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Facultad de Matemática, Astronomı́a, F́ısica y Computación,
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We introduce hp-greedy, a refinement approach for building gravitational wave surrogates as an
extension of the standard reduced basis framework. Our proposal is data-driven, with a domain de-
composition of the parameter space, local reduced basis, and a binary tree as the resulting structure,
which are obtained in an automated way. When compared to the standard global reduced basis
approach, the numerical simulations of our proposal show three salient features: i) representations
of lower dimension with no loss of accuracy, ii) a significantly higher accuracy for a fixed maximum
dimensionality of the basis, in some cases by orders of magnitude, and iii) results that depend on
the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts
of our approach with a toy model and then present a more realistic use case of gravitational waves
emitted by the collision of two spinning, non-precessing black holes. We discuss performance as-
pects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other
hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we
envision: i) a further acceleration of statistical inference, which might be complementary to focused
reduced-order quadratures, and ii) the search of gravitational waves through clustering and nearest
neighbors.

I. INTRODUCTION

Gravitational waves (GWs) are perturbations of space-time produced by massive accelerating objects, predicted by
Einstein’s equations for General Relativity (GR). Since 2015, when they were directly measured for the first time [1],
they have become a new window to the universe, in addition to electromagnetic radiation.

When studying GWs, the ones produced by coalescing compact binary systems are widely considered. These are the
strongest ones and hence the easiest to measure. Also, they provide information of the strong field regime of gravity.
To model the waves emitted when the merger in a binary coalescence occurs, Numerical Relativity (NR) is needed, a
task that requires expensive computational power. For example, a single simulation of a binary black hole system can
cost 104 − 105 CPU hours [2]. Furthermore, some studies are only feasible if the GWs can be computed fast enough,
in real or quasi-real time, as in parameter estimation [3–5] and matched filtering [6–8]. Therefore, developments that
enable model evaluation and analysis in a fast and accurate way are necessary.

The use of the reduced basis method [9–13] has been largely adopted in GW science [14–20], both for building
surrogate models and for statistical inference, significantly reducing the associated computational costs while retaining
high accuracy –see [21] for a review. Existing approaches in this application domain have normally used a global basis,
similar in spirit to spectral methods. In fact, the reduced basis approach is sometimes referred to as a domain-specific
spectral expansion. However, there are cases in which being able to partially localize the basis is useful and might
have significant performance effects. In this paper we do so by proposing an hp-greedy refinement approach [22].
From a numerical relativity perspective, hp-greedy is similar to spectral elements [23] but partitioning the parameter
domain instead of the physical one (space-time). As we discuss, this strategy has several advantages when compared
to a global approach, most prominently: a higher accuracy basis for the same number of elements, faster surrogate
evaluations, and faster statistical inference.

The organization of this paper is as follows. In Section II we describe in detail the hp-greedy reduced basis
framework, its algorithms and supporting notation. In Section III we illustrate its application to a toy model with
an intended strong discontinuity in the parameter space. In Section IV we apply the framework to the case study of
the gravitational waves emitted by the collision of two spinning, non-precessing black holes in an initial quasi-circular
orbit. We close in Section V with comments and possible future directions of research.
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II. HP-GREEDY REDUCED BASIS

The hp-greedy approach leverages the standard reduced basis method, building a partitioning (h-refinement) of the
parameter space and a reduced basis (p-refinement, here denoted as RB) for each partition.

A global reduced basis is initially built. It this basis is not as accurate and compact as wanted, the domain is
partitioned and new local bases are built in each subdomain. The idea is to find reduced bases for spaces with lower
complexity by means of a divide-and-conquer strategy.

The partitioning is adaptive and recursive. It depends on how the structure of the solutions vary in parameter
space, allowing to focus the partitioning where it is needed, stopping when the local basis is sufficiently accurate or
after a maximum number of partitions.

This section explains the h and p refinement procedures (subsections II A and II B) and how they work in synergy
to obtain the hp-greedy approximation (subsection II C).

A. p-refinement

This is the standard reduced basis method (RBM). It is referred to as p-refinement borrowing language from spectral
methods [23, 24], where the basis are polynomials (thus, the “p”) and the refinement part refers to the property that
the representation error decreases as the degree of the polynomial increases. By analogy, then p-refinement in this
context means that the error of the reduced basis representation decreases as the dimensionality n of the basis
increases.

