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Abstract: In recent years, methodologies based on spectral analysis, using ultraviolet–visible (UV-Vis)
radiation, have experienced an amazing development and have been widely applied in various
fields such as agricultural, food, pharmaceutical, and environmental sciences. This straightforward
technique has re-emerged with novel and challenging proposals to solve, in a direct and fast way, a
wide variety of problems. These reaches would not have been possible without the essential support of
chemometrics. In this sense, under the general background of the development in data and computer
science, and other technologies, the emergence of innovative ideas, approaches, and strategies endows
UV-Vis spectroscopy with a new vitality as an analytical sensor with the capability of significantly
improving both the robustness and accuracy of results. This review presents modern UV-Vis spectral
analysis, which is on the rise, associated with comprehensive chemometric methods that have become
known in the last six years, especially from the perspective of practicability, including spectral
preprocessing, wavelength (variable) selection, data dimension reduction, quantitative calibration,
pattern recognition, and multispectral data fusion. Most importantly, it will foresee future trends of
UV-Vis spectroscopy as an analytical sensor for a spectralprint (nontargeted) analysis.

Keywords: UV-Vis; chemometrics; spectralprint; quantification; pattern recognition

1. Introduction

Ultraviolet–visible (UV-Vis) spectroscopy is one of the most straightforward spectro-
scopic techniques that has undergone an amazing increase over the years from a plethora
of methodologies’ developments and applications to an endless number of samples in
various fields such as agricultural, food, pharmaceutical, and environmental sciences,
among others.

This technique is based on the absorption measurement of the electromagnetic ra-
diation from the ultraviolet and visible regions, which can provide valuable chemical
information from the band positions, intensities, and shapes, indicating the presence or
absence of specific structural properties or functional groups [1]. Nevertheless, UV-Vis
spectra usually contain only a few broad absorbance bands and are often quite broad and
difficult to associate with individual chromophores. For this reason, its first approaches
have been focused on identification and quantification analysis of monocomponent systems,
generally by implementation of colorimetric methodologies that are still currently applied.

However, with the fast technological progress of analytical instrumentation techniques,
the advent of sensitive and affordable array detectors in the 1980s and 1990s has enhanced
the measurement capacities in the UV-Vis band, making it possible to produce, almost
instantly, an entire UV-Vis spectra of a sample [2]. Thus, this technique has re-emerged
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with novel and challenging proposals to solve, in a direct and fast way, a wide variety
of problems changing the paradigm to multicomponent systems analysis. Recently, the
nontargeted spectroscopic or fingerprinting approach has also been called spectralprint
analysis [3]. It aims to collect as many compounds or features as technically possible from
the whole spectra to obtain an overview of the sample composition for qualitative and
quantitative analyses, that is, multivariate techniques are applied in the UV-Vis spectra [3].
Notwithstanding, these reaches would not have been possible without the essential support
of chemometrics. In the last 20 years, the advance of chemometrics has also contributed to
the use of UV-Vis technology for more complicated chemical matrices than was possible in
earlier times, enabling large amounts of spectral data to be analyzed and reducing them to
useful information, such as the concentration of one or more chemical species [3].

In light of these considerations, with the essential aid of chemometrics, this spec-
troscopic technique is no longer a simple data provider, but it has become a provider of
chemical information for a complex system and even a direct participant and solver of
chemical problems. Moreover, the use of multivariate calibration techniques allows the
spectral information of the component of interest to be extracted, enabling the determi-
nation of multicomponent content without chemical separation, and thus significantly
avoiding interference from coexisting components and complex backgrounds [4]. In this
sense, under the general background of the development in technology, computing, data
handling, and data analysis, the emergence of innovative ideas, approaches, and strategies
endows UV-Vis spectroscopy with a new vitality as an analytical sensor with the capability
of significantly improving both the robustness and accuracy of results. Thus, Figure 1 shows
the significant progression in the use and application of this technique in combination with
chemometric methods in the last twenty years, showing a significant increase mainly from
2010 up to now.
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spectroscopy” and “chemometrics”.

This review presents the booming evolution of modern UV-Vis spectral analysis asso-
ciated with thorough chemometric methods that have been reported since 2017, especially
from the perspective of practicability, including spectral preprocessing, wavelength selec-
tion, data reduction, quantitative and pattern recognition approaches, and multispectral
data fusion. Owing to the extensive number of recently published works on these topics,
this review only focuses on those spectralprint approaches that can be considered most
representative or relevant regarding the results found and the feasibility of their application.
Finally, it will provide for future trends of UV-Vis spectroscopy as an analytical sensor for a
spectralprint (nontargeted) analysis.
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2. Advances of UV-Vis Spectrometric Systems and Analysis

UV-Vis spectroscopy is an analytical technique able to monitor and measure the UV
and visible light interactions with a plethora of molecules in the specific ranges of 200–350
and 350–700 nm, respectively [5]. This technique exploits some physical phenomena such
as absorption, scattering, diffraction, refraction, and reflection occurring between the light
and compound/s within the sample (Figure 2). Particularly, UV-Vis light absorption is
limited to specific chromophores with defined molecular functional groups, being mainly
affected by their composition and concentration. From this phenomenon, the Beer–Lambert
law has been described to correlate the quantity of the incident light absorbed by the
absorbing compound or molecule present in a matrix, its concentration, and the light
path length [6,7]. Thus, an endless number of quantitative analytical methods have been
developed to determine and quantify the concentration of the target molecule in a wide
variety of matrices [8].
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Figure 2. Energy of incident light and phenomena occurrence when interacting with a sample.

The basic principles of UV-Vis spectroscopy and related instrumentation have been
fully described in the literature [5–7]. However, continuous advances in the development
and improvement of instrumentation have enhanced its analytical capabilities. For instance,
photodiode arrays and charge-coupled devices are the most commonly used detectors in
spectrophotometers nowadays since they are capable of producing a complete UV-Vis spec-
trum of a sample almost instantaneously. Additionally, owing to their compact geometry,
these detectors have also offered the possibility to build portable devices [9]. These modern
UV-Vis spectrophotometers allow the acquisition of inexpensive and compact equipments
with a high scanning speed that can reach outstanding sensitivity and robustness, becoming
an analytical tool of choice for a wide range of applications.

