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The entanglement entropy of an arbitrary spacetime region A in a three-dimensional conformal field
theory (CFT) contains a constant universal coefficient, FðAÞ. For general theories, the value of FðAÞ is
minimized when A is a round disk, F0, and in that case it coincides with the Euclidean free energy on the
sphere. We conjecture that, for general CFTs, the quantity FðAÞ=F0 is bounded above by the free scalar
field result and below by the Maxwell field one. We provide strong evidence in favor of this claim and argue
that an analogous conjecture in the four-dimensional case is equivalent to the Hofman-Maldacena bounds.
In three dimensions, our conjecture gives rise to similar bounds on the quotients of various constants
characterizing the CFT. In particular, it implies that the quotient of the stress-tensor two-point function
coefficient and the sphere free energy satisfies CT=F0 ≤ 3=ð4π2 log 2 − 6ζ½3�Þ ≃ 0.14887 for general
CFTs. We verify the validity of this bound for free scalars and fermions, general OðNÞ and Gross-Neveu
models, holographic theories, N ¼ 2 Wess-Zumino models and general ABJM theories.
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The ratio of the trace-anomaly coefficients characterizing
any unitary conformal field theory (CFT) in four dimen-
sions is bounded, above and below, by the free scalar and
Maxwell field results, respectively [1,2],

c
a

����
Maxwell

≤
c
a
≤
c
a

����
free scalar

; ð1Þ

the numerical values being 18=31 and 3, respectively.
Roughly, these “Hofman-Maldacena” (HM) bounds follow
from imposing the positivity of the energy flux escaping at
null infinity for states resulting from a local insertion of the
stress tensor on the vacuum. Analogous constructions in
general spacetime dimensions d ≥ 3 give rise to constraints
involving correlators of the stress tensor [3,4].
For odd-dimensional CFTs there is no trace anomaly and

the coefficients a, c are not defined. A somewhat canonical
general-dimension version of c is provided by the stress-
tensor two-point function coefficient, CT , which is propor-
tional to c in d ¼ 4. On the other hand, a generalization of a
which departs from stress-tensor correlators follows from

the entanglement entropy (EE) universal coefficient across
a round (hyper-)spherical entangling surface, which we
denote by F0. Again, in d ¼ 4 one finds F0 ∝ a, and hence
the analogy. In odd-dimensional theories, this quantity
coincides with the Euclidean free energy on the round
sphere, F0 ¼ − logZSd [5,6]. Also, in d ¼ 3 it defines a
renormalization group monotone for general theories [7–9].
In this Letter we present strong evidence that the quotient

CT=F0 satisfies bounds analogous to (1) for general three-
dimensional CFTs, namely,

0≤
CT

F0

≤
CT

F0

����
free scalar

¼ 3

4π2 log2−6ζ½3�≃0.14887… ð2Þ

These are particular cases of more general conjectural
bounds involving the EE of arbitrary regions in d ¼ 3.
Given some entangling region A, this is given, for a general
CFT, by S3dðAÞ ¼ c0 · perimeterð∂AÞ=δ − FðAÞ þOðδÞ,
where c0 is a nonuniversal coefficient, δ is a UV cutoff,
and FðAÞ is a dimensionless universal coefficient of non-
local nature. Naturally, the round-disk case anticipated
above corresponds to F0 ≡ Fj

∂A¼S1 . Recently, it has been
proved in [10] that F0 minimizes FðAÞ for any given CFT,
namely, FðAÞ=F0 ≥ 1 with FðAÞ ¼ F0 ⇔ A ¼ round disk.
Consequently, F0 provides a canonical normalization for
FðAÞ. With these provisos in mind, we are ready to
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formulate the conjecture which is the central proposal of
this Letter.
Conjecture.—For general CFTs in three dimensions, the

universal coefficient in the entanglement entropy, FðAÞ, of
an arbitrary region A normalized by the disk result F0 is
bounded above by the free scalar result and below by the
free Maxwell field one. Namely, we conjecture that

