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Novel hyperuniform materials are emerging as an active field of applied and basic research since
they can be designed to have exceptional physical properties. This ubiquitous state of matter
presents a hidden order that is characterized by the density of constituents of the system being
uniform at large scales, as in a perfect crystal, although they can be isotropic and disordered like
a liquid. In the quest for synthesizing hyperuniform materials in experimental conditions, the
impact of finite-size effects remains as an open question to be addressed. We use vortex matter
in type-II superconductors as a toy model system to study this issue. We previously reported
that vortex matter nucleated in samples with point disorder is effectively hyperuniform and thus
presents the interesting physical properties inherent to hyperuniform systems. In this work we
present experimental evidence that on decreasing the thickness of the vortex system its hyperuniform
order is depleted. By means of hydrodynamic arguments we show that the experimentally observed
depletion can be associated to two crossovers that we describe within a hydrodynamic approximation.
The first crossover length is thickness-dependent and separates a class-II hyperuniform regime at
intermediate lengthscales from a regime that can become asymptotically non-hyperuniform for large
wavelengths in very thin samples. The second crossover takes place at smaller lengthscales and marks
the onset of a faster increase of density fluctuations due to the dispersivity of the elastic constants.
Our work points to a novel mechanism of emerging hyperuniformity controlled by the thickness of
the host sample, an issue that has to be taken into account when growing hyperuniform structures
for technological applications.

INTRODUCTION

Hyperuniformity is a ubiquitous asymptotic structural
property shared by many physical, biological and math-
ematical systems. In hyperuniform systems the distribu-
tion of their constituents may be ordered or disordered at
first sight but presents a hidden order characterized by a
suppression of density fluctuations at large scales.1 More
specifically, density fluctuations decrease with increasing
wavelengths and strictly vanish in the large wavelength
limit. In many physical systems, the trade-off between
the interaction among constituents favouring the forma-
tion of a lattice, and the interplay with disorder, may re-
sult in the nucleation of disordered hyperuniform struc-
tures. Disordered hyperuniform materials are endowed
with a novel phenomenology that goes against conven-
tional wisdom on the effect of disorder in systems of inter-
acting objects.2–4 For instance, disordered hyperuniform
two-dimensional silica structures present a closure of the
electrical conduction gaps, producing a lowering of resis-
tance in comparison with ordered structures.5 Another
example are disordered hyperuniform materials that pos-
sess complete photon conduction gaps for short wave-
lengths, blocking all directions and polarizations of light
at high frequencies.2,6,7 Thus, novel hyperuniform mate-
rials are emerging as an active field of applied and basic
research since they can be designed to have exceptional
physical properties.

Hyperuniform patterns typically present a structure
factor S(q) = S(qx, qy) that algebraically tends to zero
for reciprocal space wave-vectors q → 0.1 The struc-
ture factor is the squared-modulus of the Fourier trans-
form of the local density fluctuations, namely S(q) =
|ρ̂(qx, qy, z = 0)|2. Since at thermal equilibrium the value
of S(q) for q = 0 is proportional to the compressibility
of the system, a hyperuniform system at equilibrium is
effectively an incompressible system. Theoretically, due
to the fluctuation-compressibility theorem, hyperunifor-
mity can arise naturally at thermal equilibrium in incom-
pressible systems with long-range repulsive interactions
between constituents.1 However, a hyperuniform point
pattern can also exist within a higher-dimensional sys-
tem that exhibits only short-range interactions.1

In the quest for synthesizing hyperuniform materials,
the impact of finite size effects is crucial to be addressed.
Here we use vortex matter in type-II superconductors as
a toy model system to study this issue. The nucleation of
disordered hyperuniform vortex structures at the surface
of samples with point disorder was reported by means
of magnetic-decoration-imaging of thousands of vortices
at low fields8,9 and via scanning-tunnelling spectroscopy
at high fields.10 By using a hydrodynamic approximation
to describe the interaction between vortices, some of us8

showed that these hyperuniform structures result from ef-
fective in-plane long-range interactions mediated by the
out-of-plane elastic interaction between the tip of vortices
at the surface and the body of vortices penetrating into
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the sample bulk. Therefore, the hyperuniform proper-
ties of vortex matter at the surface of the samples might
be affected by finite-size effects tailored for example by
the thickness of the superconducting samples.11 Indeed,
thickness-dependent dimensional crossovers are expected
in the structural properties at long wavelengths in host
media with correlated planar disorder.11,12.
In this work we reveal the need to avoid finite-size ef-

