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Estimation of diffusion time with the Shannon entropy approach1
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The present work revisits and improves the Shannon entropy approach when applied to the estimation of
an instability timescale for chaotic diffusion in multidimensional Hamiltonian systems. This formulation has
already been proved efficient in deriving the diffusion timescale in 4D symplectic maps and planetary systems,
when the diffusion proceeds along the chaotic layers of the resonance’s web. Herein the technique is used to
estimate the diffusion rate in the Arnold model, i.e., of the motion along the homoclinic tangle of the so-called
guiding resonance for several values of the perturbation parameter such that the overlap of resonances is almost
negligible. Thus differently from the previous studies, the focus is fixed on deriving a local timescale related to
the speed of an Arnold diffusion-like process. The comparison of the current estimates with determinations of
the diffusion time obtained by straightforward numerical integration of the equations of motion reveals a quite
good agreement.
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I. INTRODUCTION18

The diffusion time, TD, is a relevant timescale in dynamical19

systems since it drives the evolution of the phase space con-20

figuration. For instance, in stable domains the actions do not21

experience any evolution at all since the motion is confined22

to invariant tori, the action space does not evolve with time,23

and thus TD → ∞. On the other hand, in a connected chaotic24

region of the phase space, the actions could exhibit large25

variations and the finite value of TD provides the timescale26

in which such changes take place.27

In near-integrable Hamiltonian systems analytical esti-28

mates of TD could be obtained only when the perturbation29

acting onto the integrable part is rather small, and thus their30

application is somewhat limited. On the other hand, numerical31

determinations of the diffusion time are in general derived un-32

der the assumption of a nearly normal diffusion process, that33

is, when the variance of the actions scales almost linearly with34

time, its rate being proportional to the diffusion coefficient D35

and therefore TD ∼ D−1. This approach is largely discussed36

and applied to investigate the global diffusion process in many37

different dynamical systems, such as in [1–10].38

Alternatively, TD can be computed from straight numerical39

simulations, such as the motion time after which the actions40

escape from a given domain of phase space as was done41

in [11–15]. In this direction, in [14], the diffusion time was42

estimated in the Arnold Hamiltonian [16,17] for the motion43

along the homoclinic tangle or stochastic layer of the so-44

called guiding resonance. The computed values of TD were45

then compared first with the analytical estimates provided by46

Chirikov [17] for small values of the parameters, and later on47
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a relationship between this timescale, and the Lyapunov time 48

was investigated for a wide range of parameter values. 49

It has been shown [18,19] that the assumption of a nearly 50

normal diffusion process in the Arnold model is not well 51

sustained, at least for moderate motion times (t � 5 × 106). 52

Thus the classical approach of looking at the variance evolu- 53

tion to derive the diffusion coefficient does not provide good 54

estimates of the diffusion time. The authors of [19] explored 55

another way to derive the timescale for diffusion, the Shannon 56

entropy approach, which afterwards was successfully applied 57

to different dynamical systems, from multidimensional sym- 58

plectic maps to multiplanetary dynamics (see [11–13,20]). 59

All these studies focus on the diffusion in multiplets of 60

resonances or resonance crossings, so the derived diffusion 61

time is macroscopical, when the chaotic motion proceeds over 62

the resonance web. However, reports concerning the use of 63

this technique to estimate the diffusion speed along a single 64

resonance are still lacking. 65

In this effort we review and improve the theoretical formu- 66

lation of the entropy approach. Later we implement it in the 67

Arnold model to estimate a nearly local instability timescale 68

for the diffusion along the stochastic layer of the so-called 69

guiding resonance (similarly to an Arnold diffusion process) 70

for different values of the parameters. Finally we compare the 71

obtained results with those presented in [14] that, as men- 72

tioned, were obtained by direct numerical integration of the 73

equations of motion. 74

This work is organized as follows: in Sec. II the entropy 75

formulation is revisited and improved; in Sec. III the Arnold 76

model is briefly discussed; in Sec. IV a single experiment is 77

presented in order to illustrate the evolution of the entropy and 78

its associated diffusion coefficient; while in Sec. V a global 79

numerical experiment for different values of the perturbation 80

parameter is presented. Finally, in Sec. VI we summarize the 81

main conclusions of this research. 82
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II. FORMULATION OF THE SHANNON ENTROPY83