The UV-Vis spectrum of a sample is characterized by two major parameters, namely,
the position of the maximum of the absorption bands and the intensity of the bands. Thus,
the maxima and intensities of absorption bands differ relative to the molecular structure
of the compounds, that is, depending on the sample or substance. Moreover, the amount
of light absorbed by the interacting molecules also depends on their concentration in
the sample. As a result of all this, a unique and specific relationship exists between the
substance and its UV-Vis spectrum. Therefore, the full spectrum can then be used for
quantitative (i.e., to determine the amounts of certain substances) or qualitative (i.e., to
determine the presence of certain substances) analyses or to determine the physical and
chemical properties of a sample because this information is contained in the bands’ po-
sitions, intensities and shapes [5,10,11]. Thus, the identification and/or quantification of
a compound is easy in a pure component; however, in complex matrices, which contain
mixtures of many compounds that can absorb in the UV-Vis range, e.g., food, the acquired
spectra generally present a few broad absorbance bands that are often hard to associate
to single chromophores [8,12]. However, at the same time, it generates a unique UV-Vis
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spectrum, the spectralprint, that is mainly useful for nontargeting or untargeted analysis, as
will be discussed in this review.

Regarding the kind of sample, its nature can present challenging aspects since the
sample can be inappropriate for spectroscopic analysis. Most commercially available UV-
Vis spectrometers are designed for liquid samples analysis. However, spectrophotometers
are presented in different configurations since a wide variety of accessories and sample
holders are available for UV-Vis measurements. Thus, their combinations offer different
measurement capabilities and sample types and/or different measurement conditions,
allowing solids, liquids, and gases to be analyzed by UV-Vis spectroscopy. Various sampling
modes and cell holders have been designed to adapt different path-length configurations
based on conventional rectangular cells, including fiberoptic-based immersion probes,
flow cells, microwell plate configurations, and automated sample changers, among others.
Therefore, the sampling device must be optimized for specific applications evaluating
sample volume, measurement speed, and reproducibility of sample presentation.

Absorbance is the measurement usually implemented on solutions of the substance in
liquid-holding cells. On the one hand, the most common cell path length used for liquid
samples is 10 mm. However, other path lengths from 0.01 to 100 mm were employed. For
instance, in order to acquire an improved sensitivity for samples with low absorbance, the
cell path length was increased, e.g., the theoretical absorbance of a solution in a 100 mm
cell is greater by a factor of ten compared to the same solution in a 10 mm cell. Conversely,
samples that produce a signal saturation were measured by decreasing the cell path length,
avoiding sample dilution.

On the other hand, flow cells are often used in fiberoptic applications. They can be
connected directly to a side sampling loop or even into a process of the flow path, usually
in the ‘Z’ configuration. In the cases in which it is not possible to connect a cell, an insertion
probe is an option of accessing the sample. Moreover, several diffuse reflection cells are
used to measure the light reflected from a solid surface or powder. Some probes are also
utilized, and they are immune to specular reflections from the sample and detect only
diffusely reflected light [2]. These configurations have become increasingly important since
they have allowed for the extension of the use of UV-Vis spectroscopy in quality monitoring
and process control as a real-time analytical sensor in biological, pharmaceutical, and food
applications [1,2,13–15].

Furthermore, to decrease the consumption of valuable and scarce samples, miniatur-
ized UV-Vis spectrometric systems have been developed, enabling the development of a
new generation of UV-Vis spectrometric systems for novel technologies applications [13,16].

3. Strengths and Weaknesses of UV-Vis Spectroscopy

UV-Vis spectroscopy is a basic and widely used technique that has many advantages
and a few main strengths that makes it popular, but it also has some disadvantages, as do
many other analytical techniques.

Regarding its potential strengths, the ones related to the instrumentation are its quick
analysis ability and ease of handling and use, allowing easy integration into experimental
protocols and requiring little user training. In addition, it is a nondestructive technique,
being considered a green technique, which allows the sample to be reused or further
processed or analyzed, thus saving samples and protecting the environment, and it is
generally an inexpensive or cost-effective instrument to acquire and operate, making it
accessible for many laboratories. Moreover, a small amount of sample is needed, it does
not contaminate, and there is the availability of portable equipment.

This technique, concerning the data provided, also presents the advantage of requiring
an easy data analysis, with minimal processing, compared to other spectroscopic techniques.

Finally, in terms of its usefulness, this technique makes it possible to characterize the
absorbance or transmittance through a liquid or the reflectance of a surface over a range of
wavelengths, as well as to identify and determine the concentration of a particular molecule
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in a solid or liquid sample, to measure the color of a material, and to study chemical
reactions or biological processes [1,17].

Despite the several strengths of this technique, there are also certain weaknesses. How-
ever, good accuracy and precision in UV-Vis measurements can be achieved if precautions
are taken to avoid errors.

Regarding the sample, UV-Vis spectroscopy works well on liquids and solutions, but
if the sample has a suspension of solid particles in liquid, there will be light scattering, and
therefore data will be skewed. However, this limitation is solved with a previous filtration
of the sample. This scattering also occurs with the presence of bubbles in the cuvette or
sample, resulting in irreproducible results. Another problem related to the sample is the
interference from multiple absorbing species that will have overlapping spectra and make
the identification and quantification of specific compounds difficult. The color of the sample
will also affect the measurement; thus, very dark samples may lead to saturation of the
spectrum. In addition, it should be considered that only the molecules with chromophores
are the ones analyzed in the sample, that is, UV-Vis is unable to analyze compounds that do
not interact with light in the UV and visible areas of the spectrum; hence, samples without
those molecules do not provide any UV-Vis signal. In addition, the results of the absorption
can be also affected by pH and temperature.

Concerning the instrument, selecting the most suitable sample holder, solvent, and
instrument parameters is critical for the measurement. The appropriate cuvette material
needs to be selected to avoid the optical interaction from the light source with it, which alters
the absorbance intensity of the sample. Moreover, another problem related to the instrument
is stray light, that is, the small amount of light from a wide wavelength range that can
be transmitted from the light source to the environment or loosely fitted compartment,
possibly causing serious measurement errors.

Finally, the geometrical parameters, that is, the alignment to the same orientation
and placement in the same position for every component in the instrument, should be
considered for each measurement [1,7,17].

4. UV-Vis Spectral-Chemometric Platforms
4.1. UV-Vis Spectral Data Processing

Regarding the data obtained by UV-Vis, they are a vector of numerical values of
absorbance units. Thus, UV-Vis spectroscopy normally provides first-order data [3]. As
with many other spectroscopies, there is not a specific rule for preprocessing data of this
kind. It will depend on the problems that data present, which will come from the sample,
instrument, etc. The same occurs with the selection of the best algorithm for data regression
or classification. It will depend on the samples and the aim. In this section, several
preprocessing methods as well as quantitative and qualitative approaches most used in the
literature of the last 6 years will be discussed. For that, in this study, 58 publications on the
subject were chosen, analyzed, and summarized in Table 1.
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Table 1. Summary of the areas and aims of application and the analytical and chemometric methods used for UV-Vis fingerprinting in the studies published in the
last six years (2017–2022).

