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Abstract: In this article, we introduce a quasiprobability distribution of work that is based on the
Wigner function. This proposal rests on the idea that the work conducted on an isolated system
can be coherently measured by coupling the system to a quantum measurement apparatus. In this
way, a quasiprobability distribution of work can be defined in terms of the Wigner function of the
apparatus. This quasidistribution contains the information of the work statistics and also holds a
clear operational definition that can be directly measured in a real experiment. Moreover, it is shown
that the presence of quantum coherence in the energy eigenbasis is related with the appearance of
features related to non-classicality in the Wigner function such as negativity and interference fringes.
On the other hand, from this quasiprobability distribution, it is straightforward to obtain the standard
two-point measurement probability distribution of work and also the difference in average energy
for initial states with coherences.

Keywords: quantum thermodynamics; work statistics; quantum coherence

1. Introduction

The notion of work is one of the most basic and fundamental concepts in physics,
particularly in thermodynamics. During the last decades, several attempts have been made
to obtain the work statistics for non-equilibrium thermodynamic transformations in the
quantum regime. These definitions were motivated by the idea of extending classical fluc-
tuation theorems [1–5] to quantum operations. In order to describe the thermodynamics of
general non-equilibrium quantum processes, it is necessary to provide a general definition
of work valid for any quantum system and process. However, this task presents serious
difficulties. This is due to the fact that many concepts belonging to the classical definition of
work cannot be directly translated to quantum mechanics. For example, the basic definition
of the work that a force performs on a particle along a trajectory cannot be used in quantum
mechanics because of the lack of a ubiquitous meaning of trajectories in the theory, although
recently a definition of quantum work was made by considering Bohmian trajectories [6].
A great advancement came in the area with the definition of the two-point measurement
protocol (TPM) to define work in driven isolated quantum systems [3,4,7–9]. This definition
is based on the simple observation that, for an isolated system, work is a random variable
associated to the difference in energy along the process. Thus, in order to determine this
random value. one should make an energy measurement at the beginning and another at
the end of the process. This definition is not only straightforward in an operational sense,
but it also recovers the results of the fluctuation theorems for quantum systems [3–5,7,8,10]
and was verified experimentally in different platforms [11–16].

However, there is a caveat with the TPM when one considers initial states that have
coherences in the energy basis. This is because the first energy measurement destroys these
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coherences, and therefore the TPM scheme is insensitive to quantum coherence between
different energy subspaces. This leads to undesirable consequences, for instance, related
with the fact that the average work performed in the process is different from the change
in the average energy of the system. Moreover, it has been shown that it is impossible
to define a probability distribution of work that satisfies at the same time the fluctuation
theorems and whose mean value of work equals the average energy change for states with
coherences [17]. This has led the community to consider different approaches to generalize
the work distribution [6,18–20], including some proposals for quasiprobability distributions
of work [21–32].

In this article, we propose a distribution based on the Wigner function. This definition
relies on the fact that the work probability distribution can also be coherently measured by
coupling the system to a quantum apparatus and making a single measurement over the
apparatus, i.e., a single-measurement protocol (SM) [13,33,34]. In this way, the final state of
the apparatus contains the information about the work distribution and one can define a
quasiprobability distribution [35]. This approach provides a clear operational definition
with an immediate experimental implementation. In addition, the Wigner function is
represented using coordinates that have an intuitive interpretation in terms of time and
energy associated with the work. Moreover, it can be shown that the presence of quantum
coherence is related with the appearance of features related to non-classicality in the Wigner
function, such as negativity and interference fringes. On the other hand, for coherence-
free states, this definition agrees with the standard two-point measurement probability
distribution of work.

The paper is organized as follows. In Section 2, we briefly discuss the two-point
measurement scheme and the single-measurement protocol. In Section 3, we introduce
the quasiprobability distribution of work based on the Wigner function, showing how it
works for initial states of the system with and without coherence. In Section 4, we discuss
experimental implementations, and we end with discussions and conclusion in Section 5.

