancer evolution.
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INTRODUCTION

Despite the development of effective chemothera-
peutic and targeted therapies for B-cell malignancies
[1,2], many patients will still experience disease
relapse. This therapeutic challenge stems from the
fact that within each patient’s cancer, we are dealing
not with a single disease entity, but rather with a
collection of many distinct cell populations. Thus,
our therapies are faced with the exceedingly difficult
task of eliminating all of these diverse malignant
subpopulations.

The intratumoral diversity results from an active
evolutionary process [3]. In this process, the malig-
nancy arises from a single transformed cell, which
initiates clonal expansion. Once this process is set in
motion, the growing population continues to diver-
sify with additional somatic mutations subject to
positive selection, and resulting in a highly diverse
tumor population [4–7].

Recently, massively parallel sequencing (MPS)
has accelerated our ability to study tumor evolution
© 2016 Wolters Kluwer 
by providing base-pair resolution mapping of hun-
dreds of tumors. In particular, the broad use of
whole exome sequencing (WES) has allowed the
study of large patient cohorts at high-read depth,
facilitating the detection of subclonal mutations
present in cancer cell populations [8

&

,9
&

,10,11].
An inherent characteristic of MPS is that it gen-

erates billons of independent sequencing reads [12],
and provides an informative random sample of
individual DNA molecules present within the tumor
[13]. This allows the determination of the variant
allele fraction (VAF), which is the number of reads
Health, Inc. All rights reserved.

Volume 23 � Number 4 � July 2016

mailto:dlandau@nygenome.org


KEY POINTS

� The use of massive parallel sequencing has provided
new insight into B-cell lymphoma, revealing extensive
intratumoral genetic and epigenetic heterogeneity.

� Therapy frequently accelerates tumor evolution, by
selecting resistant and more aggressive clones of the
cancer cell population.

� Increased pretreatment genetic and/or epigenetic
heterogeneity is associated with shorter time until
disease relapse.

� Tumor progression can be considered as an example of
‘evolutionary regress’, by which cancer cells explore
superior evolutionary trajectories toward unicellular
fitness at the expense of multicellular fitness.
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harboring a determined mutation over the total
reads obtained for the genomic locus (Fig. 1a). Of
note, VAF is affected by the proportion of nonma-
lignant cells in the sample, as well as the local copy
number. To account for these elements, VAF values
are transformed to cancer cell fractions, which are
the fraction of cells that harbor a determined genetic
lesion, among all malignant cells in the sample.
Measuring the cancer cell fractions of multiple
mutations allows inferring the clonal composition
of each individual sample (Fig. 1a).

In this context, it is important to note that we
are only observing the ‘tip of the heterogeneity
iceberg’ as our current methods rarely detect clones
that are less than 1–5% in frequency, thereby delin-
eating only the more frequent and fittest clones.
Nevertheless, these studies have shown that each B-
cell neoplasm is composed of multiple subpopu-
lations, with admixtures that change over space
and time. Importantly, MPS studies have provided
insights as to how therapy shapes the course of
evolution [13], showing that clonal evolution with
therapy is the rule rather than the exception [14

&&

].
When considering somatic tumor evolution, we

need to address the entirety of heritable infor-
mation. In addition to the genetic information,
strata of epigenetic information are propagated
from parent to progeny, contributing to the cell
phenotype [15]. Perhaps the best-studied epigenetic
modification is DNA methylation (DNAme), with
ample evidence supporting its heritability, as well as
its contribution to the pathobiology of B-cell malig-
nancies [16,17]. These properties, as well as the
ability to provide quantitative measurements of
intratumoral heterogeneity with MPS methods,
have made DNAme a prime candidate to lead the
way into understanding intratumoral epigenetic
 Copyright © 2016 Wolters Kluwe
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diversity. Indeed, increased intrasample heterogen-
eity of DNAme patterns has been observed in
chronic lymphocytic leukemia (CLL) compared
with normal B cells [18

&

], and increased intratu-
moral variability of DNAme patterns correlated with
adverse clinical outcome [18