Year Ref. Area Aim Sample Sampling
UV-Vis Analysis

(Range/Resolution/
Cuvette Path Length)

Preprocessing
Method Multivariate Method

2017

[18]

A, F,
and B

PR Saffron Extract solutions 200–700 nm/1 nm/10 mm AS PCA, LDA
[19] PR Plant food supplements Dilution 1:10 (v:v) 190–1100 nm/1 nm/1 mm 1D + AS PCA, SIMCA
[20] PR Coffe Extract solutions 190–700 nm/1 nm/10 mm - PCA, PLS-DA, SIMCA
[21] PR and Q Coffe Dilution 1:120 (v:v) 190–700 nm/n.d./10 mm - PCA-LDA, PCR

[22] Q Extra virgin olive oil Direct analysis 190–1100 nm/1 nm/10 mm
(transmitance mode) - PLS, PLS-JK, SPA-MLR,

SW-MLR, GA-MLR

[23] Q Palm Civet Coffee Extraction and dilution 1:20
(v:v) 190–700 nm/1 nm/10 mm MSC + SNV PCA, PLS

[24]

C
and P

Q Propanil and bromoxynil
herbicide Direct analysis of solutions 240–350 nm/n.d./10 mm - PLS

[25] Q 5-Hydroxymethylfurfural Direct analysis of solutions 200–300 nm/n.d./10 mm MC MCR-ALS, PLS

[26] Q 8-methoxypsoralen and
trypsin Direct analysis of solutions 230–350 nm/1 nm/n.d. - MCR-ALS

[27] Q Sewage Direct analysis 230–800 nm/n.d./10 mm - MCR-ALS

2018

[28]
A, F,

and B

PR Sparkling Wines Dilution 1:5 (v:v) 200–600 nm/2 nm/10 mm - PCA
[29] PR Mushrooms Extracted solutions 200–600 nm/1 nm/n.d. - PCA, DF, PLS-DA, GS-SVM
[30] PR Olive oil Direct analysis 200–800 nm/1 nm/1 mm SG-S, BL MCR-ALS

[31]

C, P,
and E

Q Water Extracted solutions 200–600 nm/n.d./n.d. MSC, SNV, SG-S,
CWT, 1D, 2D PLS

[32] Q Wheat straw extracts Extraction and dilution 6:10
(v:v) 190–450 nm/1 nm/10 mm 1D, 2D PLS

[33] Q Cough syrup Direct analysis of solutions 220–300 nm/2 nm/10 mm CWT, DWT PLS, PCR
[34] Q Rare earth elements Direct analysis of dilutions 200–800 nm/10 nm/n.d. - MCR-ALS

2019

[35]

A, F,
and B

PR Chili Powder Extract solutions 200–800 nm/0.5 nm/10 mm - PCA, DA
[36] PR Wine vinegars Diluted 1:10 (v:v) 180–890 nm/2 nm/10 mm SNV PCA, PLS-DA, SIMCA
[37] PR Red wine Direct analysis 190–800 nm/1 nm/1 mm - PCA, PLS-DA, LDA

[38] PR Green tea Dilution 1:25 (v:v) 200–800 nm/1 nm/10 mm MC + PS PCA, HCA, PLS-DA,
SIMCA

[39] PR Tea Dilution 1:10 (v:v) 190–800 nm/1 nm/n.d. - PCA, PCA-LDA, PCA-MLR

[40] PR Coffea arabica L. leaves Extraction and dilution 1:20
(v:v) 200–800 nm/1 nm/10 mm - PCA, OSC-PLS-DA
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Table 1. Cont.

Year Ref. Area Aim Sample Sampling
UV-Vis Analysis

(Range/Resolution/
Cuvette Path Length)

Preprocessing
Method Multivariate Method

[41] PR and Q Olive oils Direct analysis 200–800 nm/2–5 nm/10 mm
MC, UVS, 1D, 2D,
SG-S, WDTs, MSC,
OSC

OPLS-DA, PLS

[42] Q Food colorants Direct analysis of solutions 340–590 nm/n.d./n.d. - MCR-ALS

[43] C, P,
and E

PR Medicinal plants Extraction and dilution 60:40
(v:v) 200–430 nm/0.3 mm/10 mm SG-S, 1D-4D CA, PCA, PCA-LDA

[44] Q Bilayer Tablet Direct analysis of solutions 240–360 nm/n.d./n.d. BL PLS

2020

[45]
A, F,

and B

PR Herbs Direct analysis of powders 200–800 nm/1 nm/diffuse
reflectance mode AS, CWT, SG-S PCA, ELM

[46] Q Red wine Dilution 1:100 (v:v) 200–700 nm/1 mm/10 mm - PLS
[47] Q Vinegars Dilution 1:10/1:50 (v:v) 180–890 nm/2 nm/10 mm - PLS

[48]

C, P,
and E

PR Human urine Direct analysis of solutions 230–1000 nm/n.d./n.d. MSC PLS-DA
[49] Q Effluent sewage Direct analysis 190–1100 nm/1 nm/n.d. SG-S, MSC +SVN PLS, SVM, BP-NN

[50] Q Excipients Direct analysis of solutions 190–600 nm/0.5 nm/optical
fibre SNV, D1, D2 PCA, PLS

[51] Q Interaction of iron(III) and
tannic acid Direct analysis of solutions 350–600 nm/n.d./10 mm - MCR-ALS

2021

[52]

A, F,
and B

PR Beer Direct analysis 190–1100 nm/1 nm/10 mm - PCA,

[53] PR Honey Direct analysis of solutions 200–800 nm/1 nm/10 mm OFF, LBC, OFF +
LBC, 1D, SG-S PCA, OC-PLS, DD-SIMCA

[54] PR Mint species Extracted solutions 240–350 nm/1.5 nm/n.d. 1D + SG-S + PQN SIMCA, PLS-DA, SVM
[12] PR Wine vinegars Dilution 1:10 (v:v) 180–890 nm/2 nm/10 mm SNV HCA, SIMCA, PLS-DA

[55] PR Fruit Direct analysis of powders 200–700 nm/1 nm/n.d. SG-S + VSN + 1D PCA, SO-PLS, SO-COvSel,
PLS-DA, DF

[56] PR Honey Dilution 1:20 (v:v) 190–400 nm/1
nm/transmittance mode

SMTH + MC +
SG-1D PCA, SIMCA

[57] PR Fish species Extraction and dilution 1:80
(v:v) 190–400 nm/n.d./n.d. - PCA

[58] PR and Q Vinegar Direct analysis 200–700 nm/2 nm/2 mm SNV, MSC, 1D, 2D LDA, PLS

[59] Q Coffee Extracted solutions 250–400 nm/1 nm/n.d. SMTH + SNV +1
D PCA, PLS, MLR, PCR
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Table 1. Cont.