fects in order to grow novel hyperuniform materials in
host media with point disorder. We experimentally study
finite-size effects in the hyperuniform vortex matter by
performing magnetic decoration experiments of the vor-
tex structure nucleated after subsequently cleaving the
same Bi2Sr2CaCu2O8+δ sample with weak point disor-
der. We perform experiments revealing vortex struc-
tures in large fields-of-view with thousands of vortices
and study the thickness-dependence of the angularly-
averaged S(q) in the low-q limit. By discussing the vari-
ation of different metrics of the structure factor with the
sample thickness, we provide experimental evidence that
the hyperuniform order is worsened on decreasing the
sample thickness. We discuss these results in view of
the theoretical predictions provided by a hydrodynamic
model of vortex matter considering effects introduced by
the finite length of vortices controlled in practice by the
sample thickness.

METHOD

In order to study the finite-size effects in the hype-
runiform properties of vortex matter, we directly im-
age thousands of individual vortices by means of mag-
netic decoration experiments performed in the same
Bi2Sr2CaCu2O8+δ sample that was successively cleaved.
Further details on the sample properties, imaging tech-
nique and methods for obtaining the two-dimensional
structure factor S(q) = S(qx, qy) of the vortex structure
at the sample surface can be found in Appendix I. In or-
der to explore how finite-size effects alter the hyperuni-
form properties of vortex matter, we performed decora-
tions of freshly cleaved surfaces of the same single crystal.
Studying always the same single crystal allow us to lessen
the effects that can be introduced by studying samples
with different levels of disorder. Our scotch-tape-based
cleaving method allow us to easily prepare clean surfaces
exposed to decoration, but unfortunately the thickness
of the remaining sample can not be tailored with great
precision. By successively repeating the cleaving process
we were able to vary the thickness of the original sample
in 8 values ranging from 14 to 0.5µm.

RESULTS

Figure 1 (a) shows a typical magnetic decoration image
of the vortex positions at the surface of the sample for
the larger studied 14µm thickness. Vortices are imaged

as white dots and their positions are digitalized using an
automatic process that searches the local maximum of
intensity. In this way, we obtain the positions of the vor-
tex tips in extended fields-of-view spanning from 4000 to
22,000 vortices depending on each experiment performed
at different thicknesses. The average first-neighbors sepa-
ration between vortices in all experiments is a0 ∼ 0.9µm
and for every experiment the standard deviation from
this average is smaller than 10%, suggesting vortex den-
sity fluctuations are not significant. From the digital-
ized vortex positions we calculate the structure factor
S(q = (qx, qy)) and obtain patterns as for example the
one shown in Fig. 1 (b). Irrespective of the thickness, the
vortex structure presents a small number of non-sixfold
coordinated vortices of roughly 2.5%, most of them form-
ing edge dislocations and some of them located in grain
boundaries between large crystallites with a small mis-
alignment. The nucleation of these small-angle grain
boundaries do not significantly affect the structure factor
in the low-q limit.

With the aim of characterizing the vortex density fluc-
tuations of the low-q modes we compute the angularly-
averaged structure factor S(q), a scalar magnitude that
results from averaging the structure factor within a ra-
dial section of radius q, see schematics in the insert to
Fig. 1 (c). For our study we plot these data in a log-
log scale as a function of the normalized wave-vector,
q/q0, with q0 the Bragg wave-vector of the hexagonal
vortex structure. Figure 1 (c) shows a typical S(q) for
the experiment performed at 14µm thickness. The figure
shows the experimental data in red, and dashed lines are
guides to the eye representing algebraic functions (q/q0)

α

for constant (α = 0), linear and parabolic growings. In
this case the experimental structure factor shows an al-
gebraic decay towards zero in the q → 0 limit, namely
S(q) ∼ qα, with an exponent between 2 and 1. Then
the vortex positions at the surface of the thicker stud-
ied 14µm sample is a hyperuniform pattern within the
type-I hyperuniformity class.3 The hyperuniformity class
of a system is defined according to the value of the α ex-
ponent. Two-dimensional type-I hyperuniform patterns
are the most ordered hyperuniform systems presenting
1 < α < 2.3 The hyperuniformity class can be degraded
by introducing disorder13,14 or a strong coupling with
magneto-elastic properties of the host media.9 We aim
here to study whether the hyperuniformity class can be
also depleted by finite-size effects.

