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We study the potential of the Quantum Chromodynamics axion in hot and/or dense quark matter,
within a Nambu-Jona-Lasinio-like model that includes the coupling of the axion to quarks. Differ-
ently from previous studies, we implement local electrical neutrality and β−equilibrium, which are
relevant for the description of the quark matter in the core of compact stellar objects. Firstly we
compute the effects of the chiral crossover on the axion mass and self-coupling. We find that the low
energy properties of axion are very sensitive to the phase transition of Quantum Chromodynamics,
in particular, when the bulk quark matter is close to criticality. Then, for the first time in the
literature we compute the axion potential at finite quark chemical potential and study the axion
domain walls in bulk quark matter. We find that the energy barrier between two adjacent vacuum
states decrease in the chirally restored phase: this results in a lower surface tension of the walls.
Finally, we comment on the possibility of production of walls in dense quark matter.
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is a fundamen-
tal quantum field theory that provides a comprehensive
framework for describing the strong interaction, which is
characterized by a variety of remarkable features includ-
ing color confinement, chiral symmetry breaking, and the
U(1)A anomaly. QCD is invariant under gauge transfor-
mations belonging to the SU(3) color group; however,
gauge invariance does not forbid the term

Lθ ∝ θF · F̃ (1)

in the QCD Lagrangian density. In (1), F and F̃ denote
the gluon field strength tensor and its dual respectively,
while θ is a real parameter called the θ−angle. A θ 6= 0
would imply an explicit breaking of the charge conjuga-
tion, C, and parity, P , symmetries and QCD would not
be invariant under CP transformations (thereby inducing
an electric dipole moment for the neutron [1]); however,
there is evidence that θ . 10−11 [2–8]. The fact that θ
is so small despite the fact that it is not forbidden by
gauge invariance is called the strong CP−problem. In
order to understand this problem it was suggested that a
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pseudoscalar field, a, exists and couples to the nontrivial
gluon field configurations via the Lagrangian density

La =
a

fa
F · F̃ ; (2)

then, including the θ−term (1) the CP−breaking La-
grangian would be

LCP = θF · F̃ +
a

fa
F · F̃ . (3)

Therefore, violations of CP in strong interactions would
be driven by θ + a/fa. The coupling of a to the gluon
field gives rise to a potential for a itself: it was then as-
sumed that this potential develops a minimum such that
〈a/fa + θ〉 = 0. Hence, the expectation value of a would
cancel the contributions to observables coming from the
θ−term in Eq. (3). This is called the Peccei-Quinn (PQ)
mechanism and leads to potential solution of the strong
CP−problem [9–16]. While the PQ mechanism is quite
elegant, it implies the existence of a light particle, the
QCD-axion (for simplicity we refer to this particle as the
axion in this article), which represents the quantum fluc-
tuation of the a field around 〈a〉. Axions are dark matter
candidates [11, 17–19], they could arrange in the form
of stars [20–34] and might form Bose-Einstein conden-
sates [35, 36].

Given the wide range in temperature and density of
the physical systems in which axions might play a role,
it is important to know how the properties of this par-
ticle vary by changing the environment, in particular
temperature and density. This is the main scope of the
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present study, in which we compute how the axion prop-
erties are affected by the temperature and the density of
the medium, focusing in particular to temperatures and
chemical potentials around the QCD chiral phase transi-
tions.

The use of perturbative methods to study the phys-
ical properties of axions around the QCD critical tem-
perature and/or in dense quark matter is questionable,
hence it is necessary to resort to QCD-like models and
effective field theories to explore physics in the moder-
ate energy scale. A commomly used effective theory is
the Chiral Perturbation Theory (χPT), which plays an
important role in the study of the vacuum structure of
QCD as well as the axion properties at low temperatures
by means of systematically expanding the action in pow-
ers of the momenta of the lighter mesons [37–42]. χPT
shows great advantages in the low energy regimes, for
example, its prediction of the topological susceptibility
at zero temperature [13] is in good agreement with the
lattice QCD results [43–45]. However, at high temper-
ature and/or large density, χPT cannot be used due to
the fact that it lacks information about the QCD phase
transitions. Consequently, the use of a QCD-like model
that is capable to accomodate axions and the QCD phase
transition is very welcome.