Year Ref. Area Aim Sample Sampling
UV-Vis Analysis

(Range/Resolution/
Cuvette Path Length)

Preprocessing
Method Multivariate Method

[60] Q Whole wheat Extraction and dilution 1:80
(v:v) 240–600 nm/5 nm/microplate - PCA, PCR, PLS

[61]

C, P,
and E

Q Engine and machine oils Dilution 420–920 nm/n.d./n.d. - PCA, PLS
[62] PR Drainage Direct analysis 220–680 nm/2.5 nm/5 mm - PCA, FNN, MD-CNN

[63] PR Plant leaves Extraction and dilution 2.5:10
(v:v) 200–800 nm/0.5 nm/10 mm SMTH + SNV PCA, DA, SIMCA

[64] PR and Q Spices Direct analysis of solutions 200–800 nm/2 nm/10 mm Raw, 1D, 2D, SNV,
SG-S PCR, PLS, sPLS-DA

[65] Q Phenolics Direct analysis of solutions 200–420 nm/0.1 nm/n.d. - MCR-ALS, PARAFAC

[66] Q Benzoic acid and its
derivates Direct analysis of solutions 200–350 nm/0.1 nm/n.d. - MCR-ALS, PARAFAC

2022

[67]

A, F,
and B

PR Sappanwood Extraction and dilution 0.25:5
(v:v) 200–800 nm/n.d./10 mm SG-S PCA, DA

[68] PR Vinegar Dilution 5 times 200–550 nm/n.d./96-well plate
1D, 2D, 3D, SNV,
MSC, OSC, WCTS,
WDTS

PLS-DA, OPLS-DA, ANN

[69] PR Vegetable oils Dilution 1:200 (v:v) 200–600 nm/n.d./n.d.
(reflectance mode) - PCA, PLS-DA

[70] PR Pummelo extracts Extracted solutions 200–600 nm/n.n./10 mm - PCA, PLS-DA, sPLS-DA

[71] PR Saffron Dilution 100-fold 200–700 nm/5 nm/96-well
plate MC + PS PCA, HCA, OPLS-DA

[72] Q Carotenoids from fruit
extracts

Extraction and dilution 1:10
(v:v) 250–600 nm/0.5 nm/n.d. - MCR-ALS

[73] C, P,
and E

Q Heterogeneous
supernatants Direct analysis of solutions 240–450 nm/1 nm/n.d. SG-S PLS

[74] Q Lipid phase Direct analysis of solutions 250–500 nm/n.d./n.d. SG-S MCR-ALS

Notes: A, F and B: agriculture, food, and beverages; C, P, and E: chemical, pharmaceutical, and environmental sciences; PR: pattern recognition; Q: quantification. ABBREVIATURES: AS:
autoscaling; MC: mean centering; PS: Pareto scaling; 1D: first derivate, 2D: second derivate; SNV: standard normal variation; MSC: multiplicative scatter correction; SG-S: Savitzky–Golay
smoothing; CWT: continuous wavelet transform; OSC: orthogonal signal correction; BL: baseline correction; OFF: offset correction; LBC: linear baseline correction; VSN: variables sorting
for normalization; SMTH: smoothing; UVS: unit variance scaling; PQN: probabilistic quotient normalization; WCTS: wavelet condensed time series; WDTS: wavelet denoising time
series; ELM: extreme learning machine; FNN: fully connected neural network; DF: data fusion; PCA: principal component analysis; LDA: linear discriminant analysis; SIMCA: soft
independent modeling of class analogies; PLS-DA: partial least squares discriminant analysis; PCR: principal component regression; PLS: partial least squares; JK: Jackknife algorithm;
SPA: successive projections algorithm; MLR: multiple linear regression; GC: genetic algorithm, HCA: hierarchical cluster analysis; OPLS-DA: orthogonal PLS-DA; CA: cluster analysis;
SO-PLS: sequential and orthogonalized PLS; SO-COvSel sequential and orthogonalized covariance selection; MLR: multiple linear regression; ANN: artificial neural networks; CNN:
convolutional neural networks; sPLS-DA: sparse PLS-DA; DF: data fusion; MCR-ALS: multivariate curve resolution–alternating least squares; PARAFAC: parallel factor analysis.
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Moreover, as can be observed in Figure 3, among these papers, in general, a similar
proportion of them aim at the application of UV-Vis spectralprinting for pattern recognition
and quantification, with a slightly higher number of papers of pattern recognition. This
could be explained by the fact that there UV-Vis uniparametric analysis is still more
common or simpler, that is, the quantification of a compound by analyzing only at a
specific wavelength and not using the total spectra or, in other cases, the difficulty of use of
algorithms such as multiple curve resolution to solve multicomponent systems.
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4.1.1. Signal Preprocessing, Wavelength (Variable) Selection, and Data Dimension Reduction

The first and crucial chemometric step for a reliable spectroscopic data analysis is data
preprocessing. It helps to remove the non-useful information by correcting the deviations
caused by several different factors such as instrumental drift, light scattering, interferences,
etc., (which impact the spectral data quality), and in turn, highlighting the truly useful
information. This step will transform the spectrum to the best-fit conditions, ensuring the
optimum performance in the following steps of data analysis.

Although there are many different preprocessing methods, the selection of a specific
one depends on the nature and characteristics of the data. In particular, one of the advan-
tages of UV-Vis data is that it is a kind of spectroscopic data that often requires little or no
data preprocessing. By contrast, data obtained by other spectroscopic techniques, such as
the vibrational one, need to be preprocessed almost always, because they are affected by
numerous unwanted sources of variability [3].

In fact, it has been seen that UV-Vis has often been found to be very repetitive over time
and shows no spectral variation between analysis, which means that it does not need to be
preprocessed to correct this problem [37,75–77]. Thus, as can be observed in Figure 4, 52%
of the works summarized in Table 1 did not use any preprocessing of the UV-Vis data, and,
when comparing the results obtained from the original spectra and those obtained with the
preprocessed data, the use of the raw spectra gave better results in many cases [53,58,64].
Thus, the comparison among different preprocessing methods in the same study in order
to select the most appropriate one that minimizes the effect of baseline shifts and noise in
the spectra is a common practice in the works considered in Table 1.
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Following the use of the raw or original spectra, another preprocessing method
commonly applied to UV-Vis spectra, by itself or in combination with other preprocess-
ing methods such as the standard normal variate (SNV), is Savitzky–Golay smoothing
(Figure 4) [29,63,64,67]. It overcomes noise enhancement, and it has shown, in many cases,
an improvement in the quantification or classification results. The first and second deriva-
tives have also been used in mathematical preprocessing for the UV-Vis spectra in order to
enlarge the differences between samples [41,43,50,55,58,59,64,78,79]. Thus, the first deriva-
tive corrects for baseline shifts, while the second derivative corrects for both shifts and
drifts. In addition, when spectra are very similar and UV-Vis is used to confirm the identity
of a substance, derived spectra can be used where spectra are highly similar, because the
number of bands can increase with higher orders of derivatives. This increased complexity
of the derivative spectra can be useful in qualitative analysis, either for characterizing
materials or for identification purposes [80].