In order to systematically study this possibility, we
quantify the asymptotic density fluctuations for long
wavelengths as a function of the thickness of the sam-
ple by fitting the behavior of S(q) in the q → 0 limit.
In this limit, we have to pay attention to the windowing
effect introduced by the borders and shapes of the real-
space fields-of-view. In order to diminish this effect and
to perform a systematic comparison between the stud-
ied thicknesses, in our analysis we cut the field-of-view in
the largest rectangular window fitting the panoramic of
the sample. In the case of rectangular fields-of-view, the
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windowing effect, an artifact associated to the Fourier
transform of the edge, is manifested in S(q) as an excess
in the cross-shaped region centered around qx = qy = 0.
This artifact is oriented along the principal directions of
the rectangle and has an oscillatory decay on increas-
ing q. In order to get rid of this spurious effect, for the
smallest q values we perform a partial average over the
azimuth angle values but the cross-shaped region entailed
by a minimal number of pixels qmin in the horizontal and
vertical directions (see green cross in the insert to Fig. 1
(c)). The finite width of this exclusion cross has a safety
minimal wave-vector given by the linear size of the field-
of-view, wFOV, in the horizontal or vertical directions,
such that qmin = 2π/wFOV. Since the number of pixels
to average over a fixed q is a decreasing function with q,
then the statistical fluctuations on S(q) increase on going
towards the q → 0 limit. We can not avoid this problem
by imaging an ensemble of different vortex configurations
at the same position of the sample to average over since
every time a decoration experiment is performed the sam-
ple has to be cleaved as to expose a clean surface, and
then we end up modifying the thickness. Thus, even
though our fields-of-view span linear sizes wFOV ∼ 100a0
or more, we can safely analyze the vortex density fluctu-
ations for q > qmin = 2π/(100a0) ∼ 0.06/a0.

We perform fits of the S(q) data following a system-
atic procedure that allow us to compare data from all the
studied thicknesses that start at different lower bounds
for the wave-vector, qmin, as well as to improve the sta-
tistical confidence of the obtained α exponent. For every
S(q) curve obtained at every thickness t we implement a
series of algebraic fits S(q) ∝ qa between qmin/q0 and
a variable upper bound for the fitting range qmax/q0.
This upper bond varies between the value correspond-
ing to considering 30 experimental points from qmin/q0
and cumulative increments of qmax/q0 of 0.01. For ex-
ample, Fig. 2 (a) shows three fits of the 14µm data for
qmax/q0 = 0.3, 0.35, 0.4, and their corresponding fitted
exponents, a, and Chi-square goodness, χ2. Figure 2 (b)
shows the variation of these two magnitudes on increas-
ing the upper bond of the fitting window. For values of
qmax/q0 < 0.36 a has a significant variation and large er-
ror bars as a consequence of performing fits in a window
with few data. In the range 0.36 ≤ qmax/q0 ≤ 0.46, a
values are more stable, their error bars are smaller, and
more importantly, χ2 presents minimum values. On in-
creasing qmax/q0 above 0.46, a and χ2 systematically in-
crease. This is due to the upward bending of S(q) induced
by the development of the Bragg peak. This behavior of
χ2, a and error bars is similar for all studied thicknesses,
presenting growing a and χ2 above qmax/q0 = 0.46.

In pursuit of obtaining a statistically relevant expo-
nent in the low-q limit for all the studied thicknesses,
we estimate the effective α exponent as the average of a
values obtained in the qmax/q0 = 0.36 − 0.46 region, see
for example the yellowish-highlighted areas of Fig. 2 (b).
The absolute value of α obtained in this way may not ac-
curately represent the asymptotic value of the exponent

that describes the algebraic slow-down of density fluctu-
ations at large wavelengths, but allows us to perform a
systematic comparison between data obtained at differ-
ent thicknesses for experiments with different values of
qmin/q0.