2. Work Statistics

We are interested in the work distribution for isolated quantum systems that are
subjected to an external driving. In this way, the external work can be associated to the
energy change of the system. The typical scenario consists of a system S that starts in a
given initial state, ρS , and is subjected to an external driving, represented by a unitary
evolution U . The driving is such that it changes the Hamiltonian from an initial H to a final
one H̃, such that

H = ∑
n

EnΠn, H̃ = ∑
m

ẼmΠ̃m, (1)

where Πn (Π̃m) are the projectors on each energy subspace of the initial (final) Hamiltonian.
In this case, what we know is that the average change of energy in the system is

∆E = tr
[

H̃ U ρS U †
]
− tr[H ρS ], (2)

where U ρS U † is the final state after the driving. Clearly, it would be desirable that the
average work obtained from the corresponding probability distribution equals this average
energy change. This requisite is equivalent to asking that the first law of thermodynamics
for mean values is satisfied for an isolated system. However, it can be shown that, if one
imposes that the statistics of work is consistent with the standard fluctuation theorems, the
distribution of work should be defined by the two-point measurement protocol [3,4,7,8]. In
this case, although the resulting work average coincides with the mean energy difference
for initial stationary states (i.e., diagonal in the initial energy eigenbasis), it is different for
initial states with coherences.
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2.1. The Two-Point Measurement Protocol

The two-point measurement protocol allows us to define a probability distribution of
work consistent with fluctuation theorems. In order to do so, one should define a stochastic
work value for each realization of the given driving protocol. This is conducted in terms
of the difference of two energy values that are obtained by making two projective energy
measurements: one at the beginning, and the other one at the end of the driving. In this
way, the corresponding probability distribution can be written as

PTPM(w) = ∑
n,m

pn pm|n δ
(
w− (Ẽm − En)

)
, (3)

where pn is the probability of obtain En in the first energy measurement, and pm|n is
the conditional probability of obtaining Ẽm at the end given that En was obtained at the
beginning. Therefore, if the initial state is already diagonal in the energy eigenbasis, the
first measurement does not modify the state, and it is straightforward to verify that the
mean value of work equals the average energy difference. Indeed, from (3), we have that,
in general, the mean value of work is

〈w〉 =
∫

dw PTPM(w) w = ∑
n,m

pn pm|n
(
Ẽm − En

)
= ∑

n,m
tr
[
Π̃m U Πn ρS Πn U †

](
Ẽm − En

)
= tr

[
H̃ U ρ̄S U †

]
− tr[H ρ̄S ], (4)

where ρ̄S = ∑n ΠnρSΠn is the dephased initial state. This state is obtained by removing
all the coherences between different energy subspaces of the initial Hamiltonian, and it is
equivalent to the state resulting the following asymptotic temporal average

ρ̄S = lim
T→∞

1
T

∫ T/2

−T/2
dτ e−

i
h̄ HτρS e

i
h̄ Hτ . (5)

Therefore, unless the initial state is diagonal in the basis of the initial Hamiltonian, the work
average given by the TPM is different from the difference of average energy of the system.
In fact, if the initial state is diagonal in this basis, then ρS can be interpreted as a ‘classical’
probability distribution over the different energies. In that case, the first measurement is
not invasive, in the sense that it only ‘reveals’ the value of the energy in each realization of
the experiment. On the other hand, for an initial state with coherences, the initial energy is
not well defined and this interpretation is not straightforward.

2.2. The Single-Measurement Protocol

Another method for assessing the work probability distribution was introduced in [33].
The method is based on the idea that the work measurement can be described in terms of a
generalized measurement (POVM). That is, by coupling the system to an ancilla, which is
finally subjected to a ‘single measurement’ (SM). In this way, it can be shown that one can
obtain the same probability distribution provided the ancilla is properly initialized.

Let us now describe briefly the general method that is summarized in the circuit of
Figure 1. Initially, the system is in the state ρS and there is an auxiliary system (ancilla) A
whose state is described terms of a continuous degree of freedom. In the ancilla’s space, one
can consider two canonically conjugated operators,WA and TA, such that [WA, TA] = ih̄.
Thus, the evolution contains two coherent interactions between S and A: one before,
eiH⊗TA/h̄, and another, e−iH̃⊗TA/h̄, at the end of the driving. Each interaction can be viewed
either as a coherent translation in the variable w of the ancilla in an amount that depends on
the energy of the system or, conversely, as a coherent time-translation (free evolution) of the
system whose time interval is proportional to the variable τ of the ancilla. Therefore, one
can immediately associate the variables w and τ to energy (work) and time, respectively.
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This analogy between the variables of the ancilla with work and time will become clearer
after analyzing some examples of our proposed distribution.

Figure 1. Circuit that describes the single-measurement protocol from which the work probability
distribution can be obtained.