However, the transformation by derivatives not only modifies the visual shape of
the signal profiles, but it also modifies, often radically, the significance of variables in
the data matrix, which could have an important implication in the final quantification
or classification results. For this reason, another preprocessing method widely applied
in UV-Vis data that modifies the spectra but, in this case, to a lower degree, is SNV
(as is shown in Table 1 and Figure 4). The SNV algorithm was proposed by Barnes
and coworkers in 1989 to jointly fix the baseline vertical shifts’ correction and global
intensity effects [81]. It has been used to preprocess UV-Vis spectra prior to mean centering
in matrices such as vinegar [12,36,68], corn [59], pharmacological herbals [63], etc., for
both quantitative and pattern recognition purposes. Moreover, such a transform has
also been extensively used as a preference choice for other types of spectroscopic data,
such as vibrational spectroscopy [3]. However, it should be considered that despite SNV
normalization fulfilling the aim of removing unwanted variations from spectra, it has
been demonstrated that it also causes a loss of information related to original variables.
Thus, Oliveri et al. (2019) demonstrated how SNV-transformed UV-Vis spectra showed
misleading results by presenting irrelevant loading values in principal component analysis
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for bands that were really related to spectral regions’ characteristics for this problem,
and, conversely, bands that were not actually relevant in the samples were the ones that
made the difference after the transformation [77]. Moreover, it must be remarked that
most normalization strategies are affected by the same problems. Finally, there are other
relatively newer preprocessing methods such as multiplicative scatter correction (MSC),
probabilistic quotient normalization (PQN), continuous wavelet transforms (CWT), and
orthogonal signal correction (OSC) that are still less used (Figure 4), appearing only in a
few studies considered in this review (Table 1).

To summarize, the application of preprocessing can increase the model accuracy and
repeatability, although there is no guarantee that it will actually work. This means that
sometimes it will be necessary and sometimes it will not. In fact, how preprocessing affects
the UV-Vis data is highly dependent on the relative intensities and correlations between
spectral variables and is not always easy to detect, especially in spectralprinting signals. As
in other spectroscopies, the correct preprocessing method will be the one that enables the
best quantification or classification results according to the specific spectral problems of
the dataset.

4.1.2. Exploratory and Pattern Recognition Approaches

The relationship between samples and variables in a UV-Vis dataset is revealed by
using suitable tools of multivariate analysis or chemometrics. Because spectral data such
as UV-Vis are multivariate and high-dimensional, the following step before preprocessing
is usually to reduce the dimensionality of the data and, in turn, extract the important
characteristics included in it, and, then, data are fed to classification analyses (i.e., pattern
recognition analyses) [82].

One of the most widespread multivariate methods applied in spectralprint analysis
of any kind of spectroscopic data for this exploration and data reduction is principal
component analysis (PCA). PCA is commonly used as a first step in spectroscopic data
analysis in order to explore the data, finding possible similarities and differences among
samples and identifying clusters or patterns. In addition, it is also implemented to reduce
the dimensionality of the spectral data to a smaller number of components, determining
which variables are important to represent the system, facilitating the subsequent analysis,
and reducing the risk of incorrect interferences. It also helps to detect outliers [3]. PCA is a
multivariate method applied to convert the spectral measures (i.e., correlated data) into
linearly uncorrelated variables that describe or predict meaningful patterns from complex
spectral fingerprints. Since the UV-Vis spectrum is not often very informative by itself, i.e.,
by its direct visualization, PCA is a very useful method due to the fact that it also helps
to determine important wavelengths that have contributed to a further discrimination
of samples.

In pattern recognition, exploratory data analysis is usually performed first, followed
by the classification process. This can also be seen in Table 1 and Figure 5a, showing that
PCA was applied in almost all the UV-Vis studies considered in this review, many times
as a first step prior to a classification approach and, in other many cases, as the unique
chemometric method applied in the study. This is explained by the fact that although
most classification algorithms can handle an enormous quantity of data, their efficiency
decreases as dimensionality grows, so exploratory analysis such as PCA can sometimes
increase it [82]. Moreover, based on the trend over the last 6 years, Figure 5a showed that
its use has increased year over year, especially in the last two years.
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Thus, once the spectral data have been cleaned up by preprocessing or the key char-
acteristics have been retrieved, they are ready to be modeled by an appropriate pattern
recognition technique. Pattern recognition develops classification models in which a sample
with an unspecified class is assigned a predefined class based on its measured character-
istics, or samples are grouped into clusters based on their similarities, even without any
previously defined class [82]. In the specific case of spectralprint techniques such as UV-Vis,
each category or class is assigned using the collective information from a group of sam-
ples with common spectral characteristics, which distinguishes them from any other set
of samples.

In this context, several papers on pattern recognition in spectral data have been
published in the last decade. However, many of them were concentrated on infrared (IR)
spectroscopies [83–86], while UV-Vis spectroscopy has received less attention until the last
six years, when it has seemed to increase [82]. Thus, Figure 5a shows the trend of use of
the different pattern recognition algorithms in the last 6 years in UV-Vis spectralprinting.
Several classification algorithms have been applied, with the most commonly used being
the partial least squares–discriminant analysis (PLS-DA) and linear discriminant analysis
(LDA), followed by soft independent modeling by class analogy (SIMCA) (Table 1 and
Figure 5a).

On the one hand, PLS-DA was the one that showed an upward growth up to now, with
a slight decline in 2020 that also occurred with the other ones. It was originally proposed for
multivariate calibration, and then it was used to solve classification problems by combining
the features of PLS regression with the power of a discrimination technique. PLS-DA
mathematical bases have been widely reported in the literature [87,88]. To sum up, the
data matrix contains the independent variables, while the categories form the dependent
variable, with each class of samples coded numerically as integers (usually zeros and ones).
PLS-DA provides scores that explain sample location in each known latent variable. The
predicted values for the unknown samples are then also numerical values between zero
and one, which will be assigned to a specific class according to a defined and optimized
threshold. Moreover, in order to improve the model performance, their orthogonal and
sparse variants, OPLS-DA and sPLS-DA, respectively, were recently reported [64,68,70].