FðAÞ
F0

����
Maxwell

≤
FðAÞ
F0

≤
FðAÞ
F0

����
free scalar

ð3Þ

holds for general entangling regions and CFTs.
The lower bound is in fact equivalent to the number n of
connected components in the boundary of A, and was
proved in [10]. The Maxwell field saturates the lower
bound and so do topological theories.
The rest of the Letter will be devoted to provide evidence

in support of the above conjecture and to extract various
consequences.
Hints from four dimensions.—In d ¼ 4, the EE universal

term is local in nature and appears as the coefficient of a
logarithmic divergence. It is given by a linear combination
of two theory-independent local integrals over the corre-
sponding entangling surfaces, which appear weighted by
the trace-anomaly coefficients a, c. The expression reads
[11,12]

S4dlogðAÞ
a

¼ 1

π

�
W∂A þ

�
c
a
− 1

�
K∂A

2

�
; ð4Þ

whereW∂A is the so-called Willmore energy [13] of ∂A and
K∂A is an integral involving a quadratic combination of
extrinsic curvatures of ∂A. Observe that we normalized the
expression by a following the analogy with the three-
dimensional case [14]. Now, W∂A and K∂A are positive
definite and positive semidefinite respectively, so it is
straightforward to prove that a conjecture analogous to
Eq. (3) in four dimensions, namely,

S4dlogðAÞ
a

����
Maxwell

≤
S4dlogðAÞ

a
≤
S4dlogðAÞ

a

����
free scalar

; ð5Þ

is trivially equivalent to the HM bounds of Eq. (1). Since
these have been rigorously proven in [2], Eq. (5) is also true
in general. In this case, the local nature of S4dlogðAÞ limits the
content of Eq. (5) to be exactly equivalent to the one of the
HM bounds. On the other hand, our three-dimensional
conjecture (3) contains much more information, as FðAÞ
does not have a closed geometric expression dependent on
just a few coefficients which may be valid for general
theories.
On the definition of FðAÞ.—Going back to three dimen-

sions, let us start by observing that a direct computation of
FðAÞ from the EE formula using a lattice regularization
does not produce unambiguous results in general. This has

to do with the fact that it is not possible to resolve the
characteristic scales of region A with a precision better
than the UV cutoff, e.g., we cannot distinguish R from
Rð1þ aδÞ with a ∼Oð1Þ. This uncertainty pollutes FðAÞ
via the area-law term, F → F − a · c0 · perimeterð∂AÞ, and
the situation cannot be improved by making R larger in the
lattice.
In order to define FðAÞ rigorously we can make use of

mutual information [16–19]. Given some region A with
characteristic scale R, consider two concentric regions A−

and Aþ with the same shape as A, defined by moving a
distance ε=2 inwards and outwards, respectively, along the
normal direction to ∂A. Then, the mutual information
IðAþ; A−Þ tends, in the ε=R ≪ 1 limit, to twice the EE
of A, providing a well-defined notion of F in the con-
tinuum, namely,

IðAþ; A−Þ ¼ κ
perimeterð∂AÞ

ε
− 2FðAÞ þOðεÞ: ð6Þ

The robustness of this way of defining FðAÞ has been
previously exploited in several papers [10,19,20] and we
will use it henceforth.
Orbifold theories and multicomponent regions.—Let us

consider the case of orbifold theories O—namely, theories
obtained from the quotient of some complete parent theory
C by some finite symmetry group G. For them, the mutual
information is given by [21]

IOðAþ; A−Þ ¼ ICðAþ; A−Þ − n log jGj
þ ΔSðAþÞ þ ΔSðA−Þ; ð7Þ

where n is the number of connected boundaries
of A and jGj is the number of elements of G. For A�
formed by more than one connected components
A� ¼ A�

1 ∪ A�
2 ∪ … ∪ A�

k , the quantities ΔSðA�Þ≡
SðρA�j ⊗k

i ρA�
i
ÞjC − SðρA�j ⊗k

i ρA�
i
ÞjO are the differences

of the relative entropies between the reduced density matrix
on the region, and the tensor product of the density matrices
reduced on each of its components. By monotonicity these
differences are positive semi-definite.
Hence, we can obtain FðAÞ for a given orbifold theory in

terms of the complete theory one using Eq. (6). One finds

FðAÞjO ¼ FðAÞjC þ n
2
log jGj − 1

2
½ΔSðAþÞ þ ΔSðA−Þ�;