The effective exponents obtained following this proce-
dure are shown in Fig. 3 for all the studied thicknesses.
Panel (a) presents the main result of this work, namely
that α decreases when the sample gets thinner. Panel
(b) shows that the algebraic growths ∝ (q/q0)

α (black
lines) follow the experimental data (colour points) in the
low-q region. These results imply that finite-size effects
alter the hyperuniform properties of vortex matter for
this range of thicknesses studied: Even though hyperuni-
formity remains type-I in this t-range down to 0.5µm,
there is a tendency towards an enhancement of density
fluctuations at long distances when decreasing the sample
thickness. How α depends on t deserves further investi-
gation considering a realistic theoretical model of elastic
interactions in this system, but this is beyond the scope of
this work. Nevertheless, experimentally we observe that
the hyperuniform hidden order is systematically depleted
when t decreases.

The latter finding is also supported by the data shown
in Fig. 4 (a) presenting the structure factor in the q → 0
limit for the smallest, largest and an intermediate t from
the range studied. In the q → 0 limit, the S(q) values
roughly increase with decreasing thickness. This is also
evident from the data of panel (b) showing the variation
with thickness of S(q) computed for particular low-q/q0
values. For instance, for the small q/q0 = 0.12 value the
magnitude of S(q) increases roughly a factor 2 when the
thickness varies from the largest to the smallest studied.
The data shown in panel (a) also suggests that the S(q)
curves for small t depart upwards from curves obtained
at larger t at a certain critical value of q/q0 that seems to
increase on decreasing thickness, see forking of the three
curves for small q. For wave-vectors smaller than these
critical values the S(q) curve seems to bend from the al-
gebraic behavior observed at larger q, following a growth
with a lower exponent. For the smallest thicknesses the
data even show a tendency towards saturation at the low-
est accessed q, see for example the data at the smallest
thickness of 0.5µm for q/q0 < 0.15. It is important to
point out that the range of qmax/q0 up to which the fits
are performed is well above these critical q values, see
yellowish-highlighted region in Fig. 4 (a) indicating the
fitting region. Nevertheless, the decrease of α with t pre-
sented in Fig. 3 can be also underestimated by the fitting
procedure we are using, forced by the fact that the low-q
data are noisy since when performing the angular aver-
age the statistical frequency decreases. Irrespective of
this detail, the observed upwards bending of the S(q)
curves at critical q values is another manifestation that
on decreasing t finite-size effects play a significant role
on depleting the hyperuniform properties of an elastic
system.
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DISCUSSION

As shown in the previous section, with decreasing
thickness the structure factor decreases systematically
slower when q → 0, but for the studied range α > 1.
These effective exponents found experimentally contrast
with the exponent equal to zero predicted theoretically
for the solid Bragg glass phase within a hydrodynamic
approximation.8 Since here we discuss the experimental
observations by considering the predictions of this hydro-
dynamic model that we presented in a previous work,8

Appendix II presents a detailed description of this model.
The Bragg glass presenting quasi-long-range positional
order is the stable vortex solid phase expected15,16 for
Bi2Sr2CaCu2O8+δ samples with weak point disorder as
the ones studied here. As some of us pointed out in
previous works,8,11 this discrepancy is due to the fact
that the hydrodynamic approximation is an equilibrium
prediction but, during the experimental cooling proto-
col non-equilibrium effects play an important role. The
vortex structure observed at low temperatures after a
field-cooling protocol is an out-of-equilibrium structure
since the relaxation rate of the structure strongly depends
on the wavelength or wave-vector of the density fluctua-
tion modes. Low-q density fluctuations have a slower re-
laxation rate than large-q density fluctuations and then
the vortex structure gets frozen at a freezing tempera-
ture that depends on the observation lengthscale, namely
Tfreez = Tfreez(q). The local ordering of the structure at
lengthscales of a0 indicates that Tfreez(q ∼ 1/a0) = Tirr ∼
Tm, the melting temperature of the vortex structure.17

Density fluctuations that determine the S(q) behavior
for q → 0 fall out of equilibrium at higher temperatures,
namely Tfreez(q → 0) is probably larger than the melting
temperature. In addition, this out-of-equilibrium effect is
expected to be enhanced by disorder that slows down sig-
nificantly the thermally-activated dynamics. Then, the
q → 0 modes retain memory of the liquid phase that is a
hyperuniform state. This might explain our experimen-
tal observation of an α > 0 instead of the theoretically
expected value of an algebraic growing exponent equal to
zero for the solid Bragg glass phase. Since for a liquid
phase α = 1,8 the measured α > 1 value might be as-
sociated to the dispersive nature of the elastic constants
of a highly-anisotropic vortex structure such as that of
Bi2Sr2CaCu2O8+δ. The dispersivity of elastic constants
tends to increase the non-dispersive, S(q) ∼ q, growth
of density fluctuations with a functionality S(q) ∼ q2 on
further increasing the wave-vector q.