APPROACH TO DIFFUSION84

Here we review and extend the main derivations given85

in [12,13,19] regarding the Shannon entropy as an efficient86

technique to estimate the diffusion rate in action space of mul-87

tidimensional dynamical systems. For a general background88

on Shannon entropy we refer to [21–23].89

A. Shannon entropy90

Let us consider a volume-preserving N-dimensional dy-91

namical system of discrete or continuous time defined through92

action-angle variables (I1, . . . , IN , ϑ1, . . . , ϑN ), I j ∈ R, ϑ j ∈93

S. In several problems, the dynamics could be analyzed con-94

sidering different pairs of action variables (and their conjugate95

angles) such as was shown in [11–13,20]. We focus then on96

the dynamics restricted to a given pair, say, (I1, I2), on the97

section S : {ϑ1 = ϑ0
1 , ϑ2 = ϑ0

2 }.98

For a given initial condition (I1(0), I2(0), ϑ0
1 , ϑ0

2 ) and a99

total motion time T a finite trajectory of the system on S ,100

γ = {(I1,l , I2,l ), l = 1, . . . , Ns � 1} leads to a (discrete) dis-101

tribution density ργ (I1, I2) defined in G ⊂ S . Since Ns is finite,102

then diam(G) = d is bounded.103

Introduce a partition on G, α = {ak, k = 1, . . . , q}, q �104

1, a collection of q bidimensional cells that cover G. The105

elements ak are assumed to be measurable and disjoint. The106

measure of ak is107

μγ (ak ) =
∫

ak

ργ (I1, I2) dI1 dI2 = nk

Ns
, (1)

where nk is the number of action values (I1, I2) of γ in the cell108

ak .109

The entropy of γ for the partition α is defined as110

S(γ , α) = −
q0∑

k=1

μγ (ak ) ln[μγ (ak )]

= ln Ns − 1

Ns

q0∑
k=1

nk ln nk, (2)

where 1 � q0 � q denotes the nonempty elements of the par-111

tition.112

For the given partition and any γ , the entropy is always113

bounded, 0 � S(γ , α) � ln q0. The entropy takes its mini-114

mum when γ is confined to a single element of α, μ(aj ) =115

1, μ(ai ) = 0,∀i 
= j, i.e., motion on a torus, while its maxi-116

mum is reached when the nonempty elements have the very117

same measure, μ(ai ) = 1/q0, i.e., ergodic motion.118

The estimation of the last sum in (2) is simple if we119

assume random motion. Let γ r = {(I1,l , I2,l ) = (Ir
1,l , Ir

2,l ), l =120

1, . . . , Ns � 1} ⊂ S , where Ir
i,l are random values; then the nk121

follow a Poisson distribution with mean value (and variance)122

λ = Ns/q0.123

If λ � 1, the distribution is strongly peaked around nk = λ124

so we can write nk = λ + ξk , |ξk| � λ, and since
∑q0

k=1 ξk =125

0 due to the normalization condition, then up to O((ξk/λ)2)126

q0∑
k=1

nk ln nk = Ns ln Ns − Ns ln q0 + 1

2λ

q0∑
k=1

ξ 2
k , (3)

and the entropy reduces to 127

S(γ r, α) ≈ ln q0 − q0

2N2
s

q0∑
k=1

ξ 2
k . (4)

By the central limit theorem,
∑q0

k=1 ξ 2
k = q0λ = Ns, so (4) 128

reads 129

Sr (α) ≡ S(γ r, α) ≈ ln q0 − 1

2λ
, (5)

i.e., for random motion |Sr − ln q0| = O(1/λ), and thus 130

Sr (α) ≈ S0 ≡ ln q0. (6)

For a given strong chaotic trajectory γ we assume that the 131

above approximation partially holds in the sense that the nk 132

distribution still presents a sharp maximum around nk = λ, so 133

writing again nk = λ + ξ̃k and introducing β such that 134

q0∑
k=1

ξ̃ 2
k = β

q0∑
k=1

ξ 2
k , β =

〈
ξ̃ 2

k

〉
λ

,

the entropy of γ results in 135

S(γ , α) ≈ ln q0 − β

2λ
. (7)

If γ presents weak correlations, β/λ � 1 and S(γ , α) ≈ 136

Sr (α) ≈ S0. 137

Let us mention that if G is compact, then the nk distribution 138

approaches a δ(nk − λ) function, so |ξ̃k| ≈ 1/2 and (see [24]) 139

|S(γ , α) − ln q0| ≈ 1

8λ2
. (8)