The RBM is traditionally targeted to computationally-intensive parametrized problems which require multiple
queries. It is an alternative to repeatedly solving the full problem, which might not be feasible or realistic in practice,
allowing for compact and accurate representations of the elements under study. In the case of GW modeling, the
golden standard for solving the full problem is numerical solutions of the Einstein equations on supercomputers,
which tends to be a remarkably difficult and expensive task. The RBM has allowed the construction of surrogate
predictive models which are essentially indistinguishable from numerical relativity supercomputer simulations but can
be evaluated in less than a second on a standard laptop.

The RBM starts with a solution space of functions F := {hλ := hλ(t) := h(λ, t)}, where λ is a parameter, in general
multi-dimensional, in a compact domain D. In our application, h(t) is a complex time series: a gravitational wave.
More specifically, λ can denote, for example, the masses and spins of each black hole in a binary collision.

A sampling of F is used to form a training set T := {hi = hλi , i = 1 . . .m} for a number m of parameter values
{λi}mi=1. The training set is used to build a compact reduced basis {ei}ni=1, with n << m in general, the compression
ratio being n/m, which represents T through its linear span of the form

h(t) ≈
n∑
i=1

ciei(t) ,

and furthermore, through validation, the original space F within a prescribed accuracy ε or a maximum dimension
nmax. The choice of the coefficients {ci} should be such that the approximation is optimal, o quasi-optimal, in a
precise mathematical sense.

1. Searching for an optimal reduced basis

A basis of dimension n, being optimal with respect to the maximum error in the parameter space, is characterized
by the Kolmogorov n-width [25],

dn := min
{ei}ni=1

max
λ∈D

min
ci,λ∈C

‖hλ(·)−
n∑
i=1

ci,λei(·)‖2 . (1)

It measures the maximum representation error in parameter space, given by an optimal basis and the optimal coeffi-
cients {ci,λ}, in the norm ‖ · ‖. In our case, the latter is given by

‖hλ(·)‖2 :=

∫ tf

ti

dt |hλ(t)|2, (2)
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inherited from the scalar product

〈h1, h2〉 :=

∫ tf

ti

h̄i(t)hf (t) dt , (3)

where the bar indicates complex conjugation.
If a basis is fixed in Equation (1), the first minimization problem, i.e., the minimum over the coefficients {ci,λ},

turns to be a least squares one for those coefficients. There is a unique solution to this problem: it is the orthogonal
projection Pn with respect to the scalar product (3) to the span of the reduced basis [21]. The n-width then takes
the form

dn = min
{ei}ni=1

max
λ∈D

‖hλ(·)− Pnhλ(·)‖2 . (4)

In some cases, the n-width can be calculated theoretically [26]. More generally, for functions with its first (r − 1)
derivatives continuous with respect to parameter variation, and for functions with C∞ dependence, it can be proven

that the n-widths are given by dn ∼ n−r and dn ∼ e−an
b

, respectively [30]. These can be thought of as theoretical
bounds to the approximation error of a reduced basis. In the case of GWs, they do depend smoothly with respect to
parameter variation, thus an optimal basis has asymptotic exponential convergence with n [20, 27]; this explains the
existence of compact reduced bases of high accuracy (typically machine precision in GW science).

The task of finding an optimal reduced basis is of combinatorial complexity and unfeasible in practice: all combi-
nations of basis elements must be evaluated in order to find one achieving the optimal n-width. Therefore, computa-
tionally cheaper approaches become attractive. An effective one is through a greedy algorithm, which is quasi-optimal
in a precise mathematical sense, highly parallelizable, and of linear complexity; for more details see [21].

2. Greedy algorithm to build a quasi-optimal reduced basis

This approach consists of an iterative procedure, in which the basis is built from a training set T , and at each
iteration, a new basis function is added to the basis set so that the overall precision is improved. The procedure is said
to be greedy in the usual optimization sense: at each iteration, the algorithm chooses the worst element represented
from T as a new basis function to be added. The training error of a basis of dimension n (we also refer to it as the
greedy error) is defined as

σn := max
λ
‖hλ − Pnhλ‖2. (5)

In our validation tests, we use an independent validation set of test functions and compute the equivalent of this error;
we refer to it as the maximum validation error.

From a computational point of view, the cost of enriching a reduced basis with a new element is independent of the
dimension of the basis already built, and linear with respect to the size of the training set. In terms of accuracy, the
algorithm finds a nearly-optimal basis with respect to the Kolmogorov measure: if dn decays as a power law, so does
the greedy error σn, and if dn decays exponentially with n, the same applies to σn [28–30].

