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A B S T R A C T

There has been a very recent surge in the interest on the localization properties of resonances

associated to partially open (scattering) systems, which are of great relevance when studying

resonant cavities such as those used in microlasers. Very recently, it has been found that

no localization is present in a scaled form of these states. Moreover, a new kind of scarring

on structures different from periodic orbits is described for non scaled resonances. In this

paper, we analyze the localization of a distribution function corresponding to the quantum

LR representation – based on the non unitary evolution operator decomposition into left and

right resonances – for the partially open quantum tribaker map, a paradigmatic system. We

find localization on the shortest periodic orbits. Also, scaled states present enhancements that

could not be associated to periodic orbits and that become more evident when looking at the

LR representation. These findings open the door for new perspectives on recent theoretical

developments.

1. Introduction

Quantum scattering has been an active research field since long ago, being optical cavities one of the main focus of attention.

Pioneering works have clarified the main features of quantum chaotic scattering [1,2] by means of classical trajectories contributions

and their connection with Random Matrix Theory. Also, there have been remarkable experimental realizations by means of chaotic

microwave cavities like those in [3,4]. As a matter of fact, there is a long history of both theoretical and experimental studies [5,6],

but also recent experiments [7] in which a lot of questions have been settled, but others still remain open. This situation corresponds

classically to placing an opening in the system, letting the trajectories that arrive at a region of phase space escape. This escape can

be complete, and then we speak about a complete opening, or partial, where we define a convenient reflectivity function in order to

take into account a partial confinement of these trajectories inside the cavity. This mechanism gives rise to a classical (conditionally)

invariant distribution that corresponds to a (partial) fractal set having (multi) fractal dimension(s). At the quantum level and for

the complete opening case, the fractal Weyl law is a well established result, which shows that the number of long-lived states (or

resonances) scales with the Planck constant as ℏ−∕2, where  + 1 is the fractal dimension of the classical repeller [8–11]. If the

opening is partial [12], we have multifractal measures [13] that characterize a conditionally invariant distribution that extends

over all the phase space and the usual fractal Weyl law has to be redefined. This has been done for the very important case of

maps (these systems embody all the features of the chaotic cavities, but are much more amenable to theoretical studies) [14]. The

morphology of the corresponding eigenfunctions is still not completely understood, being their localization properties [15] a source

of active developments nowadays.
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Very recently there has been a renovated interest in elucidating some open questions about the structure of resonances associated

to (partially) open systems. In [16] the average phase space distribution of resonances in chaotic systems with escape was conjectured

to be described by a classical measure. This measure is conditionally invariant and uniformly distributed on sets with the same

temporal distance to the quantum resolved chaotic saddle. A family of conditionally invariant classical measures was found to

describe the multifractal phase space distribution, product structure along stable and unstable directions, and the dependence on

the decay rate of resonances [17] (better behaved for long and short lived ones). Moreover, in [18] the intensity statistics was found

to universally follow an exponential distribution in the partially open chaotic standard map, baker map, and a random matrix model.

In [19] a local randomization on phase space for the baker map with escape was introduced to obtain a semiclassical description of

resonances, though some quantitative differences with respect to the exact ones were found. Finally, in [20] the resonances were

conjectured to be a product of an essentially classical conditionally invariant measure and universal fluctuations. Notably, scarring

is present in almost all of them, although along segments of rays but not along periodic orbits (POs).

On the other hand, there has been a complementary line of research in order to study the properties of resonances based on the

localization phenomena on POs, the so called scarring [21]. This led to the development of the semiclassical theory of short POs for

open quantum maps [22]. This is a constructive approach based on short POs contained in the classical repeller, which motivates a

basis of scar functions able to expand the quantum repeller [23,24], which is suitable to express the quantum non-unitary operators

[25,26]. We notice that the term short refers to the fact that their periods are related to the number of periodic points needed to

cover the quantized torus in the case of maps, and as a consequence their length is much shorter than that of the orbits needed

in other semiclassical theories, such as the trace formula for example. We have recently extended the short POs theory to partially

open quantum maps [27,28].

