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Frieze matrices and friezes with coefficients

J. P. Maldonado

Communicated by A. P. Petravchuk

Abstract. Frieze patterns are combinatorial objects that are
deeply related to cluster theory. Determinants of frieze patterns
arise from triangular regions of the frieze, and they have been con-
sidered in [2, 4]. In this article, we introduce a new type of matrix
for any infinite frieze pattern. This approach allows us to give a
new proof of the frieze determinant result given by Baur-Marsh.

1. Introduction

A frieze pattern is an arrangement of numbers that classically starts
with a row of zeros followed by a row of ones and ends with a row of
ones followed by a row of zeros, and such that every diamond formed
by neighbouring entries satisfies the so-called “diamond rule”. These ar-
rangements were introduced by Coxeter in [7] and studied by Conway
and Coxeter in [5, 6]. Lately, friezes have been actively studied in con-
nection to cluster theory, in such a way that the entries of the frieze are
interpreted as the cluster variable of a cluster algebra of type A. In this
setting the notion of a frieze pattern can be generalized, in particular to
infinite friezes (as in [3]) or friezes with coefficients (as in [8]).

The study of symmetric matrices arising from finite frieze patterns
was firstly developed in [4]. The main result is a formula for the deter-
minant of a symmetric matrix whose entries form a fundamental region
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of a finite frieze pattern of positive integers. See Corollary 2.6 for de-
tails. Afterwards, Baur and Marsh proposed in [2] a new interpretation
drawing upon the cluster algebra setting, and considering a symmetric
matrix whose lower part is a fundamental region of a finite frieze pattern
with coefficients. In [1] the author asks for an analogous formula for the
determinant of a matrix whose entries are cluster variables of a cluster
algebra of type D, which was provided by Lampe in [10, Theorem 3.6].

In this work we provide a new proof of [2, Theorem 2.1] using a
different approach, dropping the use of triangulations. For a symmet-
ric matrix M , our main strategy to prove Theorem 2.5 is to study an
upper triangular matrix TM which is equivalent to M , and reduce the
computation of det(M) to that of the determinant of TM .

After our preprint has been posted, work of Holm and Jørgensen has
appeared which includes a more general result, implying Baur-Marsh’s
frieze determinant, see [9, Section 4.3].

The structure of this paper is as follows. In Section 2 we define frieze
matrices and we enunciate the main results, giving the proof of our main
result, Theorem 2.5. We finish this section showing two identities fulfilled
by the entries of the matrices that we study. Some results of Section 2
are left to be proved in Appendix 3 in order to ease the reading; thence,
Appendix 3 is a section primarily intended to contain demonstrations
left in Section 2, together with some lemmas needed for this purpose.
The reader is warned that in some proofs of Section 2 the author may
use results from Appendix 3.

2. Frieze matrices

For the rest of this article R will denote an integral domain of characte-
ristic zero and n will be a positive integer.

Definition 2.1. A symmetric matrix M = (mi,j) ∈ frac(R)n×n will be
called a frieze matrix if mi,j = 0 if and only if i = j and the entries
satisfy the generalized diamond rule

mi,jmi+1,j+1 −mi+1,jmi,j+1 = mi,i+1mj,j+1 (1)

for all 1 ≤ i ≤ n− 1 and 2 ≤ i+ 1 ≤ j ≤ n− 1.

Note that Equation 1 says nothing about entries mi,i+1 and mi,i+2.
It will be useful to denote them as xi and yi respectively. M is fully de-
termined by these entries and the repeated application of the generalized
diamond rule.
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In the literature the relation mi,kmj,l = mi,jmk,l + mi,lmj,k for
i ≤ j ≤ k ≤ l is called Ptolemy relation [12, 13] or Plücker relation [2].
We will denote this equation as Ei,j,k,l.