Following the protocol of the circuit, if the initial state of A is ρA, then at time t f after
both interactions with the system, its reduced state is

ρA(t f ) = ∑
n,n′ ,m

tr
[
Π̃mUΠnρSΠn′U †

]
×e−iwnmTA/h̄ρAeiwn′mTA/h̄, (6)

where wnm = Ẽm − En are the different work values. The SM protocol finishes by perform-
ing a projective measurement of the observableWA. In this case, for highly localized initial
pure states ofA, the resulting probability distribution is equivalent to the work distribution
of the TPM protocol [33]. Notably, within this formulation, one can associate work to an
observable that is acting over the ancillary system. Of course, work is not an observable
acting on the system’s space [4].

It is important to stress at this point that the entangling interaction between system
and apparatus establishes a coherent record of the different values of work. Therefore, the
reduced state of the ancilla contains information not only about the probability distribution
given by the TPM, but also about the initial state of the system. At the end, the type of
measurement that is conducted over the ancilla determines which information is extracted
from the protocol. It is also interesting to note that this type of interaction appears in a very
related task: the work extraction from a quantum system. This can be modeled by adding
an interaction between the system and an auxiliary system that acts as a battery in which
work is stored [36–38]. In general, the battery can be thought of as a continuous variable
system, an ideal weight, with a Hamiltonian like the operatorWA. The work extraction
process consists on some unitary evolution on the joint system (where the driving on the
system is included) that can change the system Hamiltonian from H to H̃. The extracted
work, in this way, is stored in the battery. There are a few conditions that should be imposed
in this framework in order to ensure that the weight does not provide any thermodynamical
resource to the work extraction process [37], one of them is of course energy conservation.
It has been shown in [37] that the unitary operations that satisfy these conditions are of
the form eiH⊗TA/h̄(U ⊗ IA)e−iH̃⊗TA/h̄ where U is the driving of the system. Therefore, it
is straightforward to see that these are the same operations (up to a sign) used in the SM
protocol for measuring work. Thus, there is also a clear operational interpretation of the
state of the ancilla as the state of a battery where work is stored.

3. The Wigner Distribution of Work

In the following, we will define a generalized work distribution. The general idea
is inspired by the SM protocol. As we just mentioned, the state of the ancilla after the
interaction not only holds information about work, but also about the coherences present
in the initial state. In order to extract such information, we will evaluate their Wigner
function [39,40], PW . The Wigner function is a quasiprobability distribution that is used to
represent quantum states in phase space. This is a real-valued function that, unlike their
classical counterparts, can be negative for generic quantum states. This property has been
widely used as an indicator of quantumness in different contexts, for instance in the study
of the quantum-classical transition [41,42].
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In our case, we will define it for the final state of the ancilla and in terms of the
conjugate variables w and τ as

PW(w, τ) =
1

2πh̄

∫ ∞

−∞
dy
〈

w +
y
2

∣∣∣ρA(t f )
∣∣∣w− y

2

〉
e−iτy/h̄

=
1

2πh̄ ∑
n,n′ ,m

tr
[
Π̃mUΠnρSΠn′U †

] ∫ ∞

−∞
dy
〈

w +
y
2
− wnm

∣∣∣ρA∣∣∣w− y
2
− wn′m

〉
e−iτy/h̄ (7)

This expression is valid for a generic initial state of the ancilla. In order to evaluate
it, we will assume that the initial state of the ancilla is a coherent Gaussian state. This
assumption not only will allow us to easily perform analytical calculations, but is also
an appropriate choice for the description of typical experimental situations. Moreover,
Gaussian states are classical, in the sense that they have a positive Wigner function. This
guarantees that any negativity appearing in the Wigner function of the ancilla comes
exclusively from their interaction with the system. Thus, we consider ρA = |0, σ〉〈0, σ| as a
coherent Gaussian state with zero mean and variance σ2 inWA (and hence zero mean and
variance h̄2

2σ2 in TA). After replacing this in Equation (7) (see Appendix A) and using that
ΠnρSeiτEn/h̄ = ΠneiτH/h̄ρS , we obtain an expression for the quasidistribution of work for
a generic process

PW(w, τ) = ∑
n,n′ ,m

tr
[
Π̃mUΠnρS (−τ)Πn′U †

]
× N

(
w
∣∣∣∣ wnm + wn′m

2
, σ

)
N
(

τ

∣∣∣∣ 0,
h̄√
2σ

)
, (8)

where ρS (−τ) is the state obtained after performing a free evolution of the initial state of
the system for a time −τ, and N (w | µ, σ) is a normal probability density in w with mean µ
and variance σ2 (analogously for τ). The fact that the evolved state of the system appears
in the distribution is a consequence of quantum coherence. If the initial state has quantum
coherence in the energy basis then it is not a steady state, and it will evolve with its free
Hamiltonian; therefore, it becomes important the amount of time τ that passes between the
preparation of the state and the beginning of the work measurement protocol. From this
expression, we can appreciate again the operational interpretation of the variables w and τ
that characterize the state of the ancilla.