In this study, we use the Nambu-Jona-Lasinio (NJL)
model [48–52], to study the low energy properties of ax-
ions. The model incorporates the instanton-induced in-
teraction that is responsible of the breaking of the U(1)A
symmetry and is capable to describe the spontaneous
breaking of chiral symmetry as well as the coupling of
quarks to the axions. In comparison with previous stud-
ies, the use of the NJL model allows us to quantify the
effects of the QCD phase transitions on the low-energy
properties of the axion. We find that the chiral phase
transition substantially affects the axion mass and self-
coupling, particularly when the bulk of dense matter is
close to the critical endpoint: indeed, near the critical
endpoint, we find that the axion mass drops while the
self-coupling is enhanced. Both trends agree with previ-
ous model studies [53–57].

The main novelties of our work can be summarized as
follows. Firstly, we implement β−equilibrium and elec-
trical neutrality, keeping in mind potential applications
to compact stellar objects. When compared to previous
works, our approach has the merit to include the effect of
the chiral phase transition on the low-energy properties
of the axions. Secondly, we study the axion walls [58, 59]
and analyze how these could be produced in the cores of
compact stellar objects. We discuss for the first time how
chiral symmetry restoration in dense quark matter affects
the surface tension of the walls. We then briefly discuss
how these walls could form in the cores of compact stellar
objects.

The plan of the article is as follows. In Section II we
present in some detail the model we use to describe the
coupling of the QCD axion to hot and dense quark mat-
ter. In Section III we present the results on axion mass,

self-coupling, potential and walls at finite temperature
and density. Finally, in Section IV we present our con-
clusions. Natural units ~ = 1, c = 1 and kB = 1, are
used throughout the article.

II. THE MODEL

We work in the grand canonical ensemble formalism,
using T and µ as state variables, where µ denotes the
quark number chemical potential. We consider quark
matter of two light flavors with Lagrangian density is
given by [48–57, 60, 61]

L = q̄ (i/∂ + µ̂γ0 −m0) q + ē (i/∂ + µeγ0) e+ Lint. (4)

Here q denotes the quark field carrying Dirac, color and
flavor indices, while e is the electron field. m0 is the
current quark mass, that we take to be equal for u and
d quarks for simplicity. The quark chemical potential
matrix is

µ̂ =

(
µu 0
0 µd

)
⊗ 1c (5)

with 1c denoting the identity in color space and

µu = µ− 2

3
µe, µd = µ+

1

3
µe; (6)

µd = µu + µe in agreement with the requirement of
β−equilibrium. Moreover, the interaction term is taken
as [53–57]

Lint = G1 [(q̄τaq)(q̄τaq) + (q̄τaiγ5q)(q̄τaiγ5q)]

+8G2

[
ei

a
fa det(q̄RqL) + e−i

a
fa det(q̄LqR)

]
; (7)

in particular, the second line in the above equation cor-
responds to the U(1)A-breaking term that is responsible
of the coupling of the QCD-axion to the quarks [62, 63].
In the above equation, τa are matrices in the flavor space
with a = 0, . . . , 3; τ0 is the identity and τi with i = 1, 2, 3
are Pauli matrices, normalized as tr(τiτi) = δij/2. The
coupling constant G1 governs the U(1)A−invariant in-
teraction. Similarly, G2 regulates the strength of the
U(1)A−breaking term; the determinant in the latter is
understood in the flavor space.