With this notation, in Definition 2.1 we ask the entries of M to
fulfill the equation Ei,i+1,j,j+1 for every pair of indices (i, j) such that
2 ≤ i + 1 ≤ j ≤ n − 1. In the next lemma we see that this is enough
to ensure that the entries of M indeed fulfill the Ptolemy relation Ei,j,k,l

for all quadruples of indices 1 ≤ i ≤ j ≤ k ≤ l ≤ n.
For completeness we include a proof of the following lemma in Sec-

tion 3. Note that this property also appears in the context of finite friezes
in [8, Theorem 3.3].

Lemma 2.2. Let M = (mi,j) be a frieze matrix in frac(R)n×n. Then

mi,kmj,l = mi,jmk,l +mi,lmj,k

for every 1 ≤ i ≤ j ≤ k ≤ l ≤ n.

The main feature that we will use to compute the determinant of M
is a triangulated form. For this, denote by TM ∈ frac(R)n×n the upper
triangular matrix whose entries are given by:

ti,j =



m2,j if i = 1,

m1,j if i = 2,

0 if i ≥ 3 ∧ j < i,

−2m1,j

m1,i−1
mi−1,i if i ≥ 3 ∧ j ≥ i.

Proposition 2.3. If M = (mi,j) ∈ frac(R)n×n is a frieze matrix, then
it is row equivalent to the upper triangular matrix TM defined above, and
det(TM ) = −det(M).

We will prove Proposition 2.3 in Section 3.

Example 2.4. For the frieze matrix

M =



0 1 2 2 −1 5−
√
5
2

1 0 −2 1 1
2

−7
2 +

√
5
4

2 −2 0 6 −1 3−
√
5
2

2 1 6 0 2
√
5

−1 1
2 −1 2 0 1

5−
√
5
2

−7
2 +

√
5
4 3−

√
5
2

√
5 1 0
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we have that

TM =



1 0 −2 1 1
2

−7
2 +

√
5
4

0 1 2 2 −1 5−
√
5
2

0 0 8 8 −2 20− 2
√
5

0 0 0 −12 4 3
√
5− 18

0 0 0 0 11
6

√
5− 6

0 0 0 0 0 17
11

√
5− 173

22


The main result of this section follows directly from Proposition 2.3

as the determinant ofM can computed using the upper triangular matrix
TM .

Theorem 2.5. If M is a frieze matrix then

Det(M) = −(−2)n−2m1,n

n−1∏
i=1

xi.

Proof. As Det(M) = −Det(TM ), and this last determinant can be com-
puted as the product of the entries in the diagonal of TM we have that

Det(M) = −Det(TM ) = −
n∏

i=1
ti,i = −t1,1t2,2

n∏
i=3

ti,i =

= −m1,2m1,2

n∏
i=3

−2m1,i

m1,i−1
mi−1,i = −(−2)n−2m1,2m1,2

m1,n

m1,2

n∏
i=3

mi−1,i =

= −(−2)n−2m1,n

n∏
i=2

mi−1,i = −(−2)n−2m1,n

n−1∏
i=1

xi.

Two results that we recover from Theorem 2.5 are stated in Corol-
lary 2.6 and 2.7, so we recover [4, Theorem 4] and [2, Theorem 1.1]
respectively.

To give the context of Theorem 4 in [4] we recall the notion of frieze
patterns as first introduced by Conway and Coxeter in [5,6]. For further
details we refer to [1,11]. An array of numbers F = (fi,j)i,j∈Z, with j ≥ i,
is a frieze pattern if the following holds:

i) fi,i = 0 for all i ∈ Z;
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ii) fi,i+1 = 1 for all i ∈ Z;

iii) fi,jfi+1,j+1 − fi+1,jfi,j+1 = 1 for all i ≤ j ∈ Z.