In the following, we will introduce some notation that will be useful to simplify
forthcoming expressions. First, let us recall that the distribution PTPM(w) does not take into
account any coherence between the different energy subspaces of H in the initial state ρS .
Therefore, we can associate this probability distribution to the dephased state ρ̄S . It would
then be convenient to define the probability distribution PN (w|σ) that is the convolution of
PTPM(w) with a normal distribution with zero mean and variance σ2

PN (w|σ) =
∫ ∞

−∞
du PTPM(w− u)N (u | 0, σ) (9)

= ∑
n,m

tr
[
Π̃mUΠnρSΠnU †

]
N (w |wnm, σ).

Notice that PN (w|σ) is simply the TPM distribution, Equation (3), with the Dirac deltas
replaced by a normal distribution with the corresponding mean values of work and variance
σ2. Thus, for a highly localized normal distribution, it satisfies PN (w|σ) −−→

σ→0
PTPM(w).

In order to illustrate the effect of initial coherences, let us consider Equation (8), and
split it into diagonal (n = n′) and non-diagonal (n 6= n′) contributions

PW(w, τ) = PN (w|σ)N
(

τ

∣∣∣∣ 0,
h̄√
2σ

)
+ P(c)

W (w, τ). (10)
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The non-diagonal one corresponds to the contribution of the so-called initial coherences
and it is easy to see that

P(c)
W (w, τ) = ∑

n 6=n′ ,m
tr
[
Π̃mUΠnρS (−τ)Πn′U †

]
(11)

× N
(

w
∣∣∣∣ wnm + wn′m

2
, σ

)
N
(

τ

∣∣∣∣ 0,
h̄√
2σ

)
.

3.1. Quasidistribution for Initial Dephased States

When the initial state of the system is diagonal in the energy basis (ΠnρSΠn′ = 0 for
n 6= n′), then P(c)

W (w, τ) = 0 and the Wigner function is just

PW(w, τ) = PN (w|σ)N
(

τ

∣∣∣∣ 0,
h̄√
2σ

)
, (12)

that is, it is proportional to the convoluted TPM distribution for every value of τ. Moreover,
if we calculate the marginal PW(w),

PW(w) =
∫ ∞

−∞
dτ PW(w, τ) = PN (w|σ), (13)

we recover the probability distribution that would be obtained if one measures the observ-
ableWA. This expression reflects a characteristic property of the Wigner function: The
partial integration provides the probability distribution corresponding to the other variable.
Therefore, for initial states without coherences in the initial energy eigenbasis, PW(w) is
exactly PN (w|σ). If, in addition, σ � (wnm − wn′m′), ∀n, n′, m, m′, then we recover the
probability distribution of work given by the TPM protocol.

In Figure 2b, upper panel, we show the distribution PW(w, τ) for a two-level system S
without initial coherences. In the lower panel, we show the marginal of the distribution
in w, PW(w), and compare it with the discrete probabilities associated to the TPM. Notice
that the area under each Gaussian in the marginal is equal to the corresponding probability
in the TPM protocol. We can further see that it effectively reproduces the ideal TPM
distribution. On the other hand, in Figure 2a, we show the distribution of work obtained
for the same system but using an ancilla that has an initial state with a standard deviation
five times smaller. One can easily note that this case is much closer to the ideal projective
measurement regime. In this case, the Wigner function is invariant under translations in τ,
as expected, since the initial state of the system commutes with the initial Hamiltonian. In
Figure 2c, we show the distribution for a standard deviation even bigger than the one in
Figure 2b. As we can see, while the position of the peaks matches the correct work values,
there is a significant overlap between the different Gaussians.