As some of us already discussed,8 finite-size effects
can induce a crossover from hyperuniformity to non-
hyperuniformity when decreasing q. In order to quan-
tify this finite-size effect and compare with our exper-
imental observations, the strong dispersivity of elastic
constants in the studied vortex structure has to be con-
sidered. The dispersion of the elastic constants c11 and
c44 in the z-direction becomes important if qλc

>∼ 1, with
λc the penetration depth for supercurrents running in

c-axis direction (field applied in the ab plane). Since
in the studied samples the superconducting anisotropy
Γ = λc/λab = 170, then λc = Γλab = 170µm∼ 180a0
and the condition qλc ∼ 1 implies that dispersion ef-
fects are dominant for q/q0 >∼ 10−3. Therefore for the
lowest q accessed in our experiments dispersion effects
start to become relevant. This can be analytically calcu-
lated starting with the expression of the structure factor
expected for the liquid or solid vortex phases with no
disorder at thermal equilibrium at temperature T in the
hydrodynamic approximation,

S3d
sol(q, qz) = S3d

liq(q, qz) =
n0kBTq

2

q2c11(q, qz) + q2zc44(q, qz)
, (1)

and then replacing in the latter equation the q and qz-
dependent dispersive compressive and tilting elastic con-
stants that at in the lowest order approximation and for
low wave-vectors have the expressions18

c11(q, qz) =
B2

4π

1 + λ2
c(q

2 + q2z )

(1 + λ2
ab(q

2 + q2z ))(1 + λ2
cq

2 + λ2
abq

2
z )
(2)

c44(q, qz) =
B2

4π

1

1 + λ2
cq

2 + λ2
abq

2
z

+ c′44(qz) (3)

with c
′

44(qz) the contribution from an isolated vortex that
in the short wave-vector limit we are studying can be con-
sidered as non-dispersive.18 In order to obtain the two-
dimensional structure factor at the surface of the system,
S(q), the S3d(q, qz) has to be summed up the discrete
values of qz given by the thickness of the sample such
that the modes of the perturbation in the z direction can
only have values qz = 2πn/t, namely

S(q) ∝
nmax∑
n=0

S3d(q, qz = 2πn/t). (4)

where nmax ≈ t/s with s ≪ t represents a short-range
cut-off in the z-direction that can be set to the supercon-
ductor layer spacing. Since the sum converges rapidly,
the exact value of nmax is irrelevant, providing it is
large enough. Then, from this magnitude we compute
the angularly-averaged value S(q) at equilibrium within
the hydrodynamic approximation that can be compared
with the experimental data. We performed these calcu-
lations taking into account the experimental parameters
λab(Tfreez) = 0.4µm, a0/λab(Tfreez) = 2, and the eight
thicknesses studied experimentally. The result of this
calculation is presented in Fig. 5 where we have also in-
cluded results for thicker samples and for a larger range
of q → 0 with respect to the one explored experimentally
in order to highlight some asymptotic trends. From Eq.1
we expect the theoretical S(q) to saturate at a positive
value for q < qFS where



5

qFS ≈ 2π

t

√
c44
c11

(5)

with c44 ≈ c44(qFS, 2π/t) and c11 ≈ c11(qFS, 2π/t) from
Eqs. 2 and 3. Hence, the saturation is a finite-thickness
effect that enhances on decreasing the thickness of the
sample, as can be appreciated in Fig. 5. In addition, for a
large enough value of t and for q > qFS, a second crossover
takes place. This crossover is dictated by the dispersiv-
ity of the elastic constants c11 and c44, between a non-
dispersive S(q) ∼ q to a dispersive S(q) ∼ q2 regime on
increasing q. Since qFS → 0 as t → ∞, this implies that
infinitely thick samples are expected to be class-II hype-
runiform with α > 1. However, for small t the q-range
of the S(q) ∼ q regime can be significantly reduced and
can even become undetectable experimentally. In Fig. 5
we can appreciate these effects by comparing t = 0.5 µm
where a clear S(q) ∼ q regime is visible before satura-
tion by further decreasing q, and t = 2500 µm, where a
S(q) ∼ q2 crosses over directly to saturation by decreas-
ing q.