Usually the entries of F are displayed in rows, shifted with respect
to each other. The frieze F is finite if fi,i+k−1 = 1 for some fixed k and
for all i ∈ Z. The positive integer k is called the order F . A frieze F is
a frieze pattern of positive integers if all the fi,j out of the rows of zeros
are positive integers. The third row of F , whose elements are of the form
fi,i+2, is called the quiddity row of F and its entries are noted ai = fi,i+2.
If F is finite of order k then it is k−periodic (fi,j = fi+k,j+k ∀i, j), see
[5, 6] problem (21). In this case we call a quiddity sequence of F the
sequence of numbers (a1, . . . , ak). Finally, a fundamental region for a
finite integral frieze pattern F is given by the elements of the form fi,j ,
with 1 ≤ i ≤ k and i ≤ j ≤ k. The main theorem stated in [4] is the
following corollary of Theorem 2.5.

Corollary 2.6 ([4, Theorem 4]). Let F be a finite integer frieze pattern
of order k, with quiddity sequence (a1, . . . , ak). Let us define MF =
(mij) ∈ Zk×k as the symmetric matrix whose lower part is given by the
fundamental region of F (i.e. mi,j = fi,j if 1 ≤ i ≤ j ≤ k and mi,j = mj,i

if 1 ≤ j < i ≤ n). Then Det(MF ) = −(−2)k−2.

Proof. If in Definition 2.1 we set n = k, xi = 1 for all i ∈ [1, . . . , k − 1]
and yi = ai for all i ∈ [1, . . . , k − 2] we recover the matrix MF , so we
see that MF is a frieze matrix. Then, by Theorem 2.5, Det(MF ) =
−(−2)k−2m1,k, since all the xi are equal to one. Besides, as F is of order
k, m1,k = f1,k = 1. Therefore, Det(MF ) = −(−2)k−2.

Now we proceed to give the proof of [2, Theorem 1.1] in terms of our

Theorem 2.5. For this, consider a 2×nmatrixX =

(
a1 a2 . . . an
b1 b2 . . . bn

)
whose entries are indeterminate. Denote by ∆ij =

∣∣∣∣ ai aj
bi bj

∣∣∣∣ the minor

of X given by the columns i, j and let A = (Aij) be the matrix such that

Aij =

{
∆ij i ≥ j,
∆ji i < j.

The authors showed in [2, Theorem 2.1] that the entries of A, fulfill
the Ptolemy relation; in particular this holds for i < i+1 < i+k−1 < i+k
(with k ≥ 3). So we have that A is a frieze matrix, and we can apply
Theorem 2.5 to obtain the following immediate corollary of Theorem 2.5.
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Corollary 2.7 ([2, Theorem 1.1]). Det(A) = −(−2)n−2∆1n

n−1∏
i=1

∆i(i+1).

We finish this section with two results giving identities in the entries
of the matrices we have studied. The first one provides a formula to
compute the entries of a frieze matrix M only knowing the entries in its
first two rows and the elements mi,i+1 ∈ frac(R). The second one proves
that the entries of the triangular form TM of a frieze matrix M fulfill an
analogous formula of the generalized diamond rule in Equation 1.

Proposition 2.8. For 3 ≤ i ≤ n− 1 and j ≥ i it holds that

mi,j =
m1,im2,j

m1,2
+

m2,im1,j

m1,2
− 2

i∑
t=3

m1,im1,j

m1,tm1,t−1
mt−1,t.

Proof. We will treat the cases i = 3 and 4 ≤ i ≤ n+ 1 separately.

If i = 3 and j ≥ 3 we have by Lemma 2.2 that

m1,2m3,j = m1,3m2,j −m2,3m1,j = m1,3m2,j +m2,3m1,j − 2m2,3m1,j

Consider now 4 ≤ i ≤ n + 1 and fix k ≥ i. Due to the proof of
Lemma 3.2 we know that

mk
i,j = −2

m1,j

m1,i−1
mi−1,i

But by definition ofmk
i,j this element is equal tom2

i,j−
min{i−1,k}∑

t=3

m1,i

m1,t
mt−1

t,j .
As min{i− 1, k} = i− 1 it turns out that

mi,j −
m1,im2,j

m1,2
− m2,im1,j

m1,2
−

i−1∑
t=3

m1,i

m1,t
mt−1

t,j = −2
m1,j

m1,i−1
mi−1,i

Writingmt−1
t,j = −2

m1,j

m1,t−1
mt−1,t and −2

m1,j

m1,i−1
mi−1,i = −2

m1,im1,j

m1,im1,i−1
mi−1,i

the proof is completed.