The thermodynamic potential at one loop has been
discussed in the literature, see [53] and references therein;
it reads

Ω = Ωmf + Ω1−loop + Ωe. (8)

Here we take

Ωmf = −G2(η2 − σ2) cos(a/fa) +G1(η2 + σ2)

−2G2ση sin(a/fa), (9)

that represents the mean field contribution to Ω, with
σ = 〈q̄q〉, η = 〈q̄iγ5q〉. Moreover,

Ωe = −2T
4π

8π3

(
7π4

180
T 3 +

π2µ2
eT

6
+

µ4
e

12T

)
(10)
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is the contribution of the free, massless electrons. Finally,
Ω1−loop corresponds to the quark loop contribution, given
by

Ωq = −4Nc
∑
f=u,d

∫
d3p

(2π)3

[
Ep
2

+
1

2β
log(1 + e−β(Ep−µf ))(1 + e−β(Ep+µf ))

]
,

(11)

with β = 1/T . The dispersion laws of quarks are given
by

Ep =
√
p2 + ∆2, ∆2 = (m0 + α0)2 + β2

0 , (12)

with

α0 = −2 [G1 +G2 cos(a/fa)]σ + 2G2η sin(a/fa),

(13)

β0 = −2 [G1 −G2 cos(a/fa)] η + 2G2σ sin(a/fa).

(14)

We notice that the first integral in the right hand side
of Eq. (11) is ultraviolet divergent: we regularize this
divergence by cutting the integration at p = Λ. The set
of parameters we use is [53] Λ = 590 MeV, G0Λ2 = 2.435,
G1 = (1− c)G0, G2 = cG0, c = 0.2, m0 = 6 MeV.

The electron chemical potential is fixed for each value
of the pair (µ, T ) by imposing the electrical neutrality
condition

∂Ω

∂µe
= 0. (15)

This condition is important for potential applications to
the core of compact stars. Moreover, the condensates are
computed self-consistently by solving the gap equations

∂Ω

∂σ
= 0,

∂Ω

∂η
= 0, (16)

being sure that the solution σ = σ̄, η = η̄ corresponds to
the global minimum of Ω.

III. RESULTS

In Fig. 1 we plot −(σ/2)1/3 = −(〈ūu+d̄d〉/2)1/3 versus
T for several values of µ; the electron chemical potential
has been computed self-consistently by solving simultane-
ously the gap equations (16) and the neutrality condition
(15) for a = 0. In this case the η−condensate vanishes.

We notice that for all the values of µ considered, the
chiral condensate drops down in a narrow range of tem-
perature, signaling the approximate restoration of chiral
symmetry. This allows us to define a pseudo-critical tem-
perature, Tc, as the temperature where σ has its largest
variation. Tc drops as the chemical potential increases.

FIG. 1. Chiral condensate, -(σ/2)1/3, versus T for several
values of µ in the neutral ground state.

In addition to this, we notice that the variation of σ be-
comes sharper with µ: the smooth crossover at µ = 0
becomes a sharp transition at at large µ. This implies
the existence of a critical endpoint in the phase diagram:
we found it is located at (µCP, TCP) = (336MeV, 79MeV).
For completeness, at T = 0 the critical chemical potential
is µC = 393 MeV.

The axion mass and self-coupling are given by

m2
a =

d2Ω

da2

∣∣∣∣
a=0

, λa =
d4Ω

da4

∣∣∣∣
a=0

, (17)

where the derivatives are total derivatives, namely they
take into account that the two condensates depend on a,
and are understood at σ = σ̄, η = η̄, where σ̄ and η̄ are
the values of the condensates that minimize Ω. Since the
condensates depend on a, the neutrality condition (15)
has to be computed by taking into account this depen-
dence as well. Thus

d

da
=

∂

∂a
+
∂σ

∂a

∂

∂σ
+
∂η

∂a

∂

∂η
, (18)

and so on for the higher derivatives.
In Fig. 2 we plot mafa, in units of the same quantity

at T = µ = 0, namely

mafa = 6.38× 103 MeV2, (19)

in agreement with previous estimates [13, 53]. In the fig-
ure we plot the results versus temperature, for several
values of µ. The solid lines denote the results obtained
by taking electrical neutrality into account; for compar-
ison, we show by the dashed lines the results obtained
for µe = 0. We note that the decrease of ma with T is
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FIG. 2. mafa versus T for several values of µ. Solid lines
correspond to the calculations with electrical neutrality while
dashed lines denote the results for µe = 0.

slightly delayed by µe 6= 0; besides this, we find no ma-
jor differences between the cases with and without the
neutrality condition.