B. Entropy-like diffusion coefficient 140

As was shown, for a given motion time t < T , the entropy 141

for chaotic motion can be approximated by S(t ) ≈ ln q0(t ), 142

where q0(t ) denotes the cells visited by γ after a time t . 143

Actually this estimate for the entropy is true provided that 144

λ(t ) = Ns(t )/q0(t ) � 1 where Ns(t ) denotes the number of 145

intersections with the given section at time t . Thus the approx- 146

imation for the entropy applies for t > tc, where tc is some 147

transient time. 148

The variation of S over a finite but small time interval 149


t � T reads 150


S


t
≈ 1

q0(t )


q0


t
(9)

and involves the rate 
q0/
t in the interval (t, t + 
t ). 151

Changes in the number of occupied cells in this interval 152

are due to the diffusion of I1, I2 in 
t , so we introduce the 153

following assumption: the mean-square displacements of both 154

I1 and I2 in (t, t + 
t ) provide a measure of 
q0(t ). Denoting 155

with 〈
I2
1 (t )〉 and 〈
I2

2 (t )〉 such displacements we set 156


q0(t ) ∝ 〈

I2

1 (t )
〉 + 〈


I2
2 (t )

〉
.

Let � be the measure of G (area) where the partition of q 157

cells is defined, then 158


q0(t ) ≈ q

�

[〈

I2

1 (t )
〉 + 〈


I2
2 (t )

〉]
.

In the interval 
t we assume that the distribution density 159

of the action values fi satisfies a 1D diffusion equation of 160

004100-2



ESTIMATION OF DIFFUSION TIME WITH THE SHANNON … PHYSICAL REVIEW E 00, 004100 (2023)

the form ∂t fi = D(i)
t ∂xx fi where x denotes either I1 or I2 and161

D(i)
t the corresponding diffusion coefficient in the interval 
t .162

Thus, in the normal diffusion approximation the mean-square163

displacements in each direction satisfy164 〈

I2

1 (t )
〉 ≈ 2D(1)

t 
t,
〈

I2

1 (t )
〉 ≈ 2D(2)

t 
t, (10)

where D(i)
t ≡ D(i)(I1(t ), I2(t )) is a local diffusion coeffi-165

cient when the trajectory γ is restricted to the domain166

(I1(t ), I2(t )) × (I1(t + 
t ), I2(t + 
t )), then167


q0(t )


t
≈ 4

q

�
Dt , Dt = 1

2

(
D(1)

t + D(2)
t

)
, (11)

and therefore from (9) it turns out that the diffusion coefficient168

is related to the time variation of the entropy.169

Following the above discussion, an entropy-like diffusion170

coefficient in the interval (t, t + 
t ) can be defined as171

DS (γ , t ) := 1

4

�

q
q0(t )


S


t
(t ). (12)

Let L = [T/
t] be the number of intervals where DS (γ , t ) is172

computed, then a diffusion coefficient for γ can be defined as173

DS (γ ) := 1

L

L∑
k=1

DS (γ , tk ) = 〈DS (γ , tk )〉, (13)

or alternatively, DS (γ ) := Ds(γ , tL ).174

Finally an instability or diffusion time is given by175

Tinst = K

2

DS
, (14)

where 
2 denotes a given mean-square displacement, the176

squared distance between the initial and boundary values of177

the actions, and K a numerical factor of the order of 1. In-178

deed, K should be included since in case of fully anisotropic179

diffusion, i.e., when the diffusion proceeds only along one180

direction, I2, for instance, Dt ≈ D(2)
t /2 implying K = 2.181

C. Dependence on the partition182

This formulation depends on the partition on G. If d =183

diam(G) is not known beforehand, take a given domain G0 ⊂184

G where d0 = diam(G0) � d is known. Introduce a partition185

of q cells in G0 and redefine � as186

� = (I2max − I2min )(I1max − I1min ),

where Iimax, Iimin ∈ G \ G0 denotes the maximum and mini-187

mum values attained by the actions. This is the right procedure188

when dealing with symplectic maps where the actions are, in189

general, defined on a torus as was discussed in [12,13]. Notice,190

however, that this renormalization of � for each trajectory191

leads to different sizes of the elements of the partition in action192

units.193

The selection of q depends on the total number of in-194

tersecting points with the section S , Ns, and on its density195

distribution that is determined by the dynamics as discussed196

in [12].197

For the entropy computation the restriction λ = Ns/q � 1198

allows small values of q, however, we are interested in the199

time variation of S where we assume that the nonempty el-200

ements of the partition q0(t ) grow with time. Thus for the201

computation of DS , q should be large enough such that the 202

time variation of the entropy is always positive in the case of 203

unstable chaotic motion, so q0(t ) � q. 204

A suitable selection of q could be q � Ns with the restric- 205

tion q0(t ) � Ns � q. Then the final value of the (normalized) 206

entropy satisfies 207

Ŝ ≈ ln q0

ln q
� ln Ns

ln q
� 1, → Ns � q � N1/Ŝ

s . (15)