A pseudocode of the greedy procedure is presented in Algorithm 1, whose main points are explained next:

• As input, a training set T of size m is given, along with its associated parameters {λi}mi=1, the target maximum
training representation error ε, and the maximum dimension nmax of the basis.

• First, a function of T is chosen and defined as the first element or seed of the reduced basis (Step 1). Note that
for a global basis, this choice is not relevant [31]; as we will see, this is very different in hp-greedy. Next, the
basis is enriched iteratively with the function of T that is worst represented by an orthogonal projection onto
the span of the basis (the corresponding parameter is found in Step 4).

• From a practical viewpoint, the different solutions might be almost linearly dependent, resulting in a large
conditioning number of the Gram matrix [32] used to calculate the projections. Therefore, it is convenient to
orthonormalize the solutions to obtain the basis functions. Here, a Gram-Schmidt orthonormalization algorithm
[33] is applied (Steps 5 and 6).

• The representation error σn is computed at each iteration (Step 8).

• The algorithm ends when σn ≤ ε or n = nmax, with a reduced basis of dimensionality n, built with hΛ =
{hΛi}ni=1, where Λ = {Λi}ni=1 are referred to as the greedy parameters.
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• The outputs are the reduced basis RB, Λ, and σ.

Algorithm 1 GreedyRB(λ, hλ, ε, nmax)

input: λ, hλ, ε, nmax

1: i = 1, σ = 1, Λ1 = λ1, RB = {hΛ1/‖hΛ1‖}
2: while σ > ε and i < nmax do
3: i = i+ 1
4: Λi = argmaxλ‖hλ − Pi−1hλ‖2 (selection of greedy parameter)
5: ei = hΛi − Pi−1hΛi (Gram-Schmidt)
6: ei = ei/‖ei‖ (normalization)
7: RB = RB ∪ {ei}
8: σ = maxλ ‖hλ − Pihλ‖2 (representation error)
9: end while

output: RB,Λ = {Λi}ni=1, σ

B. h-refinement

The terminology h-refinement is borrowed from finite differences/elements, where the size of each cell on the mesh
is often denoted by h. In the context of differential equations, h-refinement then refers to improving the accuracy of
the quantity of interest by decreasing h, either by adding more points per domain or by decreasing the size of the
latter. We will not elaborate much on this analogy here, it suffices to say that in this context we deal with a domain
decomposition in parameter space, which is recursively partitioned and results in a binary tree structure.

We introduce some notation:

V = parameter space for a given subdomain

D = ∪V , entire parameter space

V1, V2 = partitions of V

ΛV = greedy parameters for V

Λ̂V = ΛV [1] , anchor point for V

Λ̂V1
, Λ̂V2

= ΛV [1] or ΛV [2]

Each (sub)domain V ⊆ D has an anchor point, which we denote by Λ̂V . For the domain decomposition or partitioning

of V, we assume that the anchor points Λ̂V1
, Λ̂V2

are known and a sampling of V, λV , is given. A proximity function
d = d(λ1, λ2),

d(λ1, λ2) = ‖λ1 − λ2‖2 ,

is used to find the anchor point being closest to each parameter of λV . Then, two sets of parameters λV1
, λV2

are
created, each one with the parameters nearest to one of the two anchor points. In case a point is at the same distance
from the two anchor points, it can be arbitrarily assigned to any of the sets, or both. Finally, λV1

and λV2
are returned,

representing a sampling of the partitions V1 and V2, respectively. A pseudocode for domain decomposition through a
binary partitioning is described in Algorithm 2.
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Algorithm 2 Partition(λV , Λ̂V1
, Λ̂V2

)

input: λV , Λ̂V1 , Λ̂V2

1: λV1 = ∅ = λV2

2: for each λi ∈ λV do
3: if d(λi, Λ̂V1) < d(λi, Λ̂V2) then
4: λV1 = λV1 ∪ {λi}
5: else if d(λi, Λ̂V1) > d(λi, Λ̂V2) then
6: λV2 = λV2 ∪ {λi}
7: else
8: λV ′ = random choice([λV1 , λV2 ])
9: λV ′ = λV ′ ∪ {λi}

10: end if
11: end for

output: λV1 , λV2

As the initial parameter domain D is decomposed, the recursive partitions are structured in a binary tree, in which
each node corresponds to a subspace obtained with Algorithm 2. The maximum number of levels ` among all branches
of the tree (i.e., its depth) is denoted by `max , 0 ≤ ` ≤ `max, where ` = 0 represents the case with no partitioning at
all (i.e., the standard reduced basis approach). Each node at level ` is labeled by a series of indices B` as

B` = (0, i2, . . . , i`) ,with ij = {0, 1} ,

where, by convention, i = 0 for the left leave and i = 1 for the right one. For example, the root (` = 0) comprises the
whole parameter domain and is labeled by

B0 = (0, ) ,

and its two children (` = 1) by

B1 = (0, 0) or (0, 1) .