From the numerical value of mafa in the vacuum we
obtain the topological susceptibility, χ = m2

af
2
a , which

is χ ≈ (79 MeV)4, again in agreement with previous
works [13, 53]. We notice that in correspondence of
the QCD crossover at finite temperature the axion mass
drops significantly. Moreover, increasing µ results in a
sharper drop of the axion mass, similarly to what hap-
pens to the chiral condensate. We conclude that the ax-
ion mass is very sensitive to the QCD phase transition.

In Fig. 3 we plot λaf
4
a versus T for several values

of µ. The solid lines correspond to the results obtained
by imposing the electrical neutrality condition while the
dashed lines denote those with µe = 0. At T = µ = 0 we
find

λaf
4
a = −(55.63 MeV)4, (20)

in agreement with previous calculations within the NJL
model [53] and with χPT [13]. The fact that λa < 0
means that the quartic interaction is attractive. We
notice that in correspondence of the chiral crossover,
the quartic coupling experiences a kink, in agreement
with [57]; the kink becomes more pronounced when the
crossover becomes sharper, namely when the critical end-
point is approached. Thus, despite the fact that λa tends
to become smaller with T , the chiral crossover enhances
the axion self-coupling and this enhancement is very pro-
nounced in proximity of the critical endpoint. We also
note that imposing electrical neutrality does not qualita-
tively change the behavior of λa: the nonzero µe slightly

FIG. 3. λaf
4
a versus T for several values of µ. Solid lines

correspond to the calculations with electrical neutrality while
dashed lines denote the results for µe = 0.

pushes the chiral crossover to higher values of T ; the
peaks around the crossover are still present, and are quite
substantial for large values of the quark chemical poten-
tial.

IV. THE AXION POTENTIAL AND THE
DOMAIN WALLS

In this section we analyze the full axion potential (8),
that we later use to analyze the axion domain walls and
in particular to compute the surface tension. The poten-
tial Ω(θ) in Eq. (8) is understood at the global minimum,
namely computed at for the values of σ and η that mini-
mize Ω for each value of θ. In addition to that, since we
consider electrically neutral matter, we fix µe in order to
satisfy the condition (15) for a 6= 0.

In Fig. 4 we plot the axion potential versus a/fa for
several temperatures and for µ = 320 MeV; this has been
computed along the neutrality line (15). The value at a =
0 has been subtracted for later convenience, see Eq. (21).
We note that increasing temperature results the lowering
of the potential; this behavior is in qualitative agreement
with previous results [53, 57]. We note that high chemical
potential and temperature the barrier between the two
degenerate vacua a = 0 and a/fa = 2π becomes several
orders of magnitude smaller than that in the phase with
chiral symmetry broken. Consequently, we expect that
in the chiral restored phase the energy stored in solitons
connecting the two vacua will be quite smaller than the
one in the vacuum.

As a matter of fact, the potential shown in Fig. 4
gives rise to domain walls that interpolate between two
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FIG. 4. Axion potential at µ = 320 MeV, computed along
the neutrality line. The potential is measured in units of the
NJL cutoff Λ.

successive vacua, because the potential is invariant under
the discrete symmetry transformation θ → θ + 2πn with
n ∈ Z, while this symmetry is broken spontaneously by
choosing one value of a, for example a = 0. Derivation of
the walls is quite standard and the details can be found
textbooks, see for example [64, 65], hence here we report
the main steps of the calculations only.

For the domain wall solution we consider the La-
grangian density

L =
1

2
∂µa∂µa− V (a/fa), (21)

where we defined

V (x) = Ω(x)− Ω(0); (22)

clearly, V in the above equation depends on µ as well,
but we suppress this dependence for the sake of notation.
Incidentally, V is the quantity shown in Fig. 4. Putting
a = θfa, the field equation that we get from L is

∂µ∂
µθ +

1

f2a

∂V (θ)

∂θ
= 0. (23)

The domain wall solution of Eq. (23) is a solitary wave,

θ(x, t) = θ(x− vt), (24)

where v denotes the propagation speed of the soliton.
Putting ξ = x− vt we can write Eq. (23) as