As previously mentioned, the theoretically predicted
behavior of S(q) showing a tendency towards saturation
at small q on decreasing thickness, with the saturation
value increasing with decreasing t, is also observed ex-
perimentally. Moreover, the relative change of S(q) for
q/q0 = 0.12 for t = 0.5µm than for 14µm is theoretically
of order ≈ 2, in striking agreement with the experimen-
tal. Therefore, the phenomenology observed in the low-q
limit of the experimental curves can be roughly explained
by the finite thickness of the sample.

The experimentally observed variation with thickness
of the effective algebraic exponent α describing the sup-
pression of density fluctuations at large scales can also
be understood considering these hydrodynamic calcula-
tions. When t is large the saturation associated to finite-
size effects is well below the q-range considered to fit α
(see yellowish-highlighted area in Fig. 4 (a)). Neverthe-
less, if the thickness is sufficiently decreased the finite-
size effects produce the upward bend of S(q) at small
q and thus effectively diminishes α for the whole fitting
range. Therefore, this crossover between finite-size ef-
fects when q → 0 and algebraic growing of S(q) at small-
intermediate q explains why the α estimated in the q/q0
range up to 0.46 lessens when decreasing thickness. Then
the experimental α results from fitting the S(q) data in a
low-q range where takes place a trade-off between a ten-
dency to saturation due to finite-size effects and an alge-
braic growth with exponent larger than one due to the
dispersivity of elastic constants in a highly anisotropic
vortex system.

CONCLUSION

We present experimental evidence on the degradation
of hyperuniformity in vortex matter induced by a finite-

size effect. This degradation is manifested in two phe-
nomenological observations that are inter-twinned: A di-
minishing of the effective algebraic exponent describing
the decrease of density fluctuations at large wavelengths
and a crossover towards saturation of density fluctua-
tions for wavelengths larger than a critical value that
shortens with decreasing the thickness of the system.
The last phenomenology is a description of the evolution
of density fluctuations with wave-length considering the
observed behavior of S(q) in the reciprocal wave-vector
space obtained from real-space images of vortex matter
in extended fields-of-view for the same Bi2Sr2CaCu2O8+δ

sample with different thickness. Then, by considering a
theoretical hydrodynamic model and the dispersivity of
the elastic constants for the anisotropic elastic system
studied, as well as considering that the small-q modes
of the structure get frozen at temperatures of the order
of the melting temperature, we show how varying the
thickness of the sample can induce the experimentally-
observed depletion of hyperuniformity on decreasing t. In
conclusion, our work makes the important contribution
that finite-size effects can eventually degrade the hyper-
uniform properties of the system of interacting objects.
These effects have to be considered seriously when engi-
neering hyperuniform materials for relevant technological
applications.
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APPENDIX I: SAMPLE, EXPERIMENTAL, AND
ANALYSIS DETAILS

The sample studied here is a nearly optimally-doped
single crystal with Tc ∼ 90K, grown by means of the
flux method.19 The sample was specially selected since
it does not present any visible planar defect as revealed
by magnetic decoration. Thus the dominant disorder in
this particular sample is point like, natural atomic-scale
defects distributed at random that arise when growing
the crystals.
The magnetic decoration is an imaging technique that

reveals the positions of individual vortices at the sample
surface. This is performed by evaporating ferromagnetic
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particles that are attracted towards the magnetic halo of
vortices where the local magnetic field presents a maxi-
mum that decays with distance in lengthscales of the su-
perconducting penetration depth λab.