In the case of a nearly uniform distribution ρ(I1, I2) ≈ ρ0, 208

DS is invariant under a change of the partition. Indeed, if α 209

is defined through q = m × m elements and α̃ through q̃ = 210

pm × rm elements with p, r positive rational numbers and 211

since the definition of DS in (12) involves q0/q, this ratio is 212

the same for both partitions. On the other hand, the entropy 213

depends on the partition being their relation 214

S̃ = η + S

1 + η
, η = ln(pr)

ln q
,

that for small η reduces to S̃ ≈ S + η. If pr > 1, S̃ > S while 215

S̃ < S whenever pr < 1, but S̃ ≈ S for a wide range of values 216

of pr and large enough q. 217

In [12] several numerical experiments are shown regarding 218

the dependence of both S and DS on the parameters of the 219

method considering a 4D symplectic map and a multidimen- 220

sional Hamiltonian system modeling a planar nonrestricted 221

three-body problem. 222

III. THE ARNOLD MODEL 223

Let us consider the Arnold model [16,17], introduced ad 224

hoc to report the Arnold diffusion. Here we briefly summarize 225

the discussion given in [14], where it is defined through the 226

Hamiltonian 227

H (I1, I2, ϑ1, ϑ2, t ; ε, μ) = 1
2

(
I2
1 + I2

2

)
+ ε(cos ϑ1 − 1)[1 + μB(ϑ2, t )],

B(ϑ2, t ) = sin ϑ2 + cos t, I1, I2 ∈ R,

ϑ1, ϑ2, t ∈ S; εμ � ε � 1. (16)

For ε 
= 0, μ = 0, the Hamiltonian (16) reduces to 228

H0(I1, I2, ϑ1; ε) = H1(I1, ϑ1; ε) + H2(I2)

= 1
2 I2

1 + ε(cos ϑ1 − 1) + 1
2 I2

2 , (17)

and the system has two global integrals, 229

H1(I1, ϑ1; ε) = 1
2 I2

1 + ε(cos ϑ1 − 1), I2 = ω2. (18)

Here H1 is a pendulum model for the resonance ω1 = 0 with 230

small oscillation frequency ω2
0 = ε. Following Chirikov, we 231

refer to this resonance as the guiding resonance. 232

From (18) the energy level H1 ≡ h1 = −2ε corresponds to 233

the exact resonance or stable equilibrium point at (I1, ϑ1) = 234

(0, π ), while h1 = 0 leads to the unstable equilibrium point 235

at (I1, ϑ1) = (0, 0) ≡ (0, 2π ), and of course the same energy 236

level corresponds to the separatrix. 237

The guiding resonance ω1 = 0 has an amplitude ε, half- 238

width (
I1)r = 2
√

ε, so changes of I1 are bounded by |
I1| � 239

2
√

ε while I2 remains constant. 240
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For ε 
= 0, μ 
= 0 the full system (16) can be rewritten as241

H (I1, I2, ϑ1, ϑ2, t ; ε, μ) = H0(I1, I2, ϑ1; ε)+μV (ϑ1, ϑ2, t ; ε),

μV = εμ(sin ϑ2 + cos t )(cos ϑ1 − 1),
(19)

where H0 is given by (17) and ϑ2(t ) = ω2t + ϑ0
2 . Therefore242

the full Hamiltonian is a pendulum model for the guiding243

resonance ω1 = 0 and a free rotator of constant frequency244

ω2, coupled by the perturbation μV (ϑ1, ϑ2, t ; ε) that leads to245

further resonances.246

Since V depends on ϑ1, ϑ2, and t , its main effect is to247

modify the unperturbed separatrix of the guiding resonance248

giving rise to the stochastic layer of finite width, i.e., motion249

across the layer (in I1). On the other hand the dependence of 250

V on ϑ2 causes changes not only in I1 but also in I2, and then 251

motion along the stochastic layer would proceed. Because the 252

dynamics inside the layer is highly chaotic, the variation of I2 253

is also chaotic, giving rise then to a diffusion in I2. Therefore 254

I2 could change without any bound, and an instability could 255

set up when considering large enough motion times. These are 256

the main arguments provided by Chirikov [17] to qualitatively 257

explain the Arnold diffusion, which also included a more 258

rigorous formulation in terms of the so-called transition chain. 259

As mentioned, in the Hamiltonian (19), ω1 = 0 is just one 260

of the six first-order resonances. Using simple trigonometric 261

relations in the expression of μV , the set of primary reso- 262

nances is 263

O(ε) : {ω1 = 0}; O(με) : {ω2 = 0, ω1 ± ω2 = 0 ω1 ± 1 = 0}, (20)