Figure 1 gives an example of the notation for a tree with `max = 2, where all leaves reach the maximum allowed
depth .

FIG. 1: Tree representing a partitioning of the parameter space. The index notation for the nodes of a tree of depth
`max = 2 is shown.

C. hp-greedy refinement

This approach combines h-refinement and p-refinement within the greedy reduced basis framework. In order to
decide whether to partition a given parameter domain, a reduced basis is built, with an accuracy threshold ε and
stopping criteria of nmax basis elements per subdomain, as in Algorithm 1. If the accuracy threshold is not reached,
then the anchor point of the domain to be split is used as the anchor point of its left children, and the second greedy
parameter of the reduced basis of the (parent) domain as the anchor point for the right children. Then, a binary
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domain decomposition is performed, as described in Algorithm 2. Next, a reduced basis for each child is built. Note
that the reduced basis from a parent node is not reused when building the bases for each of its children. The children
domains where ε is not reached within nmax greedy iterations are further split into two more children according to
Algorithm 2. This adaptive process continues until the accuracy threshold ε is achieved, the depth of the partition l
reaches lmax, or the number of training set parameters is exhausted. If the latter happens, it means that the accuracy
threshold cannot be reached with the prescribed nmax stopping criteria. The maximum allowed depth of the tree,
lmax , is referred to as early stopping in machine learning.

A pseudocode for this hp-greedy refinement [22] approach is presented in Algorithm 3.

Algorithm 3 hpGreedy(λV , hλV , ε, nmax, `, `max, B`)

input: λV , hλV , ε, nmax, `, `max, B`

1: RB,ΛV , σ = GreedyRB(λV , hλV , ε, nmax)

2: if σ > ε and ` < `max then
3: Λ̂1 = ΛV [1]

4: Λ̂2 = ΛV [2]

5: λV1 , λV2 = Partition(λV , Λ̂1, Λ̂2)
6: out1 = hpGreedy(λV1 , hλV1 , ε, nmax, `+ 1, `max, (B`, 0))

7: out2 = hpGreedy(λV2 , hλV2 , ε, nmax, `+ 1, `max, (B`, 1))
8: out = out1 ∪ out2
9: else

10: out = {(RB,ΛV , hΛV , B`)}
11: end if

output: out

The first greedy parameter of the global basis (the seed of the algorithm), built for the first partition of the entire
domain D, can in principle be chosen arbitrarily (we will see that it does have an impact on the accuracy of the
resulting bases). Taking into account that the partitioning is carried out with the first two greedy parameters of the
reduced basis (Step 5 in Algorithm 3), we notice that the seed of the algorithm determines the first partition, and
thus, it also conditions the successive partitions and the reduced bases associated with those partitions. As we discuss
in Section IV, the seed is a relevant hyperparameter of the algorithm.

There is no rigorous rule for choosing nmax, lmax and the seed. From a machine learning perspective, a possible
approach to find them is through hyperparameter optimization, as they can be seen as hyperparameters of the
algorithm in the sense of being parameters whose values are set before the learning process begins.

The rationale of hp-greedy is that if the greedy error is decaying slowly, the number of greedy iterations in the
domain to be split gets too large, then the domain is partitioned (i.e., refined). The notion of a slowly decaying error
is problem-dependent.

III. A TOY MODEL APPLICATION

We illustrate how hp-greedy reduced basis works for a toy model of functions that we artificially constructed with
an intended strong discontinuity in the parameter space D. The hp-greedy procedure was run several times for a grid
of hyperparameters (`max, nmax), a fixed seed and a greedy tolerance ε = 10−10. For visualization purposes, we chose
D to be two-dimensional:

D := [0, 1]× [0, 1] ,

labeled by a tuple (α, β). Our chosen parametrized functions are of the form fα,β(x) : R→ R with x ∈ [0, 10] and

fα,β(x) :=

{
x1+β+α, β < 1/2

sin(βα+ x), 1/2 ≤ β
(6)
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After this choice, we normalized the functions so that

‖fα,β(·)‖2 :=

∫ 10

0

f2
α,β(x)dx = 1 ∀ (α, β) ,

to place emphasis on their structure rather than on their size. Examples of fα,β for different parameter values are
shown in Figure 2.