3.2. Effects of Quantum Coherences

Let us now consider a system with initial coherences. From Equation (10), we can
notice that, in this case, the Wigner function also has Gaussian peaks on each work value
wnm, just as it happens for the dephased state. However, there are some additional terms
centered around the average of two work values with different initial energy, (wnm +
wn′m)/2. These terms are the ones that hold the non-trivial dependence on the variable
τ and, as we will see, they can be negative. This can be easily seen from the following
argument. If we look at Equation (10), we can see that

∫ ∞
−∞ dτ dw PW(w, τ) = 1, and, in

addition, also the integral over the phase space of the first term is equal to one, as it is
the Wigner function of the initial dephased state. Therefore, the integral of the second
term must be zero. In order for it to be so, some of the terms in the sum must be negative.
In these terms, besides the global Gaussian modulation, the variable τ appears as a time
evolution of the state.
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The fact that time appears explicitly only for initial states with coherences has a clear
interpretation. If the initial state ρS is diagonal, then it is a steady state of the initial
Hamiltonian, and the state is the same for every instant in time before the driving is applied.
On the other hand, if ρS has coherences, the state evolves due to the free evolution induced
by the initial Hamiltonian. This time, of course, is irrelevant at the moment of performing
the first projecting energy measurement for the TPM distribution. However, it appears in
our approach due to the fact that we are performing coherent operations between system
and ancilla. Notably, one can also observe that the mean energy difference Equation (2)
is not invariant under initial time translations for states with coherences. Thus, given a
reference state ρS , the calculated distribution contains, in principle, information about every
initial state that is unitarily connected with ρS by the initial Hamiltonian. Nevertheless,
the amplitude of the Wigner function decays exponentially to zero when τ → ±∞ due to
the Gaussian modulation, putting in practice some cut-off to the maximum time for which
such information can be obtained. At the same time, given the complementary nature of
the variables work w and time τ, when localizing the Gaussian in w, we are delocalizing it
in τ. We will come back to this issue when we consider the marginals of the distribution.

We have already shown that, if the initial state does not have coherence in the energy
basis, the resulting quasidistribution of work function is positive, because the diagonal
terms in Equation (10) are all positive. Therefore, if the distribution PW(w, τ) has some
negativities, it is a signature of the presence of coherences in the initial state. This can
be clearly seen in the upper panel of Figure 3, where the quasiprobability distribution of
work PW(w, τ) of a two-level system is plotted. The Hamiltonians, drivings, and ancilla
parameters are identical to those of Figure 2. Moreover, in both cases, the initial state of
the system has the same probability distribution in the energy basis. The only difference
between Figures 2 and 3 is that, in the latter, the initial state has coherence between the
two energy levels. Comparing both figures, we can notice that we effectively have the
same Gaussian distributions over the same work values. The key difference lies in the fact
that, for the initial coherent state, the quasidistribution displays additional oscillations that
become negative. This interference fringes indicate the presence of non-classicality in the
Wigner function and in the initial state of the system.

Figure 2. Wigner function of work for a two-level system using a Gaussian ancilla. The initial
Hamiltonian is H = Eσ+σ−, with σ± the Pauli creation and annihilation operators. The unitary
driving is given by U = (

√
2I+ iσx + iσz)/2 and the final Hamiltonian is H̃ = 2Eσ+σ−. The initial

state of the system is ρS = (I+ σz/4)/2 and the variance of the initial Gaussian packets of the ancilla
are (a) σ = 0.02E, (b) σ = 0.1E, and (c) σ = 0.35E. The upper panel shows the distribution PW(w, τ)

of Equation (10) based on the Wigner function. In the lower panel, we show the marginal of w,
given by Equation (13), along with the discrete probabilities p(w) corresponding to the usual TPM
distribution.
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Figure 3. Wigner function for work of a two-level system using a Gaussian ancilla with with variance
(a) σ = 0.02E, (b) σ = 0.1E and (c) σ = 0.35E. The parameters used are the same as in Figure 2, except
that now the initial density matrix has non-diagonal elements, ρS = (I+ σx/2 + σy/2 + σz/4)/2.
The upper panel shows the distribution PW(w, τ) Equation (10) based on the Wigner function. We
notice now, because of of the initial coherences, the appearance of negative values in the distribution.
The lower panel shows the marginal of w, given by Equation (13), and it is compared to the work
values and respective discrete probabilities p(w) that appear in the usual TPM distribution.