F0jO ¼ F0jC þ 1

2
log jGj: ð8Þ

From this, it is easy to argue that orbifolding tends to
decrease the value of FðAÞ=F0, in agreement with our
conjecture. Indeed, consider a region with arbitrary topo-
logy. In that case, we have
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n ≤
FðAÞ
F0

����
O
≤
FðAÞjC þ n

2
log jGj

F0jC þ 1
2
log jGj ≤

FðAÞ
F0

����
C
: ð9Þ

The third inequality follows from n ≤ ðFðAÞ=F0ÞjC,
proved in [10], the second is a consequence of Eq. (8),
and the first follows from the semi-positivity of
SðρA�j ⊗k

i ρA�
i
ÞjO. Hence, the quotient for the parent

theory is always greater than the one of the orbifold.
Similarly, in all cases the lower bound is provided by the
number of connected boundaries of the region. Therefore,
as far as our conjecture is concerned, any conclusions
which hold for complete theories are also valid for orbifolds
of such theories.
The same happens for infinite symmetry groups. In that

case, log jGj is replaced by a divergent contribution, and the
quotient saturates the lower bound appearing in Eq. (9),
namely, ðFðAÞ=F0ÞjO ¼ n. This implies, in particular, that
the Maxwell field, which is an orbifold of the free scalar
theory under the group R implementing ϕ → ϕþ λ
[22] has

FðAÞ
F0

����
Maxwell

¼ n ∀ A; ð10Þ

where n is the number of connected boundaries of the
region. More precisely, for the Maxwell field we get
FðAÞjMaxwell ∼ FðAÞjfree scalar þ n=4 log½− logðδÞ� that di-
verges with the regularization scale δ [23]. The same
saturation (10) holds for topological models, for which
FðAÞ ¼ γn for some constant γ. Hence, the lower bound in
our general conjecture (3) is not only consistent but fully
equivalent to the general inequality n ≤ FðAÞ=F0. Let us
now try to motivate the upper bound.
Regions with disconnected components and large sep-

arations.—In case there is a theory which provides an
upper bound for FðAÞ=F0 for general CFTs and arbitrary
regions, this must be given by the free scalar. Indeed,
consider an entangling region A consisting of two dis-
connected subregions A ¼ A1 ∪ A2. Then, we have
SðA1 ∪ A2Þ ¼ SðA1Þ þ SðA2Þ − IðA1; A2Þ, where I is the
mutual information. Now, assume that A1 and A2 are both
disk regions. Then, dividing both sides by F0 and noticing
that divergences cancel in both sides of the equality, one is
left with FðA1 ∪ A2Þ=F0 ¼ 2þ IðA1; A2Þ=F0. Now, notice
that in the long-distance regime the free scalar provides the
greatest possible value of IðA1; A2Þ. Indeed, on general
grounds, one has I ∼ l−4Δ where l is the separation
between regions and Δ is the smallest scaling dimension
of the model. This is minimized by the free scalar in general
dimensions, Δfree scalar ¼ ðd − 2Þ=2, which saturates the
corresponding unitarity bound—see, e.g., [24]. This means
that FðAÞ=F0 is absolutely maximized by the free scalar in
that case. If one replaces now A1 and A2 by arbitrary shapes
with characteristic lengths much smaller than l, the

inequality Eq. (3) also holds provided it holds for A1

and A2 individually.
Regions with disconnected components and thin defor-

mations on a null cone.—Additional evidence follows from
the so-called pinching property. Consider the causal cone
H associated to some disk region A. Parametrizing the cone
by some angular coordinate θ and an affine parameter
s∈ ð0; LÞ, where L is the position of A, the region fðδ; ϵÞ≡
fðθ; sÞ=jθ − θ0j < ϵ; s > δg around some arbitrary direc-
tion θ0 is a sector of a conical frustrum—see Fig. 4 in [25]
for a drawing. Then, the region A1ðδ; ϵÞ≡H − fðδ; ϵÞ
corresponds to the causal cone of A with such frustrum
removed. A1 has a boundary which corresponds to the
original disk boundary for all θ except for jθ − θ0j < ϵ, in
which case it is given by the boundary of f. Now, the
pinching property establishes that, given some other
arbitrary region B [25–28],