A natural question that arises while studying the matrices TM is if
they are frieze matrices; i.e. if they fulfill Equation (1). The reader may
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check in Example 2.4 that the entries of TM do not fulfill the generalized
diamond rule. Despite of that, one can observe that a different rule holds:
the determinant of any 2×2 matrix formed by neighbouring entries above
the diagonal is equal to zero. The following proposition states this for
every matrix TM .

Proposition 2.9. Let M be a frieze matrix and TM its triangulated
form given in Proposition 2.3. Then

a) ti,jti+1,j+1 − ti+1,jti,j+1 = 0 for all i ≥ 2 and j ≥ i+ 1;

b) ti,iti+1,i+1 + 2mi,i+1ti,i+1 = 0 for all i ≥ 2.

Proof. a) We will treat the cases i = 2 and i ≥ 3 separately.

First, if i = 2 and j ≥ 3 then

t2,jt3,j+1 − t3jt2(j+1) = m1,j

(
−2

m1,j+1

m1,2
m2,3

)
−
(
−2

m1,j

m1,2
m2,3

)
m1,j+1 = 0.

Secondly, if i ≥ 3 and j ≥ i+ 1 we have that

ti,jti+1,j+1 − ti,j+1ti+1,j =

=
−2m1,jmi−1,i

m1,i−1

−2m1,j+1mi,i+1

m1,i
− −2m1,j+1mi−1,i

m1,i−1

−2m1,jmi,i+1

m1,i
=

=
4m1,jmi−1,im1,j+1mi,i+1

m1,i−1m1,i
− 4m1,j+1mi−1,im1,jmi,i+1

m1,i−1m1,i
= 0.

b) Again we have to treat the cases i = 2 and i ≥ 3 separately.

If i = 2

t2,2t3,3 + 2m2,3t2,3 = m1,2
−2m1,3m2,3

m1,2
+ 2m2,3m1,3 = 0.

And if 3 ≥ i ≥ n

ti,iti+1,i+1 + 2mi,i+1ti,i+1 =

=
−2m1,imi−1,i

m1,i−1

−2m1,i+1mi,i+1

m1,i
+ 2mi,i+1

−2m1,i+1mi−1,i

m1,i−1
=

4
mi−1,im1,i+1mi,i+1

m1,i−1
− 4

mi,i+1m1,i+1mi−1,i

m1,i−1
= 0.
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3. Appendix: Proofs

The goal of this section is to prove Proposition 2.3. In preparation, we
first prove Lemma 2.2 and then show an additional Lemma on auxiliary
matrices Mk which are needed for the proof of the proposition.

Lemma (Lemma 2.2). Let M = (mi,j) be a frieze matrix in frac(R)n×n.
Then

mi,kmj,l = mi,jmk,l +mi,lmj,k (Ei,j,k,l)

for every 1 ≤ i ≤ j ≤ k ≤ l ≤ n.

To clarify the following arguments, whenever an equality holds be-
cause of an equation Ei,j,k,l we will indicate this by writing the tag with
the corresponding indices on the right.

Proof of Lemma 2.2. Firstly, if one of the inequalities between the in-
dices i; j; k; l in Lemma 2.2 is an equality, then the equation (Ei,j,k,l) is
trivial.