where O denotes the amplitude of the resonance. Notice that264

all the resonances involved in μV have the same half-width,265

(
I )r = √
2με � 2

√
ε, much smaller than the half-width of266

the guiding resonance whenever μ � ε.267

The full set of resonances is then a linear combination of268

the three involved frequencies269

m1ω1 + m2ω2 + m3 = 0, ∀m1, m2, m3 ∈ Z \ {0}, (21)

where ω1 is the pendulum frequency and ω2 is, at first order,270

constant.271

Figure 1 displays the final value of the MEGNO (Mean272

Exponential Growth factor of Nearby Orbits) contour plot for273

ε = 0.25, μ = 0.010 on the section defined by ϑ1 = π, ϑ2 =274

0. White and light gray denote stable motion (periodic or275

quasiperiodic), and dark colors indicate highly chaotic dy-276

namics. Let us mention that the MEGNO is a fast dynamical277

indicator that provides in an efficient way the maximum278

Lyapunov characteristic number of an orbit (see, for in-279

stance, [25–27] for a general description or [14] for a brief280
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FIG. 1. MEGNO contour plot revealing the actual resonance web
of the Arnold Hamiltonian (19) for ε = 0.25, μ = 0.010 on the sec-
tion ϑ1 = π, ϑ2 = 0.

explanation). The contour plot includes a grid of 1000 × 1000 281

initial values of (I1, I2) in the range |I1| � 1.5, |I2| < 2.15. 282

The figure illustrates the guiding resonance, ω1 = 0, whose 283

center appear at I1 = 0, its stochastic layer centered at 284

|I1| = 2
√

ε = 1, all the primary resonances given in (20) of 285

half-width 2
√

εμ = 0.1 as well as many other high-order 286

resonances of the form (21). 287

In all the numerical experiments presented in this work the 288

integrations were carried out with a Runge-Kutta 7/8th-order 289

integrator, the so-called DOPRI8 routine [28,29], where the 290

local tolerance was set to 10−13. 291

IV. ILLUSTRATIVE EXAMPLE 292

This section includes numerical experiments concerning 293

the entropy approach in order to show the temporal evolution 294

of both S(t ) and DS (t ) as well as other relevant parameters 295

for a given orbit in the Arnold model. To this end we con- 296

sider ε = 0.25, μ = 0.010, the same values of the parameters 297

adopted to produce Fig. 1, and take an ensemble of np random 298

initial values of the actions of size 10−7 centered at the chaotic 299

layer of the guiding resonance, I1(0) = 2
√

ε = 1, I2(0) = ω2, 300

while the angles are all fixed to ϑ1(0) = π, ϑ2(0) = 0. 301

Figure 2 shows the diffusion along the chaotic layer of the 302

guiding resonance in the Arnold model for a small ensemble 303

of np = 400 centered at I1(0) = 1, ω2 = 0.01
√

3 represented 304

as a green point, on the section (or slice) |ϑ1 − π | + |ϑ2| � 305

0.02 after a motion time 4 × 106. Since only the intersec- 306

tions with this section are considered, an ensemble of initial 307

conditions is required in order to get large enough values of 308

intersecting points Ns. 309

The figure reveals that for |I1| < 1 the density distribution 310

is nearly continuous, while for |I1| > 1, i.e., at large times, 311

the distribution reveals its discrete character. For the adopted 312

values of the parameter model and motion time, the diffusion 313

spreads along the homoclinic tangle of the guiding resonance 314

up to |I2| ≈ 1.5, and just a few intersecting points appear 315

on the chaotic layers of the resonances ω1 = ±ω2 and some 316

other high-order resonances. If instead a larger value of μ is 317

considered, the diffusion is not confined to the layer of the 318

resonance ω1 = 0 but spreads over the nearby ones. 319
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•

FIG. 2. An initial ensemble indicated as a green point is followed
onto the MEGNO contour plot for ε = 0.25, μ = 0.010; white and
light gray denote stable motion, and black indicates strong chaotic
dynamics. The concomitant trajectories for the initial ensemble that
intersect the section |ϑ1 − π | + |ϑ2| � 0.02 are depicted in red.