&

,19
&

,20].
In this review, we focus on non-Hodgkin B-cell

malignancies, delineating MPS-driven advances
that explore lymphoma intratumoral heterogeneity
and evolution. Collectively, these MPS studies
have highlighted several central themes of B-cell
malignancy evolution, including the ability to
infer the sequence of driver acquisition along the
history of the disease, B-cell-specific mechanisms of
diversification, vast genetic and epigenetic intratu-
moral heterogeneity, and the importance of
tumor evolution in therapeutic failure. Thus, MPS
methodologies and an advanced evolutionary
perspective come together to reshape our under-
standing of lymphoma progression and relapse, as
well as pose new exciting challenges and therapeutic
opportunities.
DECIPHERING THE CHAIN OF
MUTATIONAL EVENTS IN LYMPHOMA
DEVELOPMENT

Genomic investigations of lymphomas revealed
multiple ‘drivers’ (fitness enhancing somatic
mutations) detected in each individual cancer. This
finding prompts a fundamental question regarding
driver acquisition – does it follow a particular order
or sequence? In other words, does the likelihood of
obtaining a particular driver event change along the
evolutionary history of the disease?

Unlike the tree of life, cancer evolution repeats
itself over and over. Each patient’s disease
represents an independent instance of the evol-
utionary process. This allows defining general pat-
terns by studying many parallel and independent
instances of evolution across many patients. A
particular sequence of events that is overrepre-
sented in the patient population, likely reflects an
associated fitness advantage that allows many can-
cers to independently ‘discover’ this superior tra-
jectory. We and others have capitalized on this
feature of cancer evolution to infer the sequences
along which drivers are acquired in lymphoma
progression [8

&

,14
&&

,21
&

,22].
At first approximation, we can ask what pro-

portion of cases harbors any specific driver at a
clonal vs. subclonal frequency [8

&

]. Although a clo-
nal mutation involves all cells in the population, a
subclonal mutation is found in only a subset of the
cells (Fig. 1a), and therefore likely represents an
event acquired at a later time point. Using this
r Health, Inc. All rights reserved.
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FIGURE 1. Sampling methods for heterogeneity analysis and clonal complexity reconstruction. (a) Massively parallel
sequencing allows inference of clonal evolution from VAF estimation, as the number of reads carrying the mutation over the
total reads obtained for a given region. Correction by the sample purity (in all cases we assume 100% purity, as all cells in
the sample being cancer cells) and a somatic copy number alteration of two allows determination of CCF carrying a given
mutation. (b) Sampling from different locations allows inference of more complex phylogenetic relations and clonal divergence
between different tumor sites. (c) Longitudinal sampling at different times allows determination of the evolutionary trajectory
followed by the tumor population, by determining the temporal sequence of lesion acquisition. (d) Although in whole exome
sequencing studies clonal phylogeny has to be inferred from relative VAF values, single-cell sequencing allows complete
phasing of the lesions, assigning each mutation to a single corresponding cell. CCF, cancer cell fraction; MPS, massively
parallel sequencing; VAF, variant allelic fraction.

Lymphoid biology and diseases

394 www.co-hematology.com Volume 23 � Number 4 � July 2016



Heterogeneity and evolution of B-cell malignancies Izzo and Landau
methodology, we showed that distinct lesions
appear early [e.g., MYD88, trisomy 12, and hemi-
zygous del(13q)] or late (e.g., TP53, ATM, and SF3B1)
in the history of CLL [8

&

]. This method has also been
applied to follicular lymphoma, showing mutations
in chromatin modifiers (e.g., EZH2, MLL2, and
CREBBP) as early driver events [23

&&

]. This suggests
that the fitness associated with each driver genotype
is also a function of the particular moment it appears
along the evolutionary time course of the disease.

With larger cohort sizes [14
&&

], we could probe
for potential temporal relationship in acquisition of
‘pairs’ of drivers. By studying all the instances in
which a pair of drivers is found within the same
leukemia, one in clonal and the other in subclonal
frequency, we found enrichments of distinct
‘sequences’ in CLL evolution. This observation adds
important additional context specificity to the defi-
nition of driver lesions – the fitness associated with
each genotype is also a function of its somatic
background.