Can these two visions on the same problem be put together? Is scarring in the long lived resonances of partially open systems

essentially different from that occurring along POs in the closed scenario? How are the limits corresponding to completely open and

closed systems reached? Which is the effect of the scaling of these resonances by their average in terms of localization? In this work

we try to answer these questions by studying the localization properties of the longest lived resonances of the (partially) open tribaker

map. We use the Husimi functions associated to the right eigenvectors scaled using their average, and the LR representation of the

left and right eigenvectors scaled using the corresponding quantum repeller. In this way, we are able to clearly show the localization

present when using the latter mathematical objects, which reveal themselves as a very adequate tool to understand the statistical

properties of the resonances. Moreover, thanks to them scarring on short POs is easily identified.

The organization of this paper is as follows: in Section 2 we describe the (partially) open tribaker map and the localization

measures used. In Section 3 we apply these definitions to unveil the localization properties of resonances and how short POs could

be apparently hidden in the set of long lived resonances. The conclusions are outlined in Section 4.

2. System and measures

Maps are a powerful and convenient tool to study classical and quantum chaos [29–31]. In particular, open maps on the 2-torus

have an associated fractal repeller, that is an invariant measure which lies at the intersection of the forward and backwards trapped

sets (nonescaping trajectories in the past or future). When the opening is partial, some amount of them is reflected following a

reflectivity function that we will take as a constant  ∈ (0 ∶ 1) for simplicity. In this case, the corresponding measure extends over

all the phase space, but still shows multifractality.

The quantum version of maps on the torus requires taking ⟨ + 1|⟩ = 2 ⟨|⟩, and ⟨ + 1|⟩ = 2 ⟨|⟩, with  ,

 ∈ [0, 1). The dimension of the Hilbert space is  = (2ℏ)−1, the semiclassical limit is reached when  → ∞, and the evolution

operator is a  ×  matrix. Position and momentum eigenstates are given by |⟩ = |( + )∕⟩ and |⟩ = |( + )∕⟩ with

 ∈ {0,… , − 1}, transforming as ⟨|⟩ =
1√


−2(+ )(+)∕ ≡ (
 ,


). A partially open quantum map is non-unitary and has

 right eigenvectors |

⟩ and  left ones ⟨


| for each resonance (eigenvalue)  , with ⟨


|


⟩ =  and ⟨


|


⟩ = ⟨


|


⟩

being the norm.

The classical tribaker map is defined as

(, ) =
⎧
⎪⎨⎪⎩

(3, ∕3) if 0 ≤  < 1∕3

(3 − 1, ( + 1)∕3) if 1∕3 ≤  < 2∕3

(3 − 2, ( + 2)∕3) if 2∕3 ≤  < 1

(1)

If we place an opening in the region 1∕3 <  < 2∕3 all trajectories arriving at it will suffer an intensity modification given by the

reflectivity function. The quantum closed counterpart with antiperiodic boundary conditions  =  = 1∕2 (preserving time reversal

and parity) in position representation is [32,33]

 = −1


⎛
⎜⎜⎜⎝

∕3 0 0

0 ∕3 0

0 0 ∕3

⎞
⎟⎟⎟⎠
. (2)
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The corresponding partially open map is given by

 =

⎛
⎜⎜⎜⎝

1∕3 0 0

0
√

 1∕3 0

0 0 1∕3

⎞
⎟⎟⎟⎠
, (3)

applied to Eq. (2), in such a way that the original symmetries are preserved.