FIG. 2: A random sample of normalized functions fα,β for our toy model. As it can be seen, the functions have a
very different structure and there is a clear discontinuity in the parameter space.

We sampled a training set with 100 equispaced points per parameter dimension. That is, 100×100 numerical values
of (α, β) were chosen and used by hp-greedy to subdivide each domain. For the validation set, we used 101 different
(from those of the training set) equispaced points per parameter dimension.

To build hp-greedy models we used the open-source Python package Arby [34] to obtain a reduced basis for a given
training set of waveforms (Algorithm 1). In addition, special-purpose code was written to deal with the partitioning
of the domain (Algorithm 2) using hp-greedy (Algorithm 3).

A. Domain partitioning

By design, the algorithm is expected to automatically identify regions in the parameter space where functions have
dissimilar structures, and then recursively divide them into subdomains. Each subdomain has its own reduced basis,
with at most nmax elements, and is partitioned until a given threshold ε is reached or the depth of the tree ` is equal
to `max.

To illustrate hp-greedy in a specific example, we analyzed the successive partitions obtained at each step of the
algorithm, with `max = nmax = 5 and seed (α, β) = (0, 0), as exemplified in Figure 3. A darker color of the partition
indicates that the algorithm needed more steps to describe that subdomain; that is, the corresponding leave in the
tree is deeper (has a larger value of `) than those of the partitions with a lighter color.

The upper left plot corresponds to the first iteration of hp-greedy, in which the domain is divided into two parts,
using the first two greedy parameters of the global RB as anchor points. The next plot (on the right) shows the
second domain decomposition, in which each subspace (from the first iteration) is partitioned using the first two
greedy parameters of its associated RB. The plots below show the partitionings of the following iterations. In this
case the algorithm had to do more partitions in the region around the discontinuity, because the change of the functions
with parameter variation is larger than the places where there is no discontinuity and the variation of the functions
is smooth.

Figure 4 shows the resulting tree structure for this toy model. The two deepest leaves, with ` = 5, (0, 1, 0, 1, 0, 0)
and (0, 1, 0, 1, 0, 1), contain the region of the discontinuity, which is harder to represent when compared to a domain
with no discontinuity. These two nodes are associated with the subspaces in the center of the parameter space, which
are black-colored in the fifth plot of Figure 3.

To assess the behavior of the partitioning in a more extreme case, we let the algorithm keep partitioning with a
larger lmax: we set `max = 8 and nmax = 4. The result is shown in Figure 5. In this case, it can also be seen
that the algorithm performed more partitions in the region of the discontinuity, almost “detecting” the discontinuity.
Furthermore, the partitioning stopped earlier in those subspaces with no discontinuity.
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FIG. 3: Successive partitions performed by hp-greedy for the toy model, with `max = nmax = 5. The leaves depth is
the value of ` of that subdomain. The yellow squares denote the anchor points obtained by the hp-greedy algorithm

to partition the parameter space.

B. Convergence

Figure 6 presents some results for different combinations of hyperparameters (nmax, `max) using validation data.
The first aspect to emphasize here is the observed spectral convergence: for a fixed `max, the validation errors decay
exponentially as a function of nmax, even with a discontinuity in the parameter space. It is unclear to us why this
is so even for `max = 0, (i.e. no partitioning) and without evidence of Gibb’s phenomenon [9, 24]; we speculate that
this effect should appear at very high resolutions, below our chosen threshold ε = 10−10.

We now focus on the differences between a global basis, `max = 0, and partitioning, `max > 0, by comparing them
for a given maximum dimensionality nmax for each basis 1. This comparison can be qualitatively seen by fixing nmax
in the left panel of Figure 6. Except for cases of very low dimensionality and poor accuracy (ε < 10−2, nmax < 3),
we notice that increasing `max significantly improves the maximum validation error. As an example, for nmax = 5,
from a global basis `max = 0 to, say, `max = 5, there are around four orders of magnitude improvements in the error.