This framework can be supplemented by large
cross-sectional sequencing of different clinical
phases, as has been implemented in CLL, where a
premalignant entity exists – monoclonal B-cell lym-
phocytosis (MBL). For example, Klinger et al. [24]
explored MBL by performing deep sequencing of the
immunoglobulin heavy chain variable locus, find-
ing clonal complexity to be present even at this early
stage [24]. Also, CLL-associated driver lesions were
found in MBL months before disease progression
[25], and NOTCH1 mutations, shown to be an earlier
event in CLL [8

&

], were already detected as small
subclones in MBL [26].

Other studies have utilized longitudinal
sequencing to delineate the evolutionary sequence
of driver acquisition, such as the emergence of
clones bearing new mutations, as in progression
from follicular lymphoma to transformed-follicular
lymphoma (tFL) [27]. Indeed, extensive clonal diver-
sity [23

&&

,28
&

,29
&

] in follicular lymphoma was
shown to lead to tFL [23

&&

,29
&

].
In summary, evolutionary inference based on a

mixture of large cross-sectional studies and longi-
tudinal sampling provided a novel understanding of
B-cell neoplasm’s drivers. By uncovering distinct
sequences of events, we learn that the fitness associ-
ated with driver lesions is highly context specific,
and depends on its particular position within a
probabilistically defined chain of events.

The determination of the sequence of events
within B-cell malignancies provides valuable infor-
mation upon which parameterized mathematical
models can be built [30

&

]. This quantitative
approach has been previously addressed with the
development of stochastic models [31], as well as
 Copyright © 2016 Wolters Kluwe
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deterministic models [32] to follow tumor evolution
dynamics. Recently, attention has been centered on
modeling fitness landscapes, which may present
particular topologies as the result of epistatic inter-
actions [33]. Consequently, certain evolutionary
trajectories would become inaccessible, a feature
that has given rise to the possibility of using ‘evol-
utionary traps’ [34] and ‘temporal collateral sensi-
tivity’ [35,36] to drive cancer cell populations
toward extinction [37

&

]. Therefore, empirical infor-
mation regarding the sequence of events in B-cell
malignancies can empower these quantitative
approaches to provide evolutionary-driven design
of rational therapeutic interventions [30

&

].
A MOTLEY CREW – THE REMARKABLE
INTRALYMPHOMA GENETIC
HETEROGENEITY

The ability of MPS to capture numerous somatic
mutations at high throughput has provided insight
into intratumoral genetic heterogeneity in B-cell
malignancies. This has been done with two comp-
lementary approaches: deconvoluting clonal
heterogeneity within each sample as described
above, based on the different allele frequencies of
different mutations (Fig. 1a), and sequencing
spatially or temporally distinct samples from the
same patient (Fig. 1b and c).

With the these methods, widespread intratu-
moral genetic heterogeneity has emerged as a com-
mon theme across B-cell neoplasms, with evidence
of branched rather than linear evolution being the
more common evolutionary trajectory
[8

&

,9
&

,14
&&

,38]. Vast intratumoral genetic heterogen-
eity was found to involve recurrent driver events
across many B-cell malignancies, including CLL
[14

&&

,39], diffuse large B-cell lymphoma (DLBCL)
[10,38,40], mantle cell lymphoma (MCL) [41], and
follicular lymphoma [42].

The study of cancer heterogeneity and evolution
has been particularly enhanced by sequencing of
multiple sites within a single patient or primary
tumor [43–45] (Fig. 1b). These studies have shown
that much of the heterogeneity we observe may
result from spatial constraints, as tumor cells are
unlikely to undergo ideal mixing [46

&&

]. As the
evolution of cancer populations is dependent on
the selective pressures of the environment, greater
intratumoral heterogeneity is expected if cancer cell
populations reside in different ecological niches
(e.g., different tissues). For example, studies compar-
ing clonality in lymph nodes and peripheral blood
revealed differences in clonal distribution between
these two compartments [47

&

]. Further studies
applying spatial sequencing in lymphomas are
r Health, Inc. All rights reserved.
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crucial to define the magnitude of such process that
resembles allopatric speciation, and to quantitat-
ively delineate the dispersion of clones within the
entire malignant population [46

&&

].
Despite these advances, a central remaining

challenge stems from the reliance of these methods
on the short DNA fragments used in MPS. This limits
the ability to ‘phase’ distinct somatic events, since
the determination of whether two mutations are
found within one or two clonal populations is only
indirectly inferred by clustering methods [8