lim
ϵ→0

lim
δ→0

I½A1ðδ; ϵÞ; B� ¼ 0; ðinteracting CFTÞ;
lim
ϵ→0

lim
δ→0

I½A1ðδ; ϵÞ; B� ¼ IðA; BÞ; ðfree CFTÞ; ð11Þ

namely, for interacting CFTs—including generalized free
fields [29]—the mutual information vanishes identically
when we make the tip of f approach the tip of the cone and
then we make the conical sector arbitrarily thin. On the
other hand, taking the same limits in the case of free
CFTs—in the sense of being fields satisfying a local linear
equation of motion—we are instead left with the mutual
information of the original disk region with B. Hence,
considering the entanglement entropy for A≡A1ðδ;ϵÞ∪A2

where A2 is a disk region, we have

Fðlim
ϵ→0

lim
δ→0

AÞ=F0 ¼ 2; ðinteracting CFTÞ;

Fðlim
ϵ→0

lim
δ→0

AÞ=F0 ¼ 2þ IðA1; A2Þ
F0

; ðfree CFTÞ; ð12Þ

where by A1 in the second line we mean the disk region
which results from fully removing f. This holds regardless
of the relative separation between A1 and A2. Hence, it is
obvious that in this case FðAÞ=F0 is smaller for any
interacting CFT than for any free one. If the construction
is repeated using regions other than disks, the same
conclusion holds again as long as the individual regions
satisfy Eq. (3). Now, Eq. (12) does not say anything about
the hierarchy between the free theories themselves.
However, strong numerical evidence suggests that

IðA1; A2Þ
F0

����
free fermion

<
IðA1; A2Þ

F0

����
free scalar

ð13Þ

for arbitrary spatial regions A1, A2 [30]. Hence, once again
we find that the free scalar provides an absolute maximum
for FðAÞ=F0 in this case.
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Small deformations of a disk region.—Let us now
consider regions with a single connected component.
The first obvious case is the one of slightly deformed
disks. We can parametrize their boundary by the radial
equation

rðθÞ
R

¼ 1þ ϵffiffiffi
π

p
X
l

½al;ðcÞ cosðlθÞ þ al;ðsÞ sinðlθÞ�; ð14Þ

where ϵ ≪ 1. Then, at leading order in ϵ, we have [31–33]

FðAÞ
F0

¼ 1þ π3

24

CT

F0

X
l

lðl2 − 1Þ�a2l;ðcÞ þ a2l;ðsÞ
	
ϵ2; ð15Þ

where CT is the coefficient which controls, for a general
CFT, the flat-space stress-tensor two-point function charge,
namely,

hTμνðxÞTρσð0ÞiR3 ¼ CT

x6

�
IμðρIσÞν −

δμνδρσ
3

�
; ð16Þ

where Iμν ≡ δμν − 2xμxν=x2. Now, noting that the coeffi-
cient which accompanies ϵ2 is positive semidefinite,
applying our conjecture (3) to the deformed-disks case
we are left with a conjecture for the quotient of charges
CT=F0, namely, with Eq. (2). In that expression, the lower
bound becomes trivial, as for the three-dimensional
Maxwell field this quotient simply vanishes. As anticipated
in the introduction, an inequality of this type is highly
reminiscent of the four-dimensional HM bounds for the
trace-anomaly coefficients c=a—see Fig. 1.
As it turns out, bothCT and F0 have been computed for a

plethora of three-dimensional CFTs and we can test the
validity of Eq. (2) in all those cases. In the Supplemental
Material [34]—which also includes [35–56]—we have
gathered the results, and in Fig. 1 we have plotted them
together. We observe that all considered theories satisfy the
conjectural bounds. In particular, one finds a similar
hierarchy as in the four-dimensional c=a case, with the free
scalar [9,57–59] representing the upper bound, the free
fermion [9,57–59] taking a lower value, holographic theo-
ries [60,61] an even lower one, and the Maxwell field
providing the lowest possible one (zero in the three-
dimensional case). Explicitly, we have: ðCT=F0Þjfree scalar ¼
3=½4π2 log 2 − 6ζð3Þ� ≃ 0.148 87, ðCT=F0Þjfree fermion ¼
3=½4π2 log 2þ 6ζð3Þ� ≃ 0.086 764, ðCT=F0ÞjEMI ¼ 8=π4≃
0.082 128, ðCT=F0Þjholography ¼ 6=π4 ≃ 0.061 596,
ðCT=F0ÞjMaxwell ¼ 0, wherewe have also included the result
corresponding to the so-called “extensive mutual informa-
tion” (EMI) model [17,62].
Among the interacting theories considered, we have the