(1− v2)θξξ =
1

f2a

∂V (θ)

∂θ
. (25)

Multiplying both sides of (25) by θξ and integrating, also
noticing that we impose the boundary conditions θ → 0

and θξ → 0 for ξ → ±∞ we have

dθ√
V (θ)

= ±

√
2

f2a (1− v2)
dξ; (26)

the ± sign correspond to the kink and antikink solutions
respectively. The antikink connects θ = 2π for ξ → −∞
to θ = 0 for ξ → +∞, while for the kink the two afore-
mentioned limit values of θ are inverted. Equation (26)
can be integrated by noticing that, for both the kink and
the antikink, we can request that in the center of the
soliton, ξ = 0, we have θ(ξ) = π. Then∫ θ(ξ)

π

dθ√
V (θ)

= ±ξ

√
2

f2a (1− v2)
. (27)

The above equation defines implicitly the soliton θ(ξ).
In order to simplify the numerical evaluation of the

integral on the left hand side of Eq. (27) we represent
the potential by its Fourier cosine series,

V (θ) =
c0
2

+

N∑
n=1

cn cos(nθ), (28)

with

cn =
2

π

∫ π

0

dθ V (θ) cos(nθ). (29)

For the whole range of (µ, T ) we consider in this study
we find that N = 8 in Eq. (28) is enough. Moreover, we
find that for large T/µ the approximation N = 1 works
very well, with c1 = −c0/2 ≡ −V0. For this particular
case we have

V (θ) = V0(1− cos θ) = m2
af

2
a (1− cos θ). (30)

For the potential (30) we can perform the integration in
Eq. (27) easily to get

θ±(ξ) = 4 arctan exp

(
±
√

m2
a

1− v2
ξ

)
, (31)

that, besides the rescaling brought by ma, corresponds
to the well-known soliton of the sine-Gordon equation,
propagating along the x−direction with speed c.

In the following analysis we consider only solitons at
rest: thus we put c = 0 in Eq. (27) that implies ξ = x
and ∫ θ(x)

π

dθ√
V (θ)

= ±x
√

2

fa
. (32)

For each x the above equation allows us to compute the
profile θ(x); the moving soliton is obtained from Eq. (32)
by a Lorentz boost. Similarly, for the cosine poten-
tial (30) we have

θ±(x) = 4 arctan exp (±max) . (33)
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FIG. 5. Axion walls, θ = a/fa, in the chiral broken phase
(green dot-dashed line) and chiral symmetric phase (solid or-
ange line).

The above equation shows that the thickness of the wall
is ζ = 1/ma: consequently, from the results in Fig. 2
we conclude that chiral symmetry restoration (either at
high temperature or large baryon density) results in the
broadening of the axion walls.

In Fig. 5 we plot the axion wall profiles, θ = a/fa,
in the chiral broken phase (green dot-dashed line) and
in the chiral restored phase (orange solid line); we used
fa = 109 GeV which is within the so-called classical axion
window [66], see also [67] for more details, and ma was
computed within the NJL model, see Fig. 2: we found
ma ≈ 6.4 meV in the chiral symmetry broken phase and
ma ≈ 2.4 meV in the chiral symmetry restored phase.
The tiny value of the axion mass in the chiral restored
phase explains why the spatial extension of the wall in
this phase is of the order of 10−4 meters. The qualitative
behavior of the walls is in agreement with the above dis-
cussion, namely restoring chiral symmetry results in the
broadening of the walls. This implies the lowering of the
surface tension of the wall, as we discuss later.

It is interesting to analyze the structure of the wall as
we approach its center. In the upper panel of Fig. 6 we
plot σ and η condensates along an axion wall in the cold
and dense quark matter phase: calculations correspond
to µ = 400 MeV and T = 10 MeV. The condensates are
measured in units of σ0 = −2 × (241.5)3 MeV3 which
corresponds to the condensate in the vacuum. In the
lower panel of the same figure we plot the fermion gap
∆ defined in Eq. (12). In this phase, the axion potential
is well approximated by the cosine form (30). In order
to compute the condensates we fixed fa = 109 GeV as
before, then used the NJL model to compute ma ≈ 1.48
meV. We note that approaching the core of the wall, the

FIG. 6. Condensaltes (upper panel) and fermion gap (lower
panel) for the wall in cold and dense quark matter. We used
fa = 109 GeV, while ma = 1.48meV resulting from the NJL
model calculation. σ0 corresponds to the condensate at T =
µ = 0.