&

]. This
limitation may be addressed with the development
of single-cell capture sequencing [48,49], which
allows complete phasing, whereby all the mutations
can be assigned to individual cells (Fig. 1d). Single-
cell sequencing has allowed the reconstruction of
evolutionary pathways in myeloma [50], childhood
acute leukemia [51

&&

] and breast cancer [52]
genomes [53]. Hence, these methodologies carry a
significant potential to increase the resolution of
genetic heterogeneity mapping, confidently assign-
ing mutations to low-frequency subclones.
B-CELL MALIGNANCIES: A RECIPE FOR
DIVERSIFICATION

The extensive intratumoral heterogeneity of B-cell
malignancies prompts an important question: how
is such intratumoral diversity generated? Although
B-cell malignancies are subject to mutational proc-
esses observed across cancer [8

&

], B cells are unique
in their ability to edit their genomes as part of their
normal physiology, introducing novel mutations.
Although many mechanisms are in place to guide
these processes to immunoglobulin loci [54–57],
these physiological mutagenesis mechanisms are
often hijacked in malignancy. In this regard, many
B-cell malignancies harbor translocations affecting
the immunoglobulin locus, which is associated with
activation-induced deaminase (AID) activity in class
switch recombination [58].

In addition to chromosomal breakage induced
during class switch recombination, AID continues
to introduce single base pair mutations through the
process of somatic hyper mutation of the immuno-
globulin gene [58]. In work by Alexandrov et al.
[59

&&

], a mutational signature associated with AID
was found outside the immunoglobulin locus in
both CLL and B-cell lymphomas. More recently,
whole genome sequencing (WGS) of CLL has shown
AID-related mutational activity both in the very
early phases of CLL and along the progression of
the disease [60

&

]. Notably, AID genomic targeting
shows a tropism for highly active enhancers and
promoters [61,62]. Therefore, the role of AID in
lymphoma evolution will likely expand as we begin
 Copyright © 2016 Wolters Kluwer 
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to fully characterize the noncoding ‘drivers’ through
large-scale WGS initiatives [63

&

,64].
SHAPING THE COURSE OF EVOLUTION
THROUGH THERAPY

In most B-cell malignancies, we hold powerful
therapeutics to eliminate the majority of the malig-
nant population, enforcing tight therapeutic bottle-
necks [13]. This strong external pressure, applied to a
genetically diverse population, is likely to result in
significant evolution of the genetic makeup of the
disease. Indeed, WES of matched diagnosis and
relapse samples demonstrates that therapy fre-
quently induces clonal evolution, as shown by
changes in the relative clonal frequencies after
therapy [8

&

,14
&&

,39]. Clonal evolution with therapy
has been broadly observed across lymphomas such
as MCL [65] and follicular lymphoma [42], showing
that clonal evolution in disease relapse is an almost
uniform outcome of effective therapy.

In CLL, this is exemplified by drivers, which are
present at subclonal frequencies in the pretreatment
sample and increase in frequency after therapy,
consistent with positive selection (e.g., TP53
mutations with fludarabine-based therapy). Nota-
bly, other drivers are equally likely to increase or
decrease in frequency with therapy (e.g., ATM,
SF3B1, and POT1) [14

&&

]. Thus, although these latter
drivers are not likely to confer selective resistance to
therapy, these clones can still show significant
changes of clonal frequencies with therapy [66].
This observation suggests that other elements deter-
mine the course of evolution, in addition to selec-
tive resistance to therapy [13].

Targeted therapies have also been found to be
associated with specific resistance mutations in B-
cell malignancies. Some examples are the detection
of a relapse-specific mutations in MCL and CLL
samples from patients with acquired resistance to
ibrutinib treatment [67

&

,68]. These studies have
shown that effective targeted therapies select for
clones that harbor mutations that render the drug
inactive or bypasses its inhibition.