Gross-Neveu OðNÞ UV fixed points models [9,63,64], for
which it is possible to find values of N which are both
greater and smaller than the free fermion one, the whole

range being 0.0854≲ CT=F0jGN;OðNÞ ≲ 0.094∀ N. On the
other hand, for the Wilson-Fisher fixed points of the scalar
OðNÞ models [9,63,65–67], one finds that the free scalar
result is always an upper bound, for arbitrary values of N.
The range is 0.1409≲ CT=F0jOðNÞ ≤ CT=F0jfree scalar ∀ N.
Additional theories considered include various super-
symmetric N ¼ 2 Wess-Zumino models as well as
general UðNÞk ×UðNÞ−k ABJM models [68], for
which we find—using results from [69–77]—that 0 ≤
CT=F0jUðNÞk×UðNÞ−kABJM ≤ 3=ð2π2 log 4Þ ≃ 0.109 63 for all
N and k—see the figure presented in the Supplemental
Material [34]. In all cases, the conjectural bounds are
respected. It would be certainly interesting to test the
conjecture for additional theories.
Ellipses and corners.—Moving from the perturbed-disks

regime, values of FðAÞ=F0 for more complicated regions
exist in some cases, at least for a few theories. In particular,
there exist results for free scalars and fermions, the EMI
model, as well as for holographic theories in the case of

FIG. 1. Quotients c=a in d ¼ 4 and CT=F0 in d ¼ 3 for various
CFTs. For visual clarity, each diagram is normalized by the free
scalar result. For d ¼ 4, the unitarity bounds are known to be
saturated by the free scalar and the Maxwell field, respectively.
The holographic result, the free fermion and the EMI model
(dashed orange) are also shown. For supersymmetric theories, the
band of allowed values is smaller and appears displayed in pale
orange. In d ¼ 3 the theories saturating the conjectural bounds
are also the free scalar and the Maxwell field, for which
CT=F0jMaxwell ¼ 0. Besides the free fermion, the EMI model,
and holography, we also present the range of values covered by
various other theories: the OðNÞ models for general N (brown
band), the Gross-Neveu models for general N (purple band), the
N ¼ 2 Wess-Zumino model with superpotentials X3 (orange
line), X

P
N
i ZiZi for general N (pale brown band), SQED (green

line), and general ABJM models (pale green band with diagonal
lines). Red bands correspond to nonallowed values.
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ellipses of arbitrary eccentricity [10,78]. The results are
shown in Fig. 2, where it is clear that the free scalar always
takes the greatest value. The lower bound provided by the
Maxwell theory is always trivially satisfied by all theories
since one has ðFðeÞ=F0ÞjMaxwell ¼ 1 ∀ e.
In Fig. 2 we have also presented results for the same set

of theories in the case of corner regions of opening angle θ
[59,79–85]. In that case, FðAÞ builds up a logarithmic
divergence weighted by some function aðθÞ which, nor-
malized by F0, inherits the same hierarchies as in Eq. (3).
Again, the free scalar curve—which also coincides with the
one of the large-N limit of the Wilson-Fisher OðNÞ model
[86]—is above all others. On the other hand, there exists a
general lower bound for aðθÞ constructed in [87] and given
by aðθÞ=F0 ≥ ðπ2CT=3F0Þ log½1= sinðθ=2Þ�. In the case of
the Maxwell field, the right-hand-side is just zero, so again
we find consistency with the lower bound in Eq. (3).
Computations of the corner function with θ ¼ π=2 have
been performed using numerical methods for the OðNÞ
models with N ¼ 1, 2, 3 [88–92]. In all cases, the result is
very close to the free scalar one, but the precision achieved
does not seem to allow for a trustworthy quantitative
comparison [93].
Both for ellipses and corners, the behavior in the regime

in which the region becomes very sharp—i.e., for e, θ → 0,
respectively—is controlled by the universal coefficient
characterizing the EE of a thin strip. Given such a strip
of dimensions L, r with L ≫ r, one finds