The advantage of this technique over conventional DA or LDA is that it can be used
whether the number of samples is small, or the number of variables is large. In fact,
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it should be noticed that all the papers in which LDA is used have combined it with
PCA [18,21,39], as it is necessary to reduce the number of variables to be able to apply
LDA. Despite this disadvantage, which is easily and successfully corrected by combining
PCA-LDA, LDA has the advantage of minimizing factors that have little effect on group
differences. Thus, it reduces the dimensions of the dataset from a large number of main
variables to a small number of canonical functions while retaining pertinent information
from the original dataset [82]. These new variables are created by linear combinations of
the original ones, so, considering two categories, the delimiter provided by LDA is a linear
function, which creates a straight line or a plane in the case of two or three independent
variables, respectively, and so on.

Finally, SIMCA, also used in UV-Vis pattern recognition [19,36,38], is a supervised
class modeling method that is based on this case in PCA, which has the advantage of being
fast-to-compute. In this algorithm, each class is modeled by a separate PCA and is based
on the similarity of the samples within each class. The main disadvantages are that the
number of principal components in each model must be perfectly defined and that it is
quite common to classify a sample into different classes or none at all, giving poor results
when there are little differences across classes.

All these aforementioned methods are also the most commonly used in other spectro-
scopic techniques in the field of spectralprinting [3,82].

On the other hand, as can be seen from most of the papers listed in Table 1, most of
them focus more on the applications than on the development or testing of new algorithms
for classification. Furthermore, looking at Table 1, it can be seen that a comparison of
different pattern recognition algorithms for the same target is not usually made, unlike
UV-Vis preprocessing tools that are often compared to select the most suitable one. This
does not mean that it is always necessary to explore and perform new or multiple pattern
recognition algorithms, due to the fact that if the selected one or the common one work
perfectly, it will be enough.

Finally, it is curious that no research in the last 6 years was found that used other
commonly applied and extremely simple methods, such as k-nearest neighbors (KNN).
This algorithm is simply based on distance between samples. In addition, researchers that
use other methods, such as support vector machine (SVM), random forest (RF) or even deep
learning methods, are still scarce in the literature from the last 6. The simplest explanation
could be that this technique does not need these more sophisticated algorithms to provide
satisfactory results.

4.1.3. Quantitative Approaches

The quantification of specific compounds contained in a sample is a routine operation
in many laboratories and industries. To fulfill this goal, UV-Vis spectroscopic data have
also been used for quantitative proposes by combining spectral measurements with chemo-
metric regression methods. This group is formed by multivariate techniques that seek a
relationship between the analytical signal (full/preprocessed spectra or a group of selected
wavelengths) and some properties of the sample.

As was discussed in a previous section, preprocessing analysis is a first and funda-
mental step in chemometric data processing. Then, measured spectral responses can be
correlated to the quality traits of interest, such as grape-must caramel in high-quality wine
and balsamic vinegars [47], or more common properties such as soluble solids content,
dry matter content, or acidity, among others [89]. Thus, a mathematical function between
the predictor or independent variables (UV-Vis spectra) and the predicted or dependent
variables (traits) is sought to predict the traits of interest from the acquired spectra. For
this function, the parameters are estimated from a calibration/training set of samples for
which both spectra and the quality traits of interest measured with reference methods
were acquired.

This calibration stage presents several challenges, such as overcoming non selectivity,
i.e., broad and overlapping absorption or emission peaks. In this context, multivariate data
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analysis techniques can solve this problem because they can be used to extract and combine
the relevant information contained by multiple variables. In addition, due to the broad and
overlapping peaks, the situation can occur where many spectral variables are related to the
same absorption peaks and to different absorption peaks for the same component, with the
information contained by different variables being very similar. This can complicate the
estimation of the multivariate calibration model (known as the collinearity problem) [90].

On the other hand, to obtain a calibration model that will perform well in future
samples, careful calibration data selection should be performed. In this stage, calibration
samples should encompass the natural range of variability and possible combinations of
influencing factors that can be expected in the future. Furthermore, outliers should be
treated with care, as on the one hand, samples from outside the target population can have
a negative impact on the calibration model, but on the other hand, extreme samples from
the target population can be very informative in the model building phase.

Despite most multivariate calibration methods assume a linear relation between the
independent and dependent variables, this situation should be corroborated. If the relation
is nonlinear, the first recommendation is to linearize the relationship by preprocessing
the variables (e.g., logarithmic transform to linearize the exponential relation between
absorbance and concentration according to the Beer–Lambert law). Another possibility is
to use a nonlinear model instead of a linear model. This makes the calibration with this
spectroscopic sensor a challenge, requiring considerable care to avoid overoptimistic results
that cannot be reproduced for future samples.

Quantitative approaches using UV-Vis spectroscopy as a spectalprint sensor have been
scarcely reported in the last six years, as can be observed in Figure 5b and Table 1. Only a few
works applying regression methods have been combined with this spectroscopy technique
in order to develop rapid and nondestructive methodologies for the quantification of
ingredients in some samples. The reason could also be that many of the works still use one
specific wavelength to perform the quantification of a compound.

In this regard, only linear approaches have been considered. Consequently, the ordi-
nary least-squares approach is the most straightforward way to estimate model parameters,
and the corresponding method is called multiple linear regression (MLR), although it is
not the preferred choice for the spectral sensors’ calibration. Generally, the multicollinear-
ity problem is presented in the spectral matrix since the number of predictor variables
may be larger than the number of samples making the covariance matrix singular and
noninvertible, which prevents one from finding a unique solution from least-squares es-
timation [91]. This is similar to the aforementioned problem of directly applying LDA
to UV-Vis spectra in pattern recognition, which both can be overcome by increasing the
number of samples in the calibration set or by selecting a subset of variables. However,
with this solution, the prediction performance may still be very poor, owing to the high
correlation among the spectral variables. As can be observed in Figure 5b and Table 1, only
one work using several variable selection algorithms has been reported since 2017. Due
to these limitations, in the case that standard MLR is not appropriate to build regression
models, alternative approaches have been proposed in the literature. One of them has been
principal component regression (PCR), which involves two stages to achieve the calibration
model. First, PCA is used to compress the data matrix information onto a reduced set of
relevant scores. Then, these scores are used as the predictor matrix to perform a multiple
linear regression. PCRs have been used very infrequently, probably owing to drawback
that this algorithm has to face. The criterion that guides the development of the regression
coefficients is not the same than the one to extract the scores from the data matrix. Thus,
the directions of maximum explained variance may not be relevant for the prediction of the
dependent variables, especially when there are many uninformative sources of variability
in the data [92]. To overcome this disadvantage, the partial least squares algorithm (PLS)
is presented as an alternative approach to component-based regression. It is probably the
most widely used calibration method in chemometrics and has been the most applied
method on UV-Vis spectral data (Figure 5b and Table 1). PLS regression was developed as
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an alternative method to be used to calculate reliable regression models with ill-conditioned
matrices. As occurs with PCR, it is based on the extraction of a scores set by projecting
the data onto a subspace of latent variables which are relevant to solve the calibration
problem. In this case, for the definition of the scores, it is explicitly considered that the
components not only explain a significant part of the variance of the data, but also that
they are predictive of the response. In fact, in PLS, the directions onto which the data are
projected (i.e., latent variables) are defined in such a way that the covariance between the
corresponding scores and the responses are maximized, which allows one to obtain scores
that both describe a significant part of the variance of the data and are correlated with
the responses [92,93].