In the lower panel of Figure 3, we show the marginal probability distribution for
w. Comparing them with Figure 2, we can notice that the marginal distributions are
equivalent. In Figure 3, we also show the work distribution for the same system but
using an initial state of the ancilla A with different standard deviations. In the case of
the smaller standard deviation (corresponding to an ideal projective measurement), we
can see that the marginal probability recovers that of the TPM distribution. Notably, in
the case of a bigger standard deviation, the interference between different Gaussian peaks
modifies the distribution of w, and there are corrections due to coherences, as shown in
Equation (A2). In this limit, the marginal distribution may not even coincide with that of the
corresponding dephased state. This behavior is similar to what happen when one makes a
weak measurement [43]. To understand when it is possible to observe these differences,
lets note that, when the marginal for w is calculated from Equation (10), the diagonal terms
give exactly the convoluted distribution PN (w|σ). For the non-diagonal contributions, we
have time-averages of the form∫ ∞

−∞
dτ ρS (−τ)N

(
τ

∣∣∣∣ 0,
h̄√
2σ

)
. (14)

This operation is similar to a dephasing map on the energy basis, but there is a significant
difference since this average is weighted with a normal distribution with variance h̄2/(2σ2)
centered in the origin. The bigger the variance of the Gaussian (and therefore the smaller
σ), more values of τ enter in the time-average. Therefore, in the limit of small σ, we
expect the non-diagonal terms to average to zero. Hence, one can show that, if σ �
(En − En′)/2, ∀n, n′, independent of the initial state,

PW(w) =
∫ ∞

−∞
dτ PW(w, τ)

≈ PN (w|σ). (15)

Thus, the marginal of the quasiprobability distribution reproduces the TPM distribution.
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3.3. Calculation of Mean Values

Given the formalism associated to the Wigner function [40], one can easily obtain aver-
age values from this quasidistribution. In fact, using the Wigner–Weyl representation [40]
of an operator A acting on the ancillary space,

A(w, τ) =
∫ ∞

−∞
dy
〈

w +
y
2

∣∣∣A∣∣∣w− y
2

〉
e−iτy/h̄, (16)

their mean value is just

tr
[
A ρA(t f )

]
=
∫ ∞

−∞
dτ
∫ ∞

−∞
dw PW(w, τ) A(w, τ). (17)

For instance, the mean value of work is just the mean value of the operatorWA, and it is
obtained by integrating the function w over the phase space

〈w〉 ≡ tr
[
WA ρA(t f )

]
=
∫ ∞

−∞
dτ
∫ ∞

−∞
dw PW(w, τ) w. (18)

The other typical average that is calculated in the context of fluctuation theorems, where the
system is initially in thermal equilibrium at inverse temperature β, is

〈
e−βw〉. This is easily

conducted by integration of the function e−βw. In all cases, the calculated mean values
depend on the initial state of the ancilla. As it can be easily proven, for any observable of
the type f (WA), in the limit of σ → 0, their averages converge to the values associated
with the TPM distribution.

3.4. Energy Difference in the Presence of Coherences

Finally, we will show another interesting property of the work quasidistribution we
have defined. As previously discussed, unless the initial state of the system is diagonal
in the energy eigenbasis, the difference in mean energy and the mean value of work
(Equations (2) and (4)) do not coincide. Thus, the TPM distribution does not provide any
information about the initial coherences. Notably, as we will show, this information is also
contained in the quasiprobability distribution.

In order to do so, let us consider the average in phase space of the function gτ0(w, τ) =
w δ(τ − τ0) (see Appendix A). Using the Wigner–Weyl transform [40], it corresponds to the
expectation value of the operator Ĝp0 = (WA|τ0〉〈τ0|+ |τ0〉〈τ0|WA)/2 measured over the
ancilla. It can be easily shown that this average, which is equivalent to the integral of the
function w weighed by the Wigner function along an horizontal line at τ0, is proportional to∫ ∞

−∞
dτ
∫ ∞

−∞
dw PW(w, τ)gτ0(w, τ) ∝ ∆Eτ0 , (19)

where ∆Eτ0 = tr
[
H̃UρS (−τ0)U †] − tr[HρS (−τ0)] is the mean energy difference for a

situation where the driving U is turned on at time −τ0, and the proportionality constant is
just equal to the Gaussian modulation at τ0, N

(
τ0

∣∣∣ 0, h̄√
2σ

)
(see Appendix A). Therefore,

when τ0 = 0, this is just proportional to the ‘initial’ energy difference ∆E in Equation (2).
As we have shown, from this quasiprobability distribution, we can calculate not only the
energy difference corresponding to the actual initial state, but also for the set of states ρS (τ),
τ ∈ R. This set can be viewed as different ‘initial times’ at which the driving is turned on
starting from a reference state ρS at time zero. This is so because this set of initial states is
connected with ρS by a free Hamiltonian evolution.