We set as G the region where the diffusion takes place,320

(I1, I2) ∈ (−1.5, 1.5) × (−2.4, 2.4), which defines �, the321

measure (area) of G. If the diffusion spreads beyond this322

domain, the orbital points are discarded.323

In G a partition of q = 500 × 500 elements is introduced,324

and then the time evolution of the entropy is computed as325

well as DS (γ , t ) given in (12). For the determination of the326

entropy variation, the interval 
t = 4 × 104 is adopted, so327

L = [T/
t] = 100. In this numerical experiment two differ-328

ent values of np are taken, np = 400, 800 in order to see any329

dependence of this approach on Ns.330

Figure 3 (left) displays the time evolution of the mean331

value, λ(t ) = Ns(t )/q0(t ), for both values of np. After a tran-332

sient time of about 5 × 105, λ(t ) increases almost linearly333

with time rather slowly. The changes in λ(t ) are small, about334


λ ≈ 5, 10 for np = 400, 800 respectively over a time span335

larger than 3 × 106. Notice that λ(t ) does not attain quite336

large values, 2 < λ(t ) < 8 for np = 400, while in the case of337

np = 800, 4 < λ(t ) < 15. This result suggests that in (13) the338

average should be computed over 1 < k0 < k � L.339

The initial bump in λ is due to a change in the diffusion340

rate. At early times the speed of the diffusion is higher than341

in the rest of the time span as Fig. 3 (middle) reveals, where342

the evolution of I2, starting at I2(0) = 0.01
√

3 is drawn. At343

t ≈ 5 × 105, |I2| increases to 1 while it takes values below 1.8 344

for 5 × 105 < t < 4 × 106. The distribution of the I2 variables 345

is presented in the right panel where we observe a nearly 346

normal distribution, and some departures are observed at both 347

tails revealing a stickiness effect. 348

This is an expected behavior since, as discussed in [14,17], 349

the diffusion along the layer could be described by a time- 350

dependent whisker-like map whenever the parameters are 351

small. Recall that the whisker map models the motion across 352

the stochastic layer of a nonlinear resonance (in the direction 353

of I1) of width ws ∼ μ and where its central region of size 354

∼ws/4 around the unperturbed separatrix looks ergodic, while 355

the external one exhibits stability domains due to resonances 356

of the map as Fig. 3 (middle) shows for the larger values of 357

|I2|. These stability islands are responsible of the stickiness 358

observed in Fig. 3 (right). 359

In this numerical example the initial ensemble is taken 360

around the unperturbed separatrix and I2(0) ≈ 0, so the diffu- 361

sion at small times is fast, close to free, but at larger times the 362

motion proceeds close to the borders of the layer where the 363

resonances lead to phase correlations that reduce or prevent 364

the free diffusion, and in this direction Chirikov introduced a 365

reduction factor, of the order of the relative size of the central 366

region of the chaotic layer (R ≈ 1/4), in order to take into 367

account somehow this fact (see [14,17]). 368

Figure 4 (left) shows the results of Ŝ(t ), Ŝ0(t ) = 369

ln q0(t )/ ln q corresponding to the given initial ensemble and 370

both values of np. Notice that in any case the entropy shows 371

a logarithmic trend and |Ŝ(t ) − Ŝ0(t )| ≈ 0.035 for t > tc ≈ 372

5 × 105, consistent with the estimate (7). 373

For instance, in the case of np = 400, the final value of the 374

entropy is Ŝ0 ≈ 0.75 and Ns(T ) ≈ 6.5 × 104, so from (15) we 375

observe that this choice of q satisfies such a condition. 376

On the other hand, Fig. 4 (right) displays the evolution of 377

Ds(t ) also for np = 400 800 revealing a weak dependence of 378

the entropy diffusion coefficient with Ns(t ), and both approach 379

an asymptotic value close to 1 × 10−7, and for t � 106 the 380

change in Ds(t ) is, at most, about a factor 4 over a time span 381

3 × 106. At short times DS takes larger values in the region 382

where the diffusion is fast, as expected. The irregularities in 383

DS are due to the computation of 
S/
t sampled at 
t = 4 × 384

104 whose amplitude decreases with time. In this particular 385

example, since the diffusion is almost 1D, the value of Ds(t ) 386

displayed in the figure is taken as half of the one given in (12). 387

In order to get an independent rough estimate of the diffu- 388

sion rate, the ensemble variance over the np = 400 values of 389

FIG. 3. Left: Evolution of the mean value λ(t ) = Ns(t )/q0(t ) for both values of np. Middle: Evolution of I2 for np = 800. Right: Distribution
of the I2 values binned in 150 intervals.
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FIG. 4. Evolution of the normalized entropies Ŝ(t ), Ŝ0(t ) and DS (t ), for ε = 0.25, μ = 0.010 and two different values of np.