Suppose now that i < j < k < l. We will prove the assertion by
induction on d = l− i, the distance between the first and last subscript.
The minimum non-trivial distance for i and l is l − i = 3, which implies
that j = i+ 1 and k = i+ 2. Therefore the right hand side is

mi,i+1mi+2,i+3 +mi,i+3mi+1,i+2 = xixi+2 +mi,i+3xi+1

by Equation 1 this last element is equal to

xixi+2 +

(
yiyi+1 − xixi+2

xi+1

)
xi+1 = yiyi+1 = mi,i+2mi+1,i+3 = mi,kmj,l

Now, assume that Ei′,j′,k′,l′ holds for all i
′ < j′ < k′ < l′ with l′− i′ ≤

d. Consider i < j < k < l with l − i = d + 1. Then, since l − i ≥ 3, by
the generalized diamond rule we have that

mi,jmk,l +mi,lmj,k = mi,jmk,l +

(
mi,l−1mi+1,l −mi,i+1ml−1,l

mi+1,l−1

)
mj,k =

= mi,jmk,l +
(mi,l−1mj,k)mi+1,l −mj,kmi,i+1ml−1,l

mi+1,l−1
=

=
mi,jmk,lmi+1,l−1 + (mi,l−1mj,k)mi+1,l −mj,kmi,i+1ml−1,l

mi+1,l−1
.

As Ei,j,k,l−1 holds, this last term is equal to
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mi,jmk,lmi+1,l−1 +
(
mi,kmj,l−1 −mi,jmk,l−1

)
mi+1,l −mj,kmi,i+1ml−1,l

mi+1,l−1
[Ei,j,k,l−1]

=
mi,j(mk,lmi+1,l−1 −mk,l−1mi+1,l) +mi,kmj,l−1mi+1,l −mj,kmi,i+1ml−1,l

mi+1,l−1

=
mi,jmi+1,kml−1,l +mi,kmj,l−1mi+1,l −mj,kmi,i+1ml−1,l

mi+1,l−1
[Ei+1,k,l−1,l]

=
(mi,jmi+1,k −mj,kmi,i+1)ml−1,l +mi,kmj,l−1mi+1,l

mi+1,l−1

=
mi,kmi+1,jml−1,l +mi,kmj,l−1mi+1,l

mi+1,l−1
[Ei,i+1,j,k]

=
mi,k(mi+1,jml−1,l +mj,l−1mi+1,l)

mi+1,l−1

=
mi,kmj,lmi+1,l−1

mi+1,l−1
= mi,kmj,l [Ei+1,j,l−1,l]

Before proving Proposition 2.3 we introduce auxiliary matrices
M0,M1, . . . ,Mn−1, being Mn−1 the desired upper triangular matrix TM ,
as follows. The matrix M0 is obtained by swapping the first row of M
with its second row, M1 is the result of applying the sequence of row
operations “Ri − m1,i

m1,2
R1 → Ri” (for 3 ≤ i ≤ n) to M0, and M2 results

from applying the sequence of row operations “Ri − m2,i

m1,2
R2 → Ri” (for

3 ≤ i ≤ n) to M1. From there on, the matrix Mk is obtained by applying
the sequence of row operations “Ri − m1,i

m1,k
Rk → Ri” (for k + 1 ≤ i ≤ n)

to the matrix Mk−1.
For an explicit calculation, let us denote by mk

i,j the ij-entry of Mk

(observe that the super index is not a power). We define mk
i,j as:

m0
i,j =


m2,j if i = 1,

m1,j if i = 2,

mi,j if i ≥ 3.

m1
i,j =

{
m0

i,j if i = 1, 2,

mi,j − m1,i

m1,2
m2,j if i ≥ 3.

m2
i,j =

{
m0

i,j if i = 1, 2,

mi,j − m1,i

m1,2
m2,j − m2,i

m12
m1,j if i ≥ 3.
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And inductively for k ≥ 3

mk
i,j =


mk−1

i,j if 1 ≤ i ≤ k,

mk−1
i,j − m1,i

m1,k
mk−1

k,j if k + 1 ≤ i ≤ n.
(2)

Before moving forward with the proof of Proposition 2.3 we give
several useful observations.