FðAÞ
F0

¼ κ

F0

L
r
þOðr0Þ: ð17Þ

The coefficient κ is yet another quantity characterizing any
given three-dimensional CFT. It is not known to be related
with any other coefficient defined beyond EE, so our
general conjecture (3) predicts additional independent
bounds on the possible values of κ=F0. Using the free
scalar values of κ computed in [59], one finds

0 ≤
κ

F0

≤
κ

F0

����
free scalar

≃ 0.6223… ð18Þ

The values of κ are also known for free fermions [59], the
EMI model [17], as well as for holographic theories dual to
Einstein gravity [94]. In each of those cases, one finds
ðκ=F0Þjfree fermion ≃ 0.3297, ðκ=F0ÞjEMI ¼ 1=π ≃ 0.3183,
ðκ=F0Þjholography ¼ 2Γ½3

4
�2=Γ½1

4
�2 ≃ 0.2285, always in agree-

ment with Eq. (18). Naturally, using Eq. (18) we can obtain
putative bounds for κ for any CFT for which F0 is known.
Evaluating this coefficient for additional theories would be
another way of testing our general conjecture.
Discussion.—In this Letter we have presented evidence

in favor of a new conjecture for the EE universal coefficient
of general three-dimensional CFTs. As we have seen, the
conjecture fits very well with previous results like the HM
bounds in d ¼ 4 as well as with the fact that FðAÞ=F0 is
bounded below by the number of connected boundaries of
A for general theories. Naturally, it would be very interest-
ing to find a proof (or a counterexample) to our conjectures.
This would entail a better understanding of what makes the
free scalar theory special from an entropic point view.
An obvious question is whether our conjecture may also

extend to higher dimensions. In d ¼ 5, an analogous
putative upper bound corresponding to a free scalar would
imply—via the perturbed spheres EE [32],

CT

F0

����
d¼5

≤
CT

F0

����
d¼5

free scalar
≃ 0.314 221… ð19Þ

The analogous bound on the strip coefficient would be

κ

F0

����
d¼5

≤
κ

F0

����
d¼5

free scalar
≃ 0.228 104… ð20Þ

In both cases, the lower bound provided by the Maxwell
field would always be trivially satisfied, since F0 diverges
for that theory [95]. It is easy to check that both Eq. (19)
and Eq. (20) are satisfied for free fermions as well as for
holographic theories. A related question is whether or not
the round S3 is the entangling surface with the smallest
FðAÞ in d ¼ 5. A study of the d ¼ 6 case would also be
interesting. This would be trickier than in d ¼ 4 since there
are four trace-anomaly coefficients rather than two, and the

FIG. 2. We plot the EE universal coefficients corresponding,
respectively, to a corner region of opening angle θ, and an ellipse
of eccentricity e—both normalized by F0—as functions of those
parameters for a free scalar (blue), a free fermion (red), the EMI
model (dashed orange) and holographic Einstein gravity (gray).
In all cases, the free scalar one lies above the curves of all the rest
of the theories. The Maxwell field is a trivial lower bound of
constant value (0 and 1, respectively) in both cases.
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geometric expression of S6dlogðAÞ is considerably more
involved [96,97].
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03 (2018) 150.
[55] N. Bobev, A. M. Charles, K. Hristov, and V. Reys, J. High

Energy Phys. 08 (2021) 173.
[56] N. Bobev, A. M. Charles, K. Hristov, and V. Reys, Phys.

Rev. Lett. 125, 131601 (2020).
[57] H. Osborn and A. C. Petkou, Ann. Phys. (N.Y.) 231, 311

(1994).
[58] M. Marino, J. Phys. A 44, 463001 (2011).
[59] H. Casini and M. Huerta, J. Phys. A 42, 504007 (2009).
[60] H. Liu and A. A. Tseytlin, Nucl. Phys. B533, 88 (1998).
[61] S. Ryu and T. Takayanagi, J. High Energy Phys. 08

(2006) 045.
[62] C. A. Agón, P. Bueno, and H. Casini, J. High Energy Phys.