We finally focus on the value of nmax needed to achieve a given representation error for different values of lmax.
This analysis is appealing because a model with a lower nmax and the same or better accuracy can yield faster
representations for the same precision. This happens because the dimensionality of the basis is a key point when
evaluating a representation or surrogate, and it could be a way to accelerate statistical inference, as discussed in
Section V. In our study, it can be seen that a model with partitioning can have a lower nmax than a model with

1 We point out that the total number of basis elements is, in general, larger if there is a partition of the parameter space (`max > 0)
because there are more basis with the same constraint: a dimension less or equal than nmax.
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FIG. 4: Tree produced by the hp-greedy algorithm for the toy model with `max = nmax = 5. For leaves with depth
` < `max, hp-greedy stopped when reaching the threshold training error ε = 10−10.

FIG. 5: Partitions performed by hp-greedy for the toy model, with `max = 8 and nmax = 4. Notice that hp-greedy
needed to refine notably more close to where the discontinuity is located, at β = 0.5.

no partitioning and the same or lower error. For example, for an error of 10−6, models with lmax = 2, 3, 4, 5 have a
comparable or lower error than the case without partitioning (see Figure 6).

C. Overfitting

Overfitting is a well-known behavior in machine learning, which entails that the learning process does not improve
indefinitely when using more complex models; in fact, the errors might become worse [35]. This effect becomes evident
when the training error decreases, but the opposite happens with the validation errors.

As the successive partitions of hp-greedy can be structured in a tree, overfitting in our approach can be related to
the standard overfitting pattern of decision trees. If the maximum depth `max is large enough, the training data can be
very well represented, but using validation data will likely show overfitting. In other words, there is a tradeoff between
accuracy and tree depth when training while avoiding overfitting. Hyperparameter optimization can be approached
in a number of ways to deal with this tradeoff, this aspect is left to future work.

In our numerical experiments for the toy model, we found that –as expected– for certain, but not all, values of
nmax, larger values of `max lead to models with higher accuracy models for the training data; however, after a certain
value, the maximum validation errors start increasing, up to orders of magnitude. In the left panel of Figure 7 we
show how overfitting takes place for nmax = 3: it starts at `max = 8 and the difference between maximum training
and validation error gets larger than three orders of magnitude. Nonetheless, this pattern of overfitting did not appear
in our experiments for all values of nmax. The right panel of Figure 7 shows the behavior of the validation error for
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multiple values of (nmax, `max). It can be seen that for nmax > 4 an increase in `max does not necessarily result in
overfitting.

FIG. 6: Maximum validation errors for different values of nmax and `max for the toy model. The dashed blue curve
shows the results using a global basis (no refinement), while the other curves are based on hp-refinement.

FIG. 7: Left: Training and validation errors for the toy model of Section III with nmax = 3. Overfitting is present,
starting at `max = 8. Right: Maximum validation errors for different values of nmax and `max for the toy model.

Overfitting is present for nmax ≤ 4 when increasing `max.

IV. GRAVITATIONAL WAVES FROM SPINNING BLACK HOLE COLLISIONS

We discuss the results of hp-greedy refinement using the physical setup of the GWs emitted by the collision of two
spinning, non-precessing binary black holes initially in quasi-circular orbit. We use the hybrid numerical relativity
(NR) and post-Newtonian (PN) surrogate NRHybSur3dq8 [36] as starting point.

Each waveform h is represented by a complex time series, h = h+− ih×, where h+ and h× are the two polarizations
of the gravitational wave. The time domain used in Ref. [36] is [−5.4× 108, 135]M , the long time interval explained
by the use of PN approximations at early times, where t = 0 represents the peak of amplitude of the waveforms and
M is the total mass of the binary system. A flat noise curve, l ≤ 4 and (5, 5) angular modes except for (4, 1) or (4, 0)
were used in the construction of the surrogate.

In the late inspiral part of the waveforms, starting at −3500M before the peak, the surrogate reproduces waveforms
with mismatches . 3 × 10−4; where the latter are evaluated computing out-of-sample errors, randomly dividing the
104 training waveforms into groups of ∼5 waveforms each and doing a cross-validation study. The errors are well
within the truncation error of the NR simulations, which are computed calculating the mismatch between the two
highest available resolutions of each NR waveform.

A. Datasets

In Ref. [36] the surrogate NRHybSur3dq8 was built in the parameter range of mass ratios 1 ≤ q ≤ 8 and dimen-
sionless spins −0.8 ≤ χ1z, χ2z ≤ 0.8. In this paper, we use those same ranges but only the dominant angular mode
` = m = 2 for simplicity and the sake of illustrating hp-greedy. Furthermore, in order to speed up our numerical
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experiments, we sampled NRHybSur3dq8 waveforms in the late inspiral part and merger regimes t ∈ [−3000, 130]M ,
with ∆t = 0.1M . We also normalized the waveforms with respect to the L2 norm (Equation 2), to put emphasis on
structure/shape, instead of size/amplitude.