Remark 3.1. Observe that for j = 1, 2 and i > j the entries m2
ij are all

zero. Besides, is not hard to prove by induction on k that an equivalent
definition for mk

i,j , with k ≥ 3 is

mk
i,j =


m2

i,j if i ∈ {1, 2, 3},

m2
i,j −

min{i−1,k}∑
t=3

m1,i

m1,t
mt−1

t,j if 4 ≤ i ≤ n.
(3)

Lemma 3.2. For all k ≥ 3 the entries of Mk have the following form:

mk
i,j =



(i) m2
i,j if i = 1, 2,

(ii) 0 if i ≥ 3 ∧ j ≤ min{i− 1, k},

(iii)
−2m1,j

m1,i−1
mi−1,i if 3 ≤ i ≤ k + 1 ∧ j ≥ i,

(iv) m2
i,j −

k∑
t=3

m1,i

m1,t
mt−1

t,j if i ≥ k + 2 ∧ j ≥ k + 1.

Proof. We prove this by induction on k:

Fix k = 3 and lets m3
i,j denote the ij-entry in the matrix M3.

(i) If i = 1, 2 then m3
i,j = m2

i,j by definition.

(ii) Let i ≥ 3 and j ≤ min{i − 1, 3}. If i = 3 then j ≤ 2 and m3
3,j =

m2
3,j = 0 by the form of M2. If i ≥ 4 then j ≤ 3 and m3

i,j =

m2
i,j −

m1,i

m1,3
m2

3,j . If j = 1, 2 this last element is zero due to the form
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of M2. If j = 3 we have

m3
i,3 =m2

i,3 −
m1,i

m1,3
m2

3,3

= mi,3 −
m1,i

m1,2
m2,3 −

m2,i

m1,2
m1,3 −

m1,i

m1,3

(
m3,3 −

m1,3

m1,2
m2,3 −

m2,3

m1,2
m1,3

)
(3)

= mi,3 +
m1,i

m1,2
m2,3 −

m2,i

m1,2
m1,3

=
(mi,3m1,2 +m1,im2,3)−m2,im1,3

m1,2

=
m2,im1,3 −m2,im1,3

m1,2
= 0 [E1,2,3,i]

(iii) Let 3 ≤ i ≤ 4 and j ≥ i. If i = 3 then j ≥ 3 and

m3
3,j =m3,j −

m1,3

m1,2
m2,j −

m2,3

m1,2
m1,j =

m3,jm1,2 − (m1,3m2,j +m2,3m1,j)

m1,2
(3)

=
−2m1,j

m1,2
m2,3 [E1,2,3,j ]

If i = 4 then j ≥ 4 and

m3
4,j =m2

4,j −
m1,4

m1,3
m2

3,j

= m4,j −
m1,4

m1,2
m2,j −

m2,4

m1,2
m1,j −

m1,4

m1,3

(
m3,j −

m1,3

m1,2
m2,j −

m2,3

m1,2
m1,j

)
(3)

= m4,j −
m2,4

m1,2
m1,j −

m1,4m3,j

m1,3
+

m1,4m2,3

m1,3m1,2
m1,j

=
m4,jm1,3 −m1,4m3,j

m1,3
+

(
m1,4m2,3 −m2,4m1,3

m1,3m1,2

)
m1,j [E1,2,3,j , E1,2,3,4]

= −m1,jm3,4

m1,3
− m1,2m3,4

m1,3m1,2
m1,j =

−2m1,j

m1,3
m3,4

(iv) If i ≥ 5 and j ≥ 4 we have that m3
i,j = m2

i,j −
m1,i

m1,3
m2

3,j . And this

completes the proof for case k = 3.

Suppose now that the claim is true up to k ≥ 3.

(i) If i = 1, 2 then mk+1
i,j = mk

i,j = m2
i,j by the induction hypothesis.