Motivated by the classical repeller, we can define the corresponding quantum object by means of an operator ℎ̂ constructed in

terms of the right |

⟩ and left ⟨


| eigenstates [23,24]

ℎ̂ =
|


⟩⟨


|

⟨

|


⟩ . (4)

The sum of each one of these symmetrical operators multiplied by the corresponding eigenvalue  give the spectral decomposition

of the non-unitary map. Having in mind that the right (left) eigenfunctions have support on the backwards (forward) trapped sets, ℎ̂

are approximately concentrated on the intersection of these sets, i.e., on the repeller. When the expectation values of these projectors

are evaluated on coherent states |, ⟩, |⟨, |ℎ̂ |, ⟩| ∝



(, )


(, ), being ,


the Husimi functions of the , resonances,

which for closed (unitary) systems are simply the Husimi functions of the eigenstates. We define the quantum repeller as the average

of the first  of them, ordered by decreasing modulus of their eigenvalues (|| ⩾ || with  ≤ ):

̂ ≡ 1



∑
′=1

ℎ̂′ , (5)

and denote their phase space representation by means of coherent states as

ℎ (, ) = |⟨, |ℎ̂ |, ⟩| (6)

 (, ) = |⟨, |̂ |, ⟩|, (7)

where ℎ (, ) will be simply called the LR representation of the resonances. We have explicitly taken the modulus since these are

complex functions in general. Also, for the sake of an easy comparison with the scaled Husimis that will be defined next, we give an

equal weight to each resonance in the repeller sum, although weighting them with the corresponding eigenvalues should provide

a more faithful representation of the longest lived sector of the quantum map. If this were the case, our definition of the quantum

repeller would coincide with a truncation of the spectral decomposition of the non-unitary operator. In fact, in this work we are

interested on this projector property of the quantum repeller, other possible choices for scaling like considering the moduli of each

term in the sum of Eq. (5) will be studied in the future. It is worth noticing that, in this work, we focus on the long lived set of

resonances and this sum runs on just a subset of the whole set. It is useful to define [18] the scaled Husimi as

̃

= 


∕⟨⟩

and the scaled LR representation functions as

ℎ̃ = ℎ∕

respectively, where the average ⟨⋯⟩ is taken over this  subset of eigenstates.

We explore two measures of localization for both scaled functions. The first one closely follows the conjecture of universal

intensity statistics formulated in [18], i.e. that these functions obey an exponential distribution  () = −, where  =

̃

(, ) or  = ℎ̃(, ). We define the corresponding localization measure

 =

∑


‖ () − −‖,

where  is the number of intervals into which we divide the histogram  () and  is the value at which we evaluate the

exponential function. This gives the deviation from the exponential behavior as the distance between both curves, for each case.

Hence, as the predicted exponential distribution corresponds to uniform fluctuations in phase space, any departure from it signals

localization.

The second measure of localization is intrinsically phase space motivated. It considers a coherent state as the most localized

distribution and it senses the deviation from it by means of comparing phase space norms. In fact, the norm ratio  is taken to

be [24]

(ℎ̃) =

( ‖ℎ̃‖1∕‖ℎ̃‖2
‖‖1∕‖‖2

)2

. (8)
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Fig. 1. (Color online)  as a function of  for the closed (a), partially open with  = 0.1 (b),  = 0.05 (c), and completely open (d) tribaker maps. The symbols

∗, ▵ and ◦ stand for the 6th, 10th and 16th eigenstates (ordered as indicated in the main text), respectively. The gray (red) points correspond to the measure

calculated for ̃

, while the black points for ℎ̃.

Fig. 2. (Color online) ∕ as a function of  for the closed (different  axis range than the other panels) (a), partially open with  = 0.1 (b),  = 0.05 (c),

and completely open (d) tribaker map. The symbols ∗, ▵ and ◦ stand for the 6th, 10th and 16th eigenstates, respectively. The gray (red) points correspond to

the measure calculated for ̃

, while the black points for ℎ̃. Full lines show the values of  for the Husimi averages ⟨⟩ and the quantum repellers  .
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Fig. 3. (Color online) ̃
10
(, ) with  = 16 185 for the closed (a), partially open with  = 0.1 (b), and  = 0.05 (c). Lower to higher values go from white

(white) to blue (gray). Labels and ticks marks are only plotted in panel (c) since they are the same in (a) and (b), and this the same in the rest of figures of

the paper.