20 Thus the ferro-
magnetic particles evaporated in the sample surface dec-
orate the positions of the vortex tips. This technique can
be applied to directly image vortex positions in the whole
millimeter-size sample surface, allowing for the identifica-
tion of the vortex positions at the surface in fields-of-view
spanning thousands of vortices. By means of scanning-
electron-microscopy, panoramic views of the vortex struc-
ture can be obtained after a digitalization procedure
of the images of the sample surface with ferromagnetic
particles decorating the vortex positions.21 In order to
study vortex density fluctuations at large lengthscales,
magnetic decoration imaging is best suited than other
techniques such as scanning-tunnelling spectroscopy,10,22

magnetic force or scanning-squid microscopy23 that typ-
ically image only up to hundreds of vortices.

Here we present data for a magnetic induction of 30G
providing a0 ∼ 0.9µm. The experiments were per-
formed at 4.2K after following a field-cooling protocol
from the normal state as described elsewhere.24 Dur-
ing this experimental protocol the vortex structure gets
frozen at lengthscales of a0 at a temperature Tfreez that
is very close to the irreversibility temperature where
the pinning associated with the sample disorder sets
in.17,25 When further cooling down Tfreez, vortices profit
from disorder making local excursions on lengthscales
of roughly coherence length, two orders of magnitude
smaller than the spatial resolution of the decoration tech-
nique ∼ λab(0) ∼ 0.2µm∼ a0/4. The irreversibility tem-
perature for near optimally-doped samples as the one
studied here (Tc ∼ 90K), and for an induction of ∼ 30G,
is around 85K.19,26,27 Therefore the panoramics obtained
by magnetic decoration at 4.2K reveals the local density
fluctuations at lengthscales of a0 for the vortex structure
frozen at Tfreez ∼ 85K.

Once vortex positions are digitalized from the
panoramic images, we obtain the two-dimensional struc-
ture factor S(q) = S(qx, qy) of the vortex structure at
the sample surface by Fourier-transforming the local vor-
tex density fluctuations. This experimental approach
is complementary to the small-angle-neutron-scattering
method that allows to directly measure the diffracted
neutron intensity proportional to the structure factor of
the vortex lattice along the bulk of the sample.28 This
latter technique lacks good resolution at small wave-
vectors.28 On the contrary, since magnetic decoration al-
lows to image extended fields-of-view, the low-q limit can
be accessed with reasonable resolution. Magnetic deco-
ration discerns individual vortex positions at low vortex
densities given by the average vortex spacing a0 ∝ 1/

√
B.

APPENDIX II: HYDRODYNAMIC MODEL

Since we are interested in modeling the large-
wavelength density fluctuations of the vortex structure,
a coarse-grained description is quite convenient. A good
starting point for such hydrodynamic description is the
Landau free energy functional, F , describing N interact-
ing and elastic lines directed along the z direction29,30

as

F = 1
2n2

0

∫
d2rdz

∫
d2r′

∫
dz′[c44 (r− r′, z − z′) t (r, z) · t (r′, z′)

+c11 (r− r′, z − z′) δn (r, z) δn (r′, z′)] +
∫
d2r

∫
dzVD(r, z)δn(r, z)(6)

where r = (x, y). The non-local tilt and compression
modulii, c44 (r− r′, z − z′) and c11 (r− r′, z − z′), have
Fourier transforms c11(q, qz) and c44(q, qz). The two-
dimensional vortex density fluctuations around its mean
value n0 at a layer located at z is

δn (r, z) =

N∑
j=1

δ [r− rj(z)]− n0. (7)

The two-dimensional tangent field density for a collec-
tion of N ≫ 1 vortex-lines positioned at rj(z) at a given
constant-z cross section is then

t (r, z) =

N∑
j=1

drj
dz

δ [r− rj(z)] . (8)

The tangent and density fields are not independent but
related by the continuity equation29

∂zδn+∇⊥ · t = 0. (9)