(ii) Let j ≤ min{i− 1, k + 1} and i ≥ 3. If j ≤ min{i− 1, k} then

mk+1
i,j =

{
mk

i,j if 3 ≤ i ≤ k + 1

mk
i,j −

m1,i

m1,k+1
mk

k+1,j if i ≥ k + 2
= 0
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by the induction hypothesis. Let j = k + 1 and i ≥ k + 2. Then

mk+1
i,k+1 = m2

i,k+1 −
k∑

t=3

m1,i

m1,t
mt−1

t,k+1−

− m1,i

m1,k+1

(
m2

k+1,k+1 −
k∑

t=3

m1,k+1

m1,t
mt, k + 1t−1

)
(3)

= m2
i,k+1 −

m1,i

m1,k+1
m2

k+1,k+1 = mi,k+1 −
m1,i

m1,2
m2,k+1 −

m2,i

m1,2
m1,k+1−

− m1,i

m1,k+1

(
mk+1,k+1 −

2m1,k+1

m1,2
m2,k+1

)
(3)

= mi,k+1 +
m1,i

m1,2
m2,k+1 −

m2,i

m1,2
m1,k+1

=
mi,k+1m1,2 +m1,im2,k+1 −m2,im1,k+1

m1,2
= 0

(iii) Let 3 ≤ i ≤ k + 2 and j ≥ i. If 3 ≤ i ≤ k + 1 then

mk+1
i,j = mk

i,j =
−2m1,j

m1,i−1
mi−1,i. If i = k + 2 then j ≥ k + 2 and

mk+1
k+2,j =mk

k+2,j −
m1,k+2

m1,k+1
mk

k+1,j

= m2
k+2,j −

k∑
t=3

m1,k+2

m1,t
mt−1

t,j − m1,k+2

m1,k+1

(
m2

k+1,j −
k∑

t=3

m1,k+2

m1,t
mt−1

t,j

)
(3)

= m2
k+2,j −

m1,k+2

m1,k+1
m2

k+1,j

= mk+2,j −
m1,k+2

m1,2
m2,j −

m2,k+2

m1,2
m1,j−

− m1,k+2

m1,k+1

(
mk+1,j −

m1,k+1

m1,2
m2,j −

m2,k+1

m1,2
m1,j

)
(3)

= mk+2,j −
m2,k+2

m1,2
m1,j −

m1,k+2mk+1,j

m1,k+1
+

m1,k+2m2,k+1

m1,k+1m1,2
m1,j

=
mk+2,jm1,k+1 −m1,k+2mk+1,j

m1,k+1
+

m1,k+2m2,k+1 −m2,k+2m1,k+1

m1,k+1m1,2
m1,j

=
−m1,jmk+1,k+2

m1,k+1
+

−m1,2mk+1,k+2

m1,k+1m1,2
m1,j [E1,k+1,k+2,j and E1,2,k+1,k+2]

=
−2m1,j

m1,k+1
mk+1,k+2.
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(iv) If i ≥ k + 3 and j ≥ k + 2 then

mk+1
i,j = mk

i,j −
m1,i

m1,k+1
mk

k+1,j = m2
i,j −

k∑
t=3

m1,i

m1,t
mt−1

t,j − m1,i

m1,k+1
mk

k+1,j =

= m2
i,j −

k+1∑
t=3

m1,i

m1,t
mt−1

t,j

and this completes the induction.

Proof of Proposition 2.3. The claim of the form of TM then follows from
Lemma 3.2: observe that case (iv) in Lemma 3.2 disappear for k = n−1
because i can not be greater than n+1, so we are left with the first three
cases, which are those of Proposition 2.3 when we replace k by n− 1.

For the second assertion, we observe from its definition that M0 is
obtained from M by swapping its first two rows. In the other hand, if
1 ≤ k ≤ n−1, Mk is obtained by a sequence of row operations that do not
alter the determinant, so we have that det(M) = −det(M0) = −det(Mk)
for all k ∈ {1, . . . , n − 1}. In particular, det(M) = −det(Mn−1) =
−det(TM ).
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