η-condensate forms, signaling the spontaneous breaking
of parity in that region. We also note that ∆ decreases
by a factor of ≈ 3 near the core, meaning that quarks
become lighter when they approach the inner region of
the wall; for comparison, we checked that for the walls
in the phase with chiral symmetry broken ∆ decreases of
a few percent only moving from the exterior part of the
wall towards the core.

The energy per unit of transverse area, that is the sur-
face tension κ, of the domain wall is defined as

κ =

∫ +∞

−∞
dx

[
1

2

(
da

dx

)2

+ V (a/fa)

]
. (34)
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FIG. 7. κ versus temperature at µ = 0 (black lines) and
µ = 320 MeV (green lines). Solid lines correspond to the
results obtained with the full potential (22), while the dashed
lines are the results obtained by virtue of the simplified cosine
potential (30). κ0 = 1.9 × 1016 MeV3 is the surface tension
computed at T = µ = 0.

From the expression above it is easy to see that the wall
gets most of its energy from the region where |da/dx| and
V are larger, namely for a/fπ = (2k+1)π. Using a = faθ
and Eq. (26) for c = 0 we get

κ = 2
√

2fa

∫ π

0

dθ
√
V (θ), (35)

which stands for both kink and antikink solutions. For
the simple potential (30) this gives in particular

κ = 8maf
2
a =

8χ

ma
, (36)

where χ denotes the topological susceptibility.
In Fig. 7 we plot κ versus temperature for µ = 0 (black

lines) and µ = 320 MeV (green lines), computed along
the neutrality line; solid lines correspond to the results
obtained using the full axion potential (22), while the
dashed lines are the results obtained by virtue of the
simplified cosine potential (30). κ is measured in units of
the surface tension at T = µ = 0, which is κ0 = 1.9×1016

MeV3. We note that the QCD phase transition drasti-
cally affects the surface tension of the wall; particularly,
in correspondence of chiral restoration κ drops of about
one order of magnitude for both values of µ shown.

We close this section with a comment on the possible
abundance of axion walls in the cores of compact stars.
From Eq. (36) we note that κ can be a monstrous num-
ber in the vacuum; in the presence of dense quark matter,
our calculations show that κ can decrease of a few orders
of magnitude at most, which still gives a gigantic surface
tension. Therefore, one might conclude that forming the

walls in quark matter is almost as prohibitive as forming
the walls in the vacuum. However, this argument does
not take into account of the background energy carried by
quark matter itself: our conclusion is that in the thermo-
dynamic limit, adding one wall to the bulk quark matter
costs zero energy, therefore axion walls can form easily
in presence of dense quark matter. To see this effect,
for simplicity let us limit ourselves to the zero tempera-
ture case, which is a good approximation for the core of
a compact star. Then, taking into account the domain
wall, the energy density at T = 0 is

E =
1

2

(
da

dx

)2

+ Ω(µ, a(x)); (37)

here a(x) denotes the wall profile, so Ω(µ, a(x)) contains
both the contribution of quark matter and that of the
wall. We can add and subtract Ω(µ, 0) to the right hand
side of the above equation, then subtract the irrelevant
constant Ω(0, 0), to get

E = Ewall + Equarks, (38)

where

Ewall =
1

2

(
da

dx

)2

+ V [a(x)], (39)

with V is defined in Eq. (22), and

Equarks = Ω(µ, 0)− Ω(0, 0). (40)

Thus, Ewall corresponds to the energy density stored in
the wall a(x) at a given µ, while Equarks is the free energy
of bulk quark matter at the same µ. In other words,
adding the wall a(x) to the bulk of quark matter requires
an energy density Ewall. In the thermodynamic limit,
L → ∞, the energy of the wall grows ∼ L2; however,
the energy of the background of quark matter grows ∼
µ4L3. Accordingly, the energy cost of adding one of these
solitons to the bulk of quark matter is zero in this limit.
We conclude that forming walls in bulk quark matter is
easier than forming the walls in the vacuum, hence these
walls might be abundant in the cores of compact stellar
objects.