We use ℎ̃(, ) in its definition but is also valid for ̃

(, ). A coherent state at an arbitrary position (, ) in phase space is the

normalization factor  = |, ⟩⟨, |, with the phase space norm given by

‖ℎ̃‖ =

(

∫ 2

ℎ̃(, )


)1∕

. (9)

The norm ratio is also independent of the ℎ normalization, with a minimum value of 1 for a maximally localized distribution (a

coherent state) and a maximum value of ∕2 for the uniform distribution.

3. Localization in phase space

In order to investigate the average localization on the quantum repeller defined in Section 2, we have computed the two

previously defined measures,  and , for the closed ( = 1), partially open (with  = 0.1 and 0.05), and the completely open

( = 0) tribaker maps. In the calculations, we have used the 32 longest lived resonances to evaluate ̃

and ℎ̃, which in the closed

case are arbitrarily selected. Results for  (calculated for 1000 points distributions and 3 values of ) are shown in Fig. 1. Looking at
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Fig. 4. (Color online) ℎ̃10(, ) with  = 16 185 for the closed (a), partially open with  = 0.1 (b), and  = 0.05 (c). Lower to higher values go from white

(white) to blue (gray).

it we verify that the exponential shape of the probability distributions is not a uniformly universal feature, but depends on the kind

of representation used. For the closed system, there is essentially no difference between the Husimis of the right eigenstates and the

distributions taken on the repeller, as expected from the fact that there are no differences between the right and left eigenstates.

More remarkably, we see meaningful differences with respect to the localization for the closed system in the case of the repeller

of the partially open maps, and also for the complete opening. The low to moderate  values that have been considered for the

partially open cases produce appreciable changes in the behavior of this measure with respect to the closed case. It needs to be

underlined that for the Husimi distributions of the right eigenstates there is no notable change from the closed scenario at any

of the finite reflectivities shown. This agrees with the universality conjecture of [18] and shows that our calculations are in that

regime. In fact, the number of resonances that we have considered in performing the scaling shows to be adequate.

Next, we consider ∕ which is shown in Fig. 2 and is related to the fraction of the phase space corresponding to the given

scaled resonance. Again, as expected, there is essentially no difference here between the values for ̃

and ℎ̃ in the closed scenario.

However, the localization is now better detected than with the  measure for finite reflectivities and also for the completely open

case. In fact, though the latter seems to be more localized, the results for partial openings are almost at the same level than this

limiting case. Moreover, a greater localization with respect to the closed case is also detected in the Husimi distributions of the

right resonances not only for the LR representation, which nevertheless is always much more localized. Finally, this localization
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Fig. 5. (Color online) 
18
(, ) (a), 

23
(, ) (b), ℎ18(, ) (c), and ℎ23(, ) (d). Lower to higher values go from white (white) to blue (gray). Fixed points of short

POs of period 4 and 2 are marked by means of black circles in (c) and (d). In all cases we have taken  = 3936 and  = 0.05.

seems to survive in the semiclassical limit (i.e., ∕ does not grow with ), but we leave a deeper investigation of this point for

future work. Notice that the Husimi averages and the quantum repellers are more localized than individual scaled eigenfunctions,

indicating the expected delocalization effect induced by this scaling on the original resonances.

We now turn to analyze some specific examples. In Fig. 3 we show the phase space representation ̃
10
(, ) for the largest 

evaluated in this work at all the values of  considered in our calculation (a detailed explanation is given in the caption). No

noticeable localization can be identified with the naked eye due to the large size of the Hilbert space. The same happens if we

consider the LR representation ℎ̃10(, ) displayed in Fig. 4 for the same values of the parameter used in Fig. 3. We mention here

that for the completely open case, some values of the scaled distributions (which were excluded from statistics) oscillate violently

in the opening due to the extremely low values of the original resonances in that area. This also shows that scaling by the average

in order to analyze the properties of resonances does not have a smooth transition to the limiting completely open case.