Interestingly, for a Gaussian initial state of the ancilla, one obtains the correct value
∆E independent of their initial variance σ. However, since there is a Gaussian modulation
centered around τ0 = 0 (the proportionality constant), the error in its determination
increases as one localizes the initial state of the ancilla in the variable w. However, if one
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reduces the value of σ, the estimation of PTPM(w) becomes worse. Hence, one can again
appreciate in this case the complementary nature of the variables w and τ.

4. Possible Experimental Implementations

For any proposal of a generalized work distribution to be of practical interest, it should
be experimentally accessible and measurable. Here, we discuss how the Wigner work
distribution can be measured. The measurement of the quasiprobability distribution that
we propose requires two fundamental ingredients: (i) coherent control of two degrees of
freedom of system and ancilla in order to implement the interactions of the SM protocol;
(ii) being able to measure the Wigner function of the ancilla. In particular, implementing
the SM requires the ability of performing translations of the ancilla conditioned on the
energy of the degree of freedom on which the work is performed. There is a great variety of
systems where this sort of interaction can be implemented, and an experimental realization
of the SM protocol has been realized using cold atoms [13]. However, it is not clear how one
can implement the measurement of the Wigner function in such platform. Nevertheless,
there are systems where both requirements are, in principle, satisfied, and in what follows
we will briefly describe two of them.

The first example is given by superconducting qubits coupled to a cavity, e.g., circuit
quantum electrodynamics (cQED) [44]. Here, the qubit circuit can be coupled to a wave-
guide that acts as a microwave cavity where coherent states or states with a well defined
number of photons can be stored [45]. For instance, in Ref. [46], they generate coherent
displacements of the state of the cavity depending on the state of the qubit. This interaction
is exactly what is needed for implementing the protocol where the qubit acts as the system
and the cavity as the ancilla. On the other hand, in a different coupling regime between
qubit and cavity, this same scheme has been used to measure the Wigner function of the
state of the field in the cavity [47].

The second possible platform are trapped ions. In this case, ions are trapped in
an electric potential such that the motion degrees of freedom of the ion are subjected to
an effective harmonic oscillator potential [48]. At the same time, using the interactions
between the electronic degree of freedom and the position of the ion, it is possible to
generate coherent, squeezed, and Fock states of the oscillator [48]. In particular, in different
experiments [49,50], it has been shown that one can apply forces on the ion depending on
its electronic state, and in this way, displacements in phase space depending on the qubit
state can be coherently implemented. Again, this is the interaction needed to perform the
protocol. The Wigner function of the motion degree of freedom of trapped ions has been
successfully measured [51].

5. Conclusions

In this work, we introduced a generalization of the probability distribution of work
based on the Wigner function. The starting point is the single-measurement protocol
proposed in [33], where an ancilla is coupled to the system whose work one wants to
measure in order to keep a coherent record of all possible work values. Following this
idea, we define the Wigner function of the final state of the ancilla. This quasiprobability
distribution contains all the information regarding both work and coherence in the initial
state of the system. In fact, initial quantum coherence in the system results in negativities
in the quasiprobability distribution of work, a clear signature of non-classicality. In this
case, we can also recover the mean value of energy, which is different from the average
work for states with coherences. Moreover, we show that, from this quasiprobability
distribution, one can easily recover the standard TPM distribution simply by integrating
over the time variable. In addition, we show that, given that the average work and other
quantities of interest can be obtained as the mean value of an operator acting on the ancillary
space, it is easy to calculate mean values using the formalism of the Wigner function. The
quasiprobability distribution here defined has certain similarities with the one proposed
in [22,23,52]. The way in which the distribution is defined there is also inspired by the SM
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scheme [53] and requires the preparation of a coherent superposition of the ancilla between
two momentum eigenstates, |p〉+ |−p〉, together with the implementation of an interaction
analogous to that of the SM. At the end of the protocol, the relative phase between these
states is measured and a quasiprobability distribution that contains information about
work and coherence is obtained [53]. In contrast, our proposal has a clear operational
interpretation and direct experimental application, as it is simply the Wigner function of the
final state of the measurement apparatus. Moreover, our protocol not only contains all the
information of Refs. [22,23,52], but for coherent initial states, it has additional information
on the dependence of the time variable, τ. From a practical point of view, our protocol does
not need ideal (non-physical) states and it is easy to adapt to any initial state of the ancilla.
Here, we have just developed the case of Gaussian states given that they are easy to treat
analytically and are typically appropriate to model experimental conditions. However,
this whole analysis can be repeated for any initial state. We hope that this approach to the
work distribution can shed some light to elucidate the effects of quantum coherences in
thermodynamic transformations.
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Appendix A. Quasiprobability Distribution for Gaussian States