I2 is computed at every t as390

vare(t ) = 1

np

np∑
k=1

[I2(t ) − I2(0)]2. (22)

Also the variance over the section |ϑ1 − π | + |ϑ2| � 0.02 is391

calculated, defined as392

vars(tl ) = 1

nl

nl∑
k=1

[
I (k)
2 (τl ) − I (k)

2 (0)
]2

, (23)

where tl = l
t and nl denotes the number of intersecting393

points at times τl ∈ (tl−1, tl ].394

Figure 5 (left) shows the time evolution of the two vari-395

ances revealing a similar trend; however, it is not linear along396

the whole time span. A least-square fit in the range [0, 4 ×397

106] of a power law vare(t ) = Dtb leads to b ≈ 0.68, D ≈ 2 ×398

10−5 showing an anomalous diffusion process with a large399

value of D, at least for the motion time considered. Certainly400

correlations due to the presence of stability domains in the401

external region of the stochastic layer lead to a subnormal402

diffusion. In contrast, at short motion times both vare, vars 403

expose the nearly free diffusion already discussed, while at 404

t ≈ 106 the change in the diffusion regime is observed. An 405

effective diffusion coefficient, in the sense of (14), to estimate 406

an instability timescale over the full time span would lead to 407

D1/b ≈ 1.2 × 10−7. 408

Therefore we proceed in a different way to estimate D. In 409

Fig. 5 (right) four linear fits to vare of the form vare(t ) = 410

2Dt + a are performed leading to D ≈ 1.4 × 10−7 in the 411

range [0, 8 × 105], D ≈ 8 × 10−8 in (8 × 105, 2 × 106], D ≈ 412

5.4 × 10−8 in (2 × 106, 3 × 106], while in the interval (3 × 413

106, 4 × 104], D ≈ 4.5 × 10−8. These values of D agree, in 414

order of magnitude, with those of DS shown in Fig. 4 for 415

np = 400. 416

Thus the anomalous diffusion observed in the whole time 417

span could be well approximated by a nearly normal diffusion 418

process at different time intervals. In terms of the dynamics of 419

the systems this is clear; as has been already discussed, during 420

some time interval (δt1) the motion takes place in a region of 421

the phase space where correlations are negligible, and then it 422

proceeds almost freely. But in a subsequent time interval (δt2) 423

0
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FIG. 5. Evolution of vars and vare for ε = 0.25, μ = 0.010, np = 400. Left: Fit of the form vare(t ) = Dtb is included in blue with b ≈ 0.68
and D ≈ 10−5. Right: Four different linear fits to vare are performed in the ranges [0, 8 × 105] in black, (8 × 105, 2 × 106] in sky blue,
(2 × 106, 3 × 106] in magenta, and [3 × 106, 4 × 106] in green.
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FIG. 6. Left: Diffusion and instability time in blue and red, respectively, in logarithmic scale for ε = 0.25, 0.0005 � μ � 0.08. Right:
Zoom for 0.0005 � μ � 0.02.