A broader corollary that emerges from the evol-
utionary perspective on cancer is that increased
heterogeneity would provide greater adaptive
capacity to the cancer cell population, thereby facil-
itating disease relapse. Indeed, recent studies
showed that higher pretreatment tumor genetic
heterogeneity at diagnosis is associated with shorter
time until disease relapse in B-cell malignancies
[8

&

,14
&&

] (Fig. 2a), and adverse clinical outcome
across cancer [69,70

&

,71].
Collectively, these insights have three import-

ant clinical implications. First, the genetic makeup
Health, Inc. All rights reserved.
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of relapsed disease is frequently different from that
of the pretreatment disease, suggesting that a
genetic risk profile assessment would need to be
repeated at each treatment decision juncture.
Second, the major clone present in the relapse
sample can often be detected as a minor clone in
the pretreatment sample. Therefore, a pretreatment
assessment of clonal diversity can help anticipate
the future evolutionary trajectory leading the dis-
ease relapse. Lastly, the frequent clonal evolution
points to a fundamental failure to therapeutically
address the collective of subpopulations. Therapies
 Copyright © 2016 Wolters Kluwe
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suppress some populations, while allowing others
to thrive, which ultimately leads to disease relapse.
This understanding challenges us to rethink our
therapeutic strategies such that they will directly
anticipate and address clonal evolution. An excit-
ing opportunity emerges to integrate frequent
measurements to resolve clone-specific growth
patterns (either of circulating cells [66] or using
liquid biopsy technology [72

&

]), with ecological
models to inform the therapeutic strategies
required to generate an extinction event of the
cancer cell population [37

&

].
r Health, Inc. All rights reserved.
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EPIGENETIC VARIABILITY AS SUBSTRATE
FOR TUMOR EVOLUTION

Genetic heterogeneity cannot fully explain the out-
standing adaptive capacity observed in tumors
[73,74]. Another candidate mechanism for enhanc-
ing cancer’s evolutionary plasticity is epigenetic
variation, as epigenetic information may be stably
inherited and results in phenotypic changes [75]. In
particular, intratumoral DNAme heterogeneity has
been studied in B-cell malignancies, given its estab-
lished role in the pathobiology of these diseases [17].
Moreover, higher intrasample DNAme heterogen-
eity is associated with increased aggressiveness in
DLBCL and follicular lymphoma, as was first dem-
onstrated with 450K methylation arrays [76

&

].
More recently, these questions have been

studied using MPS coupled with bisulfite conver-
sion, which provides genome-wide base-pair resol-
ution of methylation patterns [77]. Each MPS read
represents an individual DNA fragment, originating
from a particular cell. Thus, similar to measurement
of somatic mutation VAF, the study of multiple
reads covering the same locus provides the fre-
quency of distinct methylation patterns (epi-alleles)
in the cellular population [78]. Furthermore, by
comparing the methylation of CpGs contained
within such a short sequencing read, the concord-
ance in methylation state of closely neighboring
CpGs – from the very same cell – can be determined
[18

&

,79].
Applying this perspective to CLL showed that

leukemic cells differ from normal B cells not only in
differential methylation of specific loci, but also in
the amplitude of stochastic variation in methylation
patterns between cells within the same sample
[18

&

,80]. This represents a departure from the
traditional view of cancer epigenetics. Our perspect-
ive was largely adopted from developmental
biology, where cell-specific genome-wide coherent
epigenetic identities were identified. Now, we
understand that in addition to these coherent pro-
files, a significant component of ‘trial and error’
exists, very much akin to genetic diversification
in cancer.

This intraleukemic DNAme heterogeneity is
likely not without consequences. High level of pro-
moter methylation discordance between neighbor-
ing CpGs was shown to correspond to an
intermediate transcriptional output, which inter-
feres with both complete silencing and high gene
expression, increasing transcriptional entropy as
shown by single-cell RNA sequencing [18

&

]. Thus,
epigenetic variability is closely correlated with tran-
scriptional heterogeneity and cancer cell pheno-
typic diversity.
 Copyright © 2016 Wolters Kluwer 
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These observations prompt an important ques-
tion; how is such DNAme heterogeneity achieved?
Although yet unexplored, it has been proposed that
increased cell replication rate may underlie this
extensive epigenetic heterogeneity, given that the
error rate estimated for a given CpG per cell division
can be up to 4% [81,82]. This process could be
enhanced by somatic genetic mutations within
components of the DNAme machinery [18