If we assume a slab geometry with a thickness L in the
z-direction and an area A in the x − y plane, we get
n0 = N/A ≡ B/Φ0. The last term in F describes the
coupling of the vortex density with the pinning potential
VD(r, z), which can have different correlations.
The main quantity we are interested in is the density

fluctuation in Fourier space, δn(q, qz), from which the
full three-dimensional structure factor

n0S
3d(q, qz) = ⟨|δn(q, qz)|2⟩ (10)

can be obtained, with the brackets indicating average
over thermal fluctuations with the partition function
e−F/kBT and the overline average stands over disorder
realization. Solving the complete problem to compute
S3d(q, qz) is a formidable task due to the presence of
disorder. Nevertheless, solutions in the absence of disor-
der are still useful to interpret field-cooling experiments
where memory of the high-temperature liquid phase is
expected to be retained at low temperatures for large-
wavelengths, coexisting with local thermal equilibration.
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In the absence of disorder, F becomes quadratic in
δn(r, z) and t(r, z), and Fourier modes become de-
coupled. Using the continuity equation, expressed as
qzδn(q, qz) + q · t(q, qz) = 0 in Fourier space, we obtain
a closed description for δn(q, qz). Then, applying the
convolution theorem in (6) and the energy equipartition
theorem, we straightforwardly derive

S3d
liq(q, qz) ≈ S3d

sol(q, qz) =
n0kBTq

2

q2c11(q, qz) + q2zc44(q, qz)
.

(11)
Assuming translation invariance along z and using Eq.(4)

we can access to the two dimensional structure factor
S(q) describing density fluctuations for a constant z
plane. It is important to point out that the results de-
pend on the precise functional form of the dispersive elas-
tic constants c11(q, qz) and c44(q, qz). Only small correc-
tions to S(q) are expected if more realistic open bound-
aries conditions are considered.30.
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FIG. 1. (a) Zoom-in of a scanning electron microscopy image of the Fe clusters (white dots) decorating vortex positions at the
surface of the 14µm thick sample. The scale bar indicates 10µm. (b) Two-dimensional structure factor S(qx, qy) of the vortex
positions digitalized in the whole field-of-view for 14µm thickness. (c) Angularly-averaged structure factor S(q) as a function
of the wave-vector normalised by the Bragg wave-vector, q/q0. The figure shows with dashed lines algebraic growths qα with
exponents α = 0, 1, 2 (black, blue, orange) as guides to the eye. Insert: Schematics of the calculation of the angularly-averaged
structure factor. The small q data are affected by windowing effects and thus these points (pixels within the green cross) are
not considered in the calculation of S(q).
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FIG. 2. (a) Algebraic fits (lines) of the angularly-averaged
structure factor (points), S(q) ∝ qa for the vortex structure
nucleated for 14µm thickness. The fits are performed be-
tween the minimum value of wave-vector up to variable upper
bounds qmax/q0 = 0.3, 0.35 and 0.4. The growing exponents
a and χ2 confidence of the fits are indicated. (b) Main panel:
Growing exponent values obtained from the fits on increasing
qmax/q0. Insert: χ

2 confidence of the fits. In both panels the
yellowish-highlighted area indicates the range of qmax/q0 that
we consider to obtain the effective exponent α as the average
from the a values fitted for that upper bound limits range.
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FIG. 3. (a) Effective α exponent fitted from the algebraic
decrease of the angularly-averaged structure factor S(q) in the
q → 0 limit as explained in the text. (b) Plot of the log(S(q))
versus log(q/q0) data for all the studied thicknesses (color
points) and algebraic decays ∝ (q/q0)

α with the exponents
shown in the top panel (black lines).
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FIG. 4. (a) Detail of the S(q) data in the low-q range for the
smallest, largest and intermediate thicknesses in the range
studied. The yellowish-highlighted region indicates the q-
range considered in the fits of algebraic growths of the struc-
ture factor. (b) Magnitude of the angularly-averaged struc-
ture factor for particular q/q0 wave-vectors in the low-q limit
as a function of the studied thicknesses.
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FIG. 5. Theoretical angularly-averaged structure factor in
the low-q limit at the surface of the sample for the three-
dimensional vortex line liquid without disorder within the
hydrodynamic approximation. Data are calculated for the
same vortex density as in the experiments reported here (a0 =
0.9µm) and for superconducting parameters corresponding to
the highly anisotropic Bi2Sr2CaCu2O8+δ system, see text for
further details. Different colors represent data for the differ-
ent thicknesses t studied experimentally (0.5 to 14µm) and
larger (250 to 2500µm). Dashed lines are guides to the eye
corresponding to linear (black) and quadratic (red) algebraic
growths. The q-range with white background (0.1− 0.8) cor-
responds to data accessed experimentally whereas the range
with yellow background corresponds to the theoretical predic-
tion beyond typical fields-of-view.
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