We studied three different cases, namely:

• 1D: No spin, the only free parameter is q = m1/m2, due to the scale invariance of GR.

• 2D: Two aligned spins with the same magnitude are added to the 1D case, meaning that χ1z = χ2z.

• 3D: The two spins are allowed to vary, but independently: in general, χ1z 6= χ2z.

Regarding training and validation sets, in the 1D case we generated two different sets of 500 waves to train and
validate. For the 2D and 3D cases, we used 3,000 waves to train and 1,000 waves to validate.

FIG. 8: Visualization of the real part of training waveforms. Each one has a different associated parameter value for
the tuple (q, χ1z, χ2z).

B. hp-greedy refinement, dependence on seed

In our numerical experiments we set the greedy tolerance at double precision, ε = 10−16. As explained in Sec-
tion II C, a seed is used as the anchor point for hp-greedy to initialize the whole algorithm and build local reduced
bases. For a fixed seed, we built a number of hp-greedy bases with different values of (nmax, lmax) and manually
chose, for each nmax, the lmax value leading to the highest accuracy multidomain representation. Since overfitting
appears for large values of lmax, as discussed in Section III C, our 1D explorations were restricted to 0 ≤ `max ≤ 9,
and 0 ≤ `max ≤ 5 in 2D and 3D.

With respect to the algorithm seed, it has been consistently found [31, 37] through numerical experiments that
for global reduced bases, its choice is irrelevant because the greedy algorithm performs a global optimization –see
for example Figure 1 of [31]. Interestingly, for hp-greedy and local bases, we found that the seed choice is highly
relevant, and the accuracy of the resulting bases does depend on its choice. This situation is exemplified in Figure 9;
for example, in the 2D case there are differences of up to three orders of magnitude in the error when varying the
seed. In fact, it is possible that extensive seed searches might reveal larger differences. Therefore, for hp-greedy the
seed should be taken as another hyperparameter of relevance, which is one of the main findings of this work.

In Figures 10 and 11 we show the domain decomposition obtained by hp-greedy for the parameter space in 1D
and 2D, respectively, for different seed choices. It can be qualitatively seen that there is a significant impact on the
partitioning of the domain.

We observed that almost all the trees of the resulting models are balanced and with depth ` = `max, unlike the
toy model of Section III. This means that in our numerical experiments hp-greedy did not find specific regions where
more refinement was needed. Examples of this behavior are shown in Figures 10 and 11.
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FIG. 9: From top to bottom, hp-greedy results are shown for 1D, 2D and 3D cases, using different seeds. Each curve
in the left panels shows the highest accuracy model for each nmax, choosing the “optimal” value of `max. Unlike a
global, standard reduced basis approach, in hp-greedy there is a strong dependence of the achieved errors on the

seeds used. The right panels show the ratios between the errors of the two models of each left panel; we can observe
up to three orders of magnitude of difference in the errors when varying the seed.

FIG. 10: Domain decompositions obtained with hp-greedy in the 1D gravitational wave case, using mass ratios
q = 1 and q = 8 as seeds (left and right panel, respectively), nmax = 5 and lmax = 4. The dependence on the seed

can be qualitatively noticed.

C. Convergence

We assessed the convergence of hp-greedy with respect to nmax, choosing for each value the highest accuracy model
when varying the seed and `max, and comparing against a global basis (i.e., the standard approach). The results for
the 1D, 2D, and 3D cases are shown in Figure 12. On one hand, there are always accuracy improvements at fixed
nmax, in some cases by several orders of magnitude. On the other hand, for all cases, bases with lower dimension
nmax are obtained for a fixed accuracy. As we discuss in Section V, smaller values of nmax are related to shorter
evaluation times and hence faster statistical inference. For hp-greedy, we notice an exponential convergence from the
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onset, nmax ≥ 1. In contrast, for a global basis, this spectral convergence appears asymptotically, i.e., for sufficiently
large values of nmax.

FIG. 11: Domain decompositions obtained with hp-greedy using different seeds for the 2D case. In order, from left
to right, the figures have seeds located at (1,−0.8,−0.8) and (8, 0.8, 0.8). For pure visualization purposes and

definiteness, hyperparameter values `max = 4 and nmax = 20 were arbitrarily used. In these cases the leaves have
the same depth, and also the highest possible. This means that lower depths were not enough for every subspace
and the algorithm stopped in each leaf because of the value of `max. The impact of the seed choice on the domain

decomposition is apparent.