&

].
In both CLL and DLBCL patients, high rate of

pretreatment intratumor DNAme heterogeneity of
gene promoters was found to be associated with
adverse clinical outcome and shorter time until
disease relapse [18

&

,19
&

,20] (Fig. 2a). Notably, the
majority of the patients displayed decreased intra-
tumor methylation heterogeneity in DLBCL upon
treatment [19

&

], showing that therapy may result in
a more epigenetically homogeneous population,
suggestive of therapeutic selection. Thus, epigenetic
heterogeneity likely plays a central role in providing
plasticity to cancer cell populations; as it arises in a
stochastic fashion, it generates a continuum of epi-
genetic variability, providing a rich substrate for
tumor evolution.

Ongoing studies of DNAme are geared toward
utilizing the improved understanding of stochastic
variation to enhance our ability to discover epi-
drivers through statistical inference, as well as the
ability to experimentally introduce epigenetic edit-
ing. Adaptation of the clustered regularly-inter-
spaced short palindromic repeats/Cas9 system to
carry out epigenetic modifications at specific loci
[83] could provide information regarding the phe-
notypic consequences of these epigenetic modifi-
cations, as well as the means to validate putative epi-
driver events observed during tumor evolution.

Our exploration of the epigenetic contribution
to heterogeneity of cancer cell populations has only
begun. Emerging technologies provide new oppor-
tunities to gain insight on other fundamental epi-
genetic aspects of the evolutionary unit of cancer –
the single cell. Single-cell RNA sequencing has pro-
vided knowledge on the transcriptional heterogen-
eity with unprecedented resolution [84,85]. In
addition, recent efforts aimed toward the develop-
ment of single-cell ChIP-seq [86] and single-cell
assay for transposase-accessible chromatin with
high-throughput sequencing (ATAC-seq) [87] could
allow the study of variations in the distribution of
histone modifications and its consequences. Finally,
the combined analysis of genetic and epigenetic
somatic variation will likely provide an exciting
perspective on tumor progression and evolution,
as well as insights into the interplay between genetic
and epigenetic lesions [75].
Health, Inc. All rights reserved.
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CONCLUSION

Throughoutevolution, life formsbecameincreasingly
complex, transitioning from unicellular to multicel-
lular organisms. In this context, cancer is a fascinating
example of ‘evolutionary regress’; whereby cells
gradually rescind the multicellular contract, and
propagate to more closely resemble a unicellular life
form. Large-scale application of MPS technology to B-
cell malignancies has improved our understanding of
this ‘evolutionary regress’ (Fig. 2b).

Wherein early driver mutations are cell-type
specific, likely enhancing the malignant cells’ abil-
ity to compete with their normal counterparts, late
drivers show convergence to mutations found across
cancer, and likely reflect competition between
different malignant subpopulations. As the lym-
phoma population grows, genetic and epigenetic
diversification intensifies, as both of these phenom-
ena are closely linked to cell replication and the size
of the malignant population.

In particular, stochastic epigenetic variation
provides a natural avenue for ‘reverse engineering’
of the multicellular epigenome into a unicellular
one. As evolutionary graph dynamics demonstrate
[21

&

], the multicellular strict unidirectional differ-
entiation structure suppresses the selection of fitter
mutants. In contrast, a relaxation of the hierarchical
structure through epigenetic variation may allow for
enhanced selection and fitness optimization. Thus,
as cancers progress and grow, greater epigenetic
variation occurs, leading to blurring of epigenetic
identities, enhanced evolutionary potential, and
adverse outcome [18

&

].
These studies have also taught us an important

humbling lesson. Cancers are more complex than
we have previously appreciated, and the recipe to
overcoming our best therapies is typically already
known to small subclones present upon treatment
initiation. To overcome this complexity, we would
need to develop new therapeutic approaches that
cease to regard cancers as monolythic populations.
Instead, we would need to study cancer diversity to
devise the next facet of precision medicine – a
treatment that is personalized not only to an indi-
vidual patient, but also to individual clones within a
single cancer. This perspective will catalyze the next
generation of therapeutic algorithms, which maxi-
mize overall tumor elimination, instead of merely
selecting one clone over another.
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