V. CONCLUSIONS AND OUTLOOK

We studied the QCD axion potential in dense quark
matter. In particular, we analyzed the axion mass and
self-coupling at finite temperature and/or baryon den-
sity. The interaction of axions to QCD matter, as well
as the strong interaction, were modeled by a local NJL
model. Our main goal was to study the effect of the chi-
ral phase transition on the properties of the QCD axion.
Interestingly, axions have been studied in astrophysical
environments in the context of supernova explosions and
protoneutron stars formation [68, 69]. Within this sce-
nario, axions or axion like particles might be formed by
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means of the so called Primakoff process, which involves
resonant production of neutral pseudoscalar mesons from
the interaction of high-energy photons with atomic nu-
clei. The expected signals have been searched for in dif-
ferent data surveys, for instance in the Fermi-LAT data,
where relevant the energy range covers 50 MeV to 500
GeV [70]. In addition, compact stars can potentially cool
down by axion emissions that complement the standard
neutrino and photon cooling [71–74]. Keeping in mind
potential applications of the results to the astrophysical
compact objects, namely neutron stars or neutron stars
mergers, we implemented bulk quark matter which is lo-
cally electrically neutral. We found that the chiral phase
transition considerably affects the low energy properties
of axions. In fact, the axion mass drops when chiral
symmetry is restored. Moreover, the axion quartic self-
coupling is enhanced when quark matter is close to the
QCD critical endpoint.

We then computed the axion walls in dense quark mat-
ter, focusing on the surface tension of the solitons: to our
knowledge, this is the first time that such a problem is
considered. We noticed that the energy to form one of
such walls in bulk quark matter has to be compared with
the energy of the background matter: in the thermody-
namic limit adding one wall to the bulk costs zero energy.
As a consequence, adding walls to dense quark matter is
not disfavored by energy arguments, and our conclusion
is that it is likely that in bulk quark matter many axion
walls form. The calculation of the full axion potential,
in addition with the domain wall tension, shows that in-
creasing T and/or µ the potential well of the QCD axion
becomes lower, thus making the transitions between the
θ−vacua easier.

Differently from calculations based on χPT, our work
has at least two advantages. Firstly, it gives a result for
the full axion potential, rather than an expansion around
a = 0. Moreover, it allows us to take into account the
effect of the chiral phase transition on the axion potential,
and these might have some impact, see for example the
enhancement of λa around the transition, or the lowering
of ma in the chiral restored phase. These effects can
not be obtained within χPT because in the latter the
phase transition at finite temperature and/or chemical

potential is missing.

As previously stated, this work paves the way to more
complete model calculations as well as to interesting as-
trophysical applications. The results in Fig. 3 show that
λa is enhanced in proximity of the QCD critical endpoint:
this implies that when quark matter is close to criticality,
axions self-interaction is enhanced and this might favor
the formation of self-bound axion droplets. While in our
work this is purely speculative, this particular problem
can be studied in detail and we aim at addressing it in
the near future. Furthermore, the use of nonlocal co-
variant NJL models is very welcome, since these allow
for a better comparison with lattice QCD data: studies
of the coupling of axions to dense quark matter within
nonlocal models are missing, so it is of a certain interest
to extend the work we presented here to such models,
possibly including a vector interaction. Moreover, it will
be interesting to couple quarks to magnetic, and more
generally to electromagnetic, fields, and study how this
coupling affects the low energy properties of the axions.
Even more, it is of a great interest to study the modifi-
cations of axions to the QCD equation of state at finite
T and µ, having in mind applications to the structure of
compact stars and neutron stars mergers. If axion walls
can form inside compact stars, then they might affect the
transport properties of nuclear and quark matter inside
the stars themselves, because of the possible scatterings
of nucleons and/or quarks on the walls. We leave these
interesting problems to near future works.
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