FIG. 12: Convergence of best performing hp-greedy models compared to the one of a global reduced basis (labeled
as “Standard RB”) for the 1D, 2D and 3D cases, from left to right and top to bottom.

V. DISCUSSION AND FUTURE WORK

In this work, the usage of hp-greedy refinement in reduced basis within GW science is proposed, as a framework for
partitioning the parameter space in an unstructured way and building a set of local reduced basis. This framework
is a generalization of the standard reduced basis approach (which can be obtained as a special case by setting the
hyperparameter lmax = 0), and aims at improving the accuracy and compactness of a reduced basis representation.

One main conclusion from our numerical experiments with hp-greedy is that the seed of the algorithm should be
treated as an hyperparameter, in addition to nmax and `max, since in general it does affect the accuracy of the resulting
reduced bases. This behavior differs from the standard reduced basis framework, in which there is no partitioning of
the parameter space, and the accuracy of the basis is insensitive to the seed choice. In addition, in the applications
studied here, the seed choice does show a qualitatively noticeable impact on the structure of the domain partition.

It is known that a global reduced basis obtained with a greedy approach is a quasi-optimal approximation. This
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means that it is difficult (or theoretically almost impossible) to reduce its dimensionality without accuracy loss: hp-
greedy overcomes this challenge by partitioning the parameter space. From a simple two-dimensional model with a
discontinuity in the parameter space, we concluded that the approach works with a reduction of the dimensionality
needed for the bases to represent the function space for almost every precision used. Moreover, we have found that
this improvement holds when applied to the more realistic case of two colliding spinning black holes, up to three
dimensions, which is the highest dimensionality considered in this work. We have also found improvements in the
accuracy for a fixed maximum dimensionality of the bases, nmax.

We envision several applications of our approach. One potential use case is to further accelerate statistical inference,
for example in parameter estimation of the source of a detected gravitational wave, using reduced order quadratures
(ROQ) [5, 38–41]. In more detail, parameter estimation serves to compute likelihoods, which involve integrals being
often computationally expensive and requiring multiple on-demand sequential evaluations (e.g., via Markov chain
Monte Carlo simulations). ROQ accelerates this process by constructing an application-specific quadrature rule using
a reduced basis and the Empirical Interpolation Method [5], with a cost proportional to the dimensionality of the
basis. Along this line, ROQ likelihood computations can be accelerated by using a multi-domain hp-greedy basis,
since, for any given precision, the dimensionality of each local basis is expected to be smaller than that one of a global
approach. This perspective would be similar in spirit to focused ROQ [39], where a reduced basis is constructed in a
region close to the parameters found in the trigger part of the detection pipeline.

In any application of hp-greedy, the domain partition corresponding to any value of a parameter λ must be found
in order to use the sub-space associated with a leaf that contains that value. Having a tree structure to divide the
parameter space allows us to perform a fast search. This entails a binary search in which each node contains a pair
of anchor points Λ̂V1

and Λ̂V2
. Then, for a given parameter value λ, we can compute its distance to a pair of anchor

points to descend one level in the tree, choosing the node that contains the closest anchor point with respect to that
distance. The distance comparisons can begin with the anchor points of the root of the tree until reaching a leaf,
being associated with a local reduced basis, that represents the sub-space where λ is located. For example, if the
tree is balanced and there are n sub-spaces as leaves, the computational cost of the search becomes O(log n), which
improves the O(n) cost required if one looks at each subspace one by one.

Besides surrogate modeling, a second use case for hp-greedy is the search for gravitational waves using a nearest
neighbors strategy, instead of the standard direct approach of comparing each candidate signal with a bank of templates
one by one.

Another natural application can be one in which a physical discontinuity in the parameter space is present, and
thus, a global reduced basis is likely to show slow convergence due to Gibb’s phenomena [24]. Some examples might
include: i) two compact objects with a non-vanishing impact parameter, for which there can be fly-off, or collision [42],
ii) the merger of two neutron stars or a mixed pair of a black hole and a neutron star, for which there can be a merger
into a larger neutron star, or to a black hole [43].

In future work, we plan to perform a systematic hyperparameter optimization to devise rules for choosing appropriate
seeds, nmax and `max, allowing us to build hp-greedy models with high accuracy in a faster way.
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