the diffusion rate would be governed by the dynamical objects424

present in this new domain that could, for instance, diminish425

the diffusion rate.426

Therefore, if we are interested in the mean diffusion rate427

over the whole time interval, the average of DS (t ) as given in428

(13) should be considered, while if the long-range diffusion is429

the relevant feature, its final value (or its average over the last430

time intervals) should be adopted in the computation of Tinst .431

V. COMPUTATION OF THE DIFFUSION TIMESCALE432

To determine the instability time we perform similar433

numerical experiments as before with np = 400, I1(0) ≈434

2
√

ε, I2(0) = ω2 = 0.01
√

3, G defined by (I1, I2) ∈ (−1.5,435

1.5) × (−2.4, 2.4), q = 500 × 500, T = 4 × 106, and 
t =436

4 × 104. Finally, Tinst given by (14) is taken as the average437

over the L values but discarding the first five ones in order to438

reduce any noise in the computation of DS introduced by the439

relatively small value of λ as Fig. 4 (right) shows.440

In [14] a diffusion time along the stochastic layer of441

the guiding resonance is defined as the required motion442

time for a small ensemble around I1(0), I2(0) on the sec-443

tion ϑ1 = π, ϑ2 = 0 to reach I2(TD) = I2(0) ± δ, where δ ∼444

O(1). Therefore in (14) the mean-square displacement should445

be taken as 
 ≈ δ.446

We adopt δ = 0.5 following [14], where the motivation447

of setting this particular value is discussed in detail. Briefly448

we are interested in the diffusion along the chaotic layer of449

the guiding resonance, and, such as Fig. 1 illustrates, for450

|I2| > 0.5 a resonance crossing occurs (between the guiding451

and ω2 = ±ω1 resonances). Thus the diffusion could proceed452

over a different resonance set, and then the computed value of453

the instability time would be largely affected by the dynamics454

in the resonance junction.455

In the above mentioned work it was shown that the relevant456

parameter in the Arnold model is μ, so we take only one457

value of ε, ε = 0.25, and μ will be taken in such a way458

that the resonance overlap is almost negligible, in the range459

0.0005 � μ � 0.080 with step 0.0015, below the theoretical460

expected one for a first-order resonance overlap at this value461

of ε. Indeed, in [14] it was shown that the theoretical critical 462

value of μc(ε = 0.25) for an overlap of the guiding resonance 463

with the resonance ω1 = ±1 is about 0.1, but numerically it 464

turns out to be smaller. 465

Regarding the parameter K , as mentioned, it is introduced 466

in order to take into account the diffusion spread in the ac- 467

tion space. Accordingly to the above discussion it would be 468

expected that for small μ the motion takes place essentially 469

in I2, so we set K = 2 for μ � 0.010 while K = 1 for μ > 470

0.010 since the diffusion proceed in both directions; see, for 471

instance, Fig. 4 (right) in [14] for ε = 0.25 and μ = 0.025. 472

Figure 6 shows the results of Tinst for the given values of ε 473

and μ, and, for comparison, the results given in [14] for the 474

diffusion time, TD, obtained by direct numerical integration of 475

the equations of motion are included. For the smaller values 476

of μ, TD ≈ 4 × 106, similar to the total motion time, and thus 477

the diffusion is slow enough such that the motion along the 478

layer does not reach the prescribed bound (|I2| ≈ 0.5). For 479

0.0007 � μ � 0.010 the computed diffusion time (defined 480

as the average over the ensemble) could be overestimated 481

because some of the np trajectories could not exceed |I2| ≈ 0.5 482

leading then to an increase of the ensemble average. 483

On the other hand, for μ < 0.0035, Tinst reaches much 484

larger values than the considered motion time revealing that, 485

for this range of μ values, the speed of the diffusion is quite 486

slow as expected, while for 0.0035 < μ < 0.010Tinst takes 487

values larger than 106, close to those of TD. 488

Meanwhile for μ � 0.01, TD decreases up to μ ≈ 0.06, 489

and for the largest values of this parameter it reaches a nearly 490

constant value about TD ≈ 4.5 × 104. Notice that several fluc- 491

tuations appear, for instance, around μ = 0.05, 
TD ≈ 2 × 492

104 while Tinst presents a rather smooth behavior over the 493

full range of μ, but in any case for μ � 0.005, the agree- 494

ment between both estimations of the diffusion time is quite 495

remarkable. 496

VI. DISCUSSION 497

The Shannon entropy approach has been shown to be 498

an efficient technique to display the local dynamics of a 499

multidimensional system as well as to provide an accurate 500
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estimate of the diffusion speed. Both its theoretical formu-501

lation and its computation are quite simple. Numerically, it502

requires a counting box scheme while integrating the equa-503

tions of motion of the system for a given ensemble of initial504

conditions. In fact, the computational effort is similar to the505

one to estimate the diffusion coefficient through the evolution506

of the action’s variances. Nevertheless, the entropy approach507

provides much better results, since as Fig. 5 (left) reveals, the508

diffusion is not normal, at least for moderate motion times,509

so the estimation of the instability time through the variance510

evolution leads to poor results.511

The entropy-like diffusion coefficient is almost indepen-512

dent of the transport process, since the assumption behind its513

definition is a normal diffusion behavior in short time inter-514

vals with different values of the local diffusion coefficient, as515

is illustrated in Fig. 5 (right). Finally DS could be taken as its516

corresponding value in the last interval or that obtained as the517

average over the full range.518

The numerical results here presented reveal a good agree-519

ment between the diffusion or instability time obtained in the520

Arnold model in comparison with the one computed by direct521

integration of the equations of motion. Moreover, for small522

values of μ the straight simulations reveal that TD saturates523

to the total motion time while Tinst takes much larger values524

providing the expected diffusion time.525

This report introduces insights concerning the use of the526

entropy-like approach to determine the speed of the diffusion527

along the chaotic layer of a single resonance, an instability 528

process close to Arnold diffusion for small enough μ. 529

In previous successful applications of this tool such as 530

in 4D symplectic maps or Hamiltonian systems that model 531

multiplanetary dynamics, the involved parameters were kept 532

fixed, only the location of the initial ensemble was changed 533

so the dynamical model remains unchanged. Here instead the 534

instability time is estimated for a wide range of values of μ for 535

the same location of the initial ensemble. Then the dynamical 536

model drastically changes from the smaller to the larger values 537

of the perturbation parameter. 538

Summing up, the results here presented together with those 539

already mentioned allow us to conclude that this approach 540

would be very useful to derive the timescale of instabilities 541

in very different dynamical systems. 542
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