At this point, it should be emphasized that to achieve accurate and reliable estimations
by a PLS (or PCR) model, the selection of an appropriate number of latent variables to
describe the data is a crucial step. In fact, if a low number of components are selected, it
can an underfitting can occur, which would not explain all the relevant variance of the
data. Otherwise, if too many are captured, overfitting can occur, resulting in a model that
is very good at predicting the samples it was calculated on but that performs poorly with
the new ones. To reduce this risk, the optimal number of latent variables is selected by an
appropriate validation strategy, which leads to the minimum error during the validation
steps (usually cross-validation). This proper validation has to also be applied in pattern
recognition approaches, such as, for example, in PLS-DA models, as model overfitting can
also occur.

Other methods that have been used mainly for a quantitative approach that differ
from the aforementioned ones are the curve resolution methods, such as multivariate curve
resolution–alternating least square (MCR-ALS) or parallel factor analysis (PARAFAC). They
are two-way and three-way data analysis methods, respectively, useful and popular for
solving mixed analysis problems, such as peaks overlap, by matrix decomposition [65,66].
Thus, they are subjected to the decomposition of a higher-order dataset into a set of
components of analyzed systems for quantitation, classification, or characterization, among
other aims. As is well-known, the UV-Vis spectrum provides a vector of values per
sample (first-order data), so the critical stage here is the data generation. Consequently,
in order to acquire second-order data, it is mandatory to perform some modifications in
the measurement conditions. Thus, a vast number of works have carried out pH variation
on samples by obtaining pH-dependent spectra, generating one more mode [51,65,66].
Moreover, different temperature conditions, storage times, and oxidative process control of
a specific compound have been other strategies reported for such purpose [30,74]. In general
terms, the general adopted strategies have consisted in the data collection (e.g., matrices
of the pH-ultraviolet absorbance dataset), which have been arranged in a three-way array
(cube) and then decomposed by PARAFAC or augmented in a two-way data matrix and
then decomposed by MCR-ALS.

MCR-ALS is a method based on a bilinear model that assumes that the observed
spectra are a linear combination of spectra of pure components [94]. It aims to achieve
a bilinear decomposition of the experimental absorbance matrix D (m,n) into two new
matrices, one, C (m,k), with the concentrations of the individual compounds, and the
other, ST (k,m), with their normalized spectra. For this decomposition, the number of
components k should be determined or estimated by rank analysis methods, such as the
singular value decomposition (SVD) [94]. Then, when the initial estimate of C and ST
matrices have as many profiles as the number of components determined (k), an iterative
resolution process using the ALS algorithm is performed until the error is minimum and
the variation of results between consecutive iterations goes below a preset threshold value.
Constraints are added to improve the results, with the most common in UV-Vis data being
the non-negativity, which can be applied to both the pure concentration profiles (i.e., no
negative concentrations) and the pure spectra (no negative signals). Other constraints such
as unimodality (useful for letting the reconstituted signals to have only one maximum) and
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normalization (useful for normalizing the pure spectra or the concentration profiles of the
components to a reference value) can be also applied [94].

This method could be considered to be an alternative of PLS when the information of
possible interferences is limited as well as when there is a reduced calibration set [25]. It also
has the advantage of providing the pure spectrum of the absorbance response of overlap-
ping analytical components, which is useful in the study of molecule interactions [26,51,66]
or in the simultaneous determination and quantification of different compounds in a
mixture [27,34,42,72].

On the other hand, PARAFAC is a trilinear model, that is, it is used for the chemometric
resolution of three-way data arrays, which is also used in UV-Vis data. However, it is still
less applied in UV-Vis data than MCR-ALS, as can be seen in Table 1 [65,66], being more
commonly applied in fluorescence excitation-emission data according to the literature since
this type of data fulfill the trilinear property, which is often broken in the mode in which
the second-order UV-Vis spectroscopic data are generated. It decomposes the complex raw
datasets into pure component profiles of samples as MCR-ALS but, in this case, from a
three-way data matrix. Thus, it decomposed a data matrix X into three new matrices, Aif,
Bjf, and Ckf and Eijk, related to the error data array. In this case, the appropriate selection
of the initial parameters and restrictions (e.g., non-negativity) are also needed.

5. Applications for Spectralprint (Nontargeted) Analysis

UV-Vis has demonstrated to be a versatile technique that has been applied to a wide
range of fields, from initial uniparametric use to today’s more multiparametric use, i.e., the
spectralprint. In this section, only the fingerprint application in different matrices and with
different aims will be discussed.

5.1. Agriculture, Food, and Beverages

UV-Vis spectralprinting is an easy-to-adopt, cheap, and fast approach, useful for dis-
crimination and classification of characteristics and quality of food products. In fact, the use
of a spectrophotometric technique such as UV-Vis for discriminating food products could be
of special interest to the industry, as most laboratories have a UV-Vis spectrophotometer for
other routine analyses. Moreover, the possibility of using a portable UV-Vis device is also
of great benefit for the food industry and control agencies. Moreover, due to its simplicity
and reliability, UV-Vis has already been used in several food science and food processing
areas [10,11]. Thus, UV-Vis absorption spectroscopy has been extensively implemented
to analyze a wide range of food samples, such as beverages, dairy products, processed
foods, oils, wines and vinegars, spices, honey, fruits, and vegetables, among others (Table 1).
However, despite all this, it is still not well-recognized as a technique to discriminate or
authenticate food samples.