We now provide clear evidence of localization on POs by means of directly looking at the phase space representations of

eigenfunctions. We select a Hilbert space of a smaller size ( = 3936) in order to make the identification of the features of phase

space distributions easier. In Fig. 5 we show the non-scaled Husimi representation for the 18th and 23rd eigenfunctions (in decreasing

eigenvalue modulus order as usual), and the LR representations of it (see details of the different panels in the caption). In it, we can

identify scarring by two short POs of period 4 and 2 respectively (whose fixed points are marked by means of white circles for the

LR representation case). We have chosen these two eigenfunctions because they are cleanly scarred by a single very short PO each.

As such, they are extremely useful as a clear demonstration of this phenomenon, while other eigenfunctions are scarred by more

than one PO and would unnecessarily complicate our explanations. It is important to notice that we use a grid of 500 x 500 points

on the torus (at a reasonable computational cost) where coherent states are located in order to construct the distribution functions.

The remarkable localization we have found not only proves that this happens on ordinary POs but that even at high  some

eigenfunctions can be dominated by a single scar function, as defined in the context of the short POs semiclassical theory [27,28].

When comparing with the scaled version of the distributions in Figs. 6 and 7, it becomes clear that the localization on POs is masked.

The scaling dominates over the features of individual non-scaled eigenfunctions and the fluctuations that this procedure introduces

translate into a localization of changing morphology, depending on the kind of representation used.

4. Conclusions

In this work we have studied the localization properties of scaled phase space distributions of resonances corresponding to the

partially open tribaker map. We have found that for the longest lived ones, which define the quantum repeller, localization is present

and persistent as  grows. This is hinted by deviations measured by  with respect to a conjectured universal intensity statistics [18]

when applied to the scaled LR representations. This representation is inspired by the spectral decomposition of the non unitary map

and is the quantum analogue of the classical invariant set (moreover, it is the complete analogy of the usual Husimi functions in

closed systems, to which it converges as the partial opening becomes closer to  = 1). This way of looking at resonances is an

alternative to the configuration or the Husimi representations to which the conjectured universality does not apply. The existence

of a general behavior for this representation is an interesting subject for future research, but we underline that as the quantum

repeller is a coherent sum of long lived resonances its shape would be non-trivial.
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Fig. 6. ⟨⟩ (a), 
18
(, ) (b), and ̃

18
(, ) (c). Lower to higher values go from white (white) to blue (gray). In all cases we have taken  = 3936 and  = 0.05.

Going into the details, we could find no appreciable differences with respect to a universal exponential distribution [18] when

evaluating  for the scaled Husimis of the right resonances (as previously said, this is not the case for the LR representation).

However, the norm ratio indicates more localization than in the closed system for the two phase space distributions, in particular

for the LR representation. When looking at the phase space pictures we could see that localization of Husimi functions happens at

different places than that of LR representations (both of scaled resonances), and that also in the latter case it lies outside of the

region corresponding to the completely open repeller. In contrast, localization of the non-scaled resonances can be found on the

same short POs (belonging to the repeller) in both, Husimis and LR representations. This leads us to conclude that although being

a very useful tool, the scaling procedure must be modified in order to incorporate these findings.

Consistently with the Shnirelman’s theorem [34], some recent studies suggest that the scarring persists in the semiclassical

limit [35] for closed systems. To settle the very interesting question about the survival and amount of POs localization for the

(partially) open case in the semiclassical limit, more investigations need to be carried out and we leave it for future work. But for

that purpose we think it is fundamental to consider the quantum counterparts of both, the unstable and stable manifolds, being

this a feature of the LR representation and the quantum repeller  by definition. In our view, it is in this sense that localization

should be regarded in open systems, no matter if they are of partial or complete nature. A promising new representation could be

of critical help in this effort [36].
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Fig. 7. (Color online)  (a), ℎ18(, ) (b), and ℎ̃18(, ) (c). Lower to higher values go from white (white) to blue (gray). In all cases we have taken  = 3936

and  = 0.05.
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