08 (2021) 084.
[63] S. Giombi and I. R. Klebanov, J. High Energy Phys. 03

(2015) 117.
[64] K. Diab, L. Fei, S. Giombi, I. R. Klebanov, and G.

Tarnopolsky, J. Phys. A 49, 405402 (2016).
[65] A. Petkou, Ann. Phys. (N.Y.) 249, 180 (1996).
[66] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D.

Simmons-Duffin, and A. Vichi, Phys. Rev. D 86, 025022
(2012).

[67] F. Kos, D. Poland, and D. Simmons-Duffin, J. High Energy
Phys. 06 (2014) 091.

[68] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena,
J. High Energy Phys. 10 (2008) 091.

[69] A. Kapustin, B. Willett, and I. Yaakov, J. High Energy Phys.
10 (2010) 013.

[70] M. Marino and P. Putrov, J. Stat. Mech. (2012) P03001.
[71] T. Nishioka and I. Yaakov, J. High Energy Phys. 10

(2013) 155.
[72] S. M. Chester, J. Lee, S. S. Pufu, and R. Yacoby, J. High

Energy Phys. 09 (2014) 143.
[73] D. J. Binder, S. M. Chester, M. Jerdee, and S. S. Pufu,

J. High Energy Phys. 05 (2021) 083.
[74] L. F. Alday, S. M. Chester, and H. Raj, J. High Energy Phys.

02 (2022) 005.
[75] S. Codesido, A. Grassi, and M. Mariño, J. High Energy

Phys. 07 (2015) 011.
[76] N. B. Agmon, S. M. Chester, and S. S. Pufu, J. High Energy

Phys. 06 (2018) 159.
[77] N. Bobev, J. Hong, and V. Reys, J. High Energy Phys. 02

(2023) 020.
[78] The results displayed in Fig. 2 are obtained using a

combination of analytic methods (in the limiting cases of

very thin and almost round ellipses), lattice calculations, and
certain trial functions defined in [10] which approximate the
exact curves. In all cases, the small uncertainties in the
approximations will not alter the hierarchy of theories
shown in the figure.

[79] H. Casini and M. Huerta, Nucl. Phys. B764, 183
(2007).

[80] H. Casini, M. Huerta, and L. Leitao, Nucl. Phys. B814, 594
(2009).

[81] P. Bueno, R. C. Myers, and W. Witczak-Krempa, Phys. Rev.
Lett. 115, 021602 (2015).

[82] P. Bueno, R. C. Myers, and W. Witczak-Krempa, J. High
Energy Phys. 09 (2015) 091.

[83] H. Elvang and M. Hadjiantonis, Phys. Lett. B 749, 383
(2015).

[84] T. Hirata and T. Takayanagi, J. High Energy Phys. 02
(2007) 042.

[85] J. Helmes, L. E. Hayward Sierens, A. Chandran, W.
Witczak-Krempa, and R. G. Melko, Phys. Rev. B 94,
125142 (2016).

[86] S. Whitsitt, W.Witczak-Krempa, and S. Sachdev, Phys. Rev.
B 95, 045148 (2017).

[87] P. Bueno and W. Witczak-Krempa, Phys. Rev. B 93, 045131
(2016).

[88] L. Tagliacozzo, G. Evenbly, and G. Vidal, Phys. Rev. B 80,
235127 (2009).

[89] A. B. Kallin, K. Hyatt, R. R. P. Singh, and R. G. Melko,
Phys. Rev. Lett. 110, 135702 (2013).

[90] E. M. Stoudenmire, P. Gustainis, R. Johal, S. Wessel, and
R. G. Melko, Phys. Rev. B 90, 235106 (2014).

[91] A. B. Kallin, E. M. Stoudenmire, P. Fendley, R. R. P. Singh,
and R. G. Melko, J. Stat. Mech. (2014) P06009.

[92] S. Sahoo, E. M. Stoudenmire, J.-M. Stéphan, T. Devakul,
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