We start with the general expression in Equation (7) for the Wigner function and replace
the initial state of the ancilla with a coherent (squeezed) Gaussian state ρA = |0, σ〉〈0, σ|
centered in the origin of coordinates of the phase space and with variance σ2 inWA and
h̄2

2σ2 in TA. Then, we obtain

PW(w, τ) =
1

2πh̄ ∑
n,n′ ,m

tr
[
Π̃mUΠnρSΠn′U †

]
×

× 1√
2πσ

∫ ∞

−∞
dy exp

[
−
(
w + y

2 − wnm
)2

4σ2

]
exp

[
−
(
w− y

2 − wn′m
)2

4σ2

]
e−iτy/h̄

=
1

2πh̄ ∑
n,n′ ,m

tr
[
Π̃mUΠnρSΠn′U †

]
exp

−
(

w− wnm+wn′m
2

)2

2σ2

×
× 1√

2πσ

∫ ∞

−∞
dy exp

[
− (y− (wnm − wn′m))

2

2σ2

]
e−iτy/h̄

= ∑
n,n′ ,m

tr
[
Π̃mUΠnρSΠn′U †

]
N
(

w
∣∣∣∣ wnm + wn′m

2
, σ

)
N
(

τ

∣∣∣∣ 0,
h̄√
2σ

)
eiτ(En−En′ )/h̄, (A1)

Now, let us calculate the marginal of Equation (A1) in order to see that it gives us the
convoluted probability distribution of work of Equation (9). First, we split the function into
diagonal and non-diagonal terms as in Equation (10), and then integrate each of them:
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PW(w) =
∫ ∞

−∞
dτ PW(w, τ)

= PN (w|σ)
∫ ∞

−∞
dτN

(
τ

∣∣∣∣ 0,
h̄√
2σ

)
+ ∑

n 6=n′ ,m
tr
[
Π̃mUΠnρSΠn′U †

]
N
(

w
∣∣∣∣ wnm + wn′m

2
, σ

) ∫ ∞

−∞
dτ eiτ(En−En′ )/h̄N

(
τ

∣∣∣∣ 0,
h̄√
2σ

)

= PN (w|σ) + ∑
n 6=n′ ,m

tr
[
Π̃mUΠnρSΠn′U †

]
N
(

w
∣∣∣∣ wnm + wn′m

2
, σ

)
e−

(En−En′ )
2

4σ2 . (A2)

Thus, if σ� (En − En′)/2, meaning that the dispersion is much smaller than all the energy
gaps of the initial Hamiltonian, then the non-diagonal terms become exponentially small
and we have

PW(w) =
∫ ∞

−∞
dτ PW(w, τ) ≈ PN (w|σ), if σ� En − En′

2
∀n, n′. (A3)

Finally, let us consider the mean value of the gτ0(w, τ) = wδ(τ − τ0); this is equivalent
to an average (weighted by the Wigner function) of work variable w at a given fixed time
τ = τ0:∫ ∞

−∞
dτ
∫ ∞

−∞
dw PW(w, τ)gτ0(w, τ) =

∫ ∞

−∞
dw PW(w, τ0)w

= N
(

τ0

∣∣∣∣ 0,
h̄√
2σ

)
∑

n,n′ ,m
tr
[
Π̃mUΠnρS (−τ0)Πn′U †

] ∫ ∞

−∞
dwN

(
w
∣∣∣∣ wnm + wn′m

2
, σ

)
w

= N
(

τ0

∣∣∣∣ 0,
h̄√
2σ

)
∑

n,n′ ,m
tr
[
Π̃mUΠnρS (−τ0)Πn′U †

](wnm + wn′m
2

)
= N

(
τ0

∣∣∣∣ 0,
h̄√
2σ

)
∑

n,n′ ,m
tr
[
Π̃mUΠnρS (−τ0)Πn′U †

]1
2
(
2Ẽm − En − En′

)
= N

(
τ0

∣∣∣∣ 0,
h̄√
2σ

)(
tr
[

H̃ UρS (−τ0)U †
]
− tr[HρS (−τ0)]

)
≡ N

(
τ0

∣∣∣∣ 0,
h̄√
2σ

)
∆Eτ0

That is, this integral is proportional to the mean energy difference for an initial state,
which may have coherences, when the driving is turned on at time −τ0. Thus, for τ0 = 0, it
is the usual mean energy difference ∆E of (2).
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