For instance, in the case of wines and vinegars, it has been seen that UV-Vis spectral-
print has high relevance due to its ability to analyze relevant compounds in wine, such as
phenolic compounds. They present distinct UV fingerprints (i.e., they present π bonding
and conjugated double bonds on which UV relies), while ignoring the most abundant
components of wine, such as water, alcohol, organic acids, and sugars, because they do
not have any absorbance in the used UV wavelength range (200–600 nm) [28]. Thus, it has
demonstrated to be an effective tool in combination with chemometrics to wine authentica-
tion and discrimination as well as for quantification of these wine compounds [28,46,95,96].
Furthermore, its usefulness in wine discrimination according to grape variety has been
compared with other spectroscopic techniques, such as FT-IR, demonstrating that UV-Vis
spectroscopic techniques worked better, possibly due to the fact that the differences be-
tween wine varieties could be attributed to the colored phenolic compounds that absorb
in the UV-Vis region [37]. Another study showed a comparison again between UV-Vis
and FT-IR spectroscopic data coupled to chemometrics, showing that they both have, in
general, similar success rates in determining the adulteration of vinegar with specific
adulterants [68]. Moreover, UV-Vis has recently shown satisfactory results in the classifi-
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cation of wine vinegars by the use of hierarchical classification models with PLS-DA and
SIMCA algorithms by using a UV-Vis portable device [36], with a quality control tool for
high-quality wine vinegars even being proposed for development [12].

The comparison of UV-Vis with another spectroscopic technique has been also com-
monly addressed [46,54,68], and many times UV-Vis has given better results, such as is
shown for example in the work of Mannu et al. (2022). In this study, although both FT-
IR and UV-Vis in reflectance mode analyses were able to provide a good differentiation
between waste and edible oils, the UV-Vis results were of particular interest, as it could
be conducted in a portable device that could have an important practical application in
the field of waste vegetable oils management [69]. There are also works that, in addition
to comparing UV-Vis with other techniques, also test the combination of them by data
fusion, which results in an improvement in the results obtained in the majority of the
cases [29,41,55]. Finally, there is also the possibility of obtaining a second-order data matrix
with UV-Vis data that, combined with MCR-ALS, can be used for, for example, monitoring
the oxidative stability of extra virgin olive oils [30]

5.2. Chemical, Pharmaceutical, and Environmental Sciences

The use of UV-Vis mainly in the control of process, kinetics, and quantification of
substances is very common in the pharmaceutical and chemical industry. This can be
observed in Table 1, where almost all the studies found in the literature from 2017 regarding
this area address the quantification and control of processes. Hence, UV-Vis spectralprint
has shown to have a very prominent position in the online analysis and monitoring of
complex processes.

Thus, regarding kinetics and control processes, UV-Vis coupled to PLS has been
applied to speed up process development for high-throughput selective protein crystalliza-
tion screenings, which may encourage alternative process development to well-established
chromatography-based processes [73]. This combination of UV-Vis and PLS has also been
used in the in situ monitoring of organosolv pretreatments [32], as well as to evaluate disso-
lution kinetics via batch tests [44], which is essential for an adaption of process parameters
and a constant product quality. This on-line monitoring is incompatible with traditional
wet chemistry methods, such as HPLC, since they are expensive and time-consuming. In
fact, the long time required for analysis could limit their use for monitoring in-process
component concentrations.

Furthermore, using the UV-Vis spectralprint coupled to multivariate PLS regression
has shown the availability to determine, at the same time and quickly, several products
that could not be addressed by using data only from a single wavelength. Thus, regarding
the quantification approach, the combination of UV-Vis and PLS has been also used, for
example, in the control of water samples [79], as an effective solution for the determination
of traces of mixed organic acids in aqueous solutions [31], or for the simultaneous quantifi-
cations of propanil and bromoxynil herbicides [24]. This combination has demonstrated to
be very useful for situations of simultaneously determining multicomponents, which is
difficult to address with the traditional UV-Vis approach.

Moreover, new approaches that applied MCR-ALS or PARAFAC showed successful
results in the simultaneous determination and quantification of multiple components
in a complex matrix and even the possibility to study the interaction between different
molecules or compounds by UV-Vis spectroscopy [27,34,42,65,66,72].

Table 1 also showed that there are also a few pharmaceutical, chemical, or environmen-
tal studies whose aim was to discriminate or differentiate samples (i.e., pattern recognition)
by UV-Vis spectralprint. Hence, the utility of this tool, for example, in the detection and
identification of narcotic drugs in urine has been seen [48] and for drug differentiation
or adulteration [63].
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6. Future Perspectives and Final Remarks

In this work, the most recurrent studies using UV-Vis spectroscopy as spectralprint
analysis were compiled. This assessment was based on the absorption of compounds
in the UV-Vis region and with the improvement of measurements using multivariate
techniques, signal-preprocessing algorithms, or both at the same time. The main aim was
to clarify, regarding the fundamental uses, the existing bottlenecks for the implementation
and acceptance of all possible ways of using UV-Vis spectral data allied to chemometrics.
Chemometrics provide a wealth of techniques for exploratory analysis of multivariate
data, as well as for creating reliable calibration models capable of predicting quantitative
responses, as well as for developing classification strategies for predicting qualitative
responses, all based on the experimental profiles collected from the samples.

Evidently, spectralprint represents an indispensable and highly versatile sensor for
analysis at all fields, whether qualitatively or quantitatively, and is an approach of great
potential, as explained in the works described here. In combination with the ease of
handling, the instrument is relatively easy to access in research laboratories, and, with
the development of more robust analytical methods, the results obtained are increasingly
satisfactory. Concomitant to these applications, the diffusion of multivariate statistics, as
well as the continued implementation of increasingly sophisticated computational tools, has
brought numerous gains to the use of UV-Vis spectroscopy as a sensor to predict chemical
compounds. For this reason, the application of multivariate calibration models to predict
compounds has numerous applications, and the determination of quality parameters using
this method should become a recurrent practice. The gains related to the use of this
methodology for a diverse area are reflected both in terms of measuring the variables of
interest and in the potential decrease in time, cost, and waste generated, which is often toxic.

The development of portable spectroscopic devices can meet the demand of future
industrial trends, becoming an important tool for control analysis due to their several
advantages. Thus, they are devices with a considerably low price, which allows their
acquisition by untrained analysts; they have a small size for easy movement and handling;
they are robust, thus being useful at all stages of the supply chain; they are easy to apply
with minimum or no sample preparation, preventing sample damage and allowing more
samples to be scanned; and they provide high precision analysis, being sensitive and
selective. In addition to the characteristics mentioned above, portable UV-Vis devices are
quite manageable (i.e., the size of a cell phone) and user-friendly, with interfaces that allow
quick understanding and results in a short time, reducing computational processing time.
Moreover, they can be used in a variety of samples.

The continuous improvements in hardware and software designs suggest that, in
the near future, UV-Vis spectralprint techniques can respond effectively to any demand,
directly in situ and in real-time, being performed as routine methods for process control and
monitoring. Therefore, the UV-Vis spectralprint application could continue growing toward
new horizons, inquiring in novel proposals regarding data acquisition, with the possibility
to acquire higher-order data and data analysis with the opportunity to be applied to more
complex algorithms, such as those related to deep learning.
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