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Abstract

We study the scalar probe in the near-horizon region of near-extremal five-
dimensional black holes and the problem of reattaching the asymptotic region. We
consider the example of a Myers-Perry black hole with two independent angular
momenta, for which the problem can be solved analytically in terms of the Rie-
mann P-symbols and the confluent Heun special function. By prescribing leaking
boundary conditions similar to those considered in the context of Kerr/CFT corre-
spondence, we implement the attachment of the asymptotically flat region, matching
the solutions in the near-horizon Myers-Perry geometry with those in the far region.
This provides us with a set of explicit expressions for the field response in the back-
ground of five-dimensional stationary black holes near extremality, which enables us
to highlight qualitative differences with the analogous problem in four dimensions.
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1 Introduction

The field dynamics in the high-redshift region of extremal and near-extremal Kerr black
holes is governed by the infinite-dimensional local conformal symmetry group. The con-
crete realization of this idea is Kerr/CFT correspondence [1], which states that extremal
Kerr black holes admit a dual description in terms of a 2-dimensional conformal field
theory (CFT2). The near-horizon limit of extremal Kerr black holes is described by the
so-called Near Horizon Extremal Kerr geometry (NHEK), which exhibits SL(2,R)×U(1)
symmetry [2]. This geometry is closely related to squashed or stretched deformations of 3-
dimensional Anti-de Sitter (AdS3) space [3,4], and presents features that are reminiscent
of the AdS2 × S2 throat that emerges in near-horizon geometry of extremal Reissner-
Nordström black holes. This suggests the possibility of a dual description of rapidly
rotating black holes in terms of a quantum field theory. It was shown in Ref. [1] that,
when the question is posed in terms of the asymptotic boundary conditions, then the exact
SL(2,R) × U(1) isometry of NHEK gets enhanced to the set of asymptotic symmetries
generated by the two copies of Virasoro algebra, namely the symmetry algebra of a two-
dimensional conformal field theory CFT2. The conjecture that follows from this is that
extremal Kerr black holes are dual to a CFT2 with a central charge given by c = 12J , with
J being the black hole angular momentum. Evidence supporting this statement comes
from the observation that Cardy formula for the asymptotic growth of states in the CFT2

precisely matches the Bekenstein-Hawking entropy of the black hole. Besides, the conjec-
ture has been seen to work in a vast set of examples with remarkable success [5]; see [6] for
a living review. Later, it was observed in [7] that infinite-dimensional conformal symmetry
can also be found in non-extremally rotating black holes. This symmetry is manifested
in the low frequency limit of field equations in Kerr background. Computationally, this
is related to the fact that the field equations in such limit admit solutions in terms of
hypergeometric equations, which transform nicely under SL(2,R). CFT observables such
as reflection coefficients follow from the mix coefficients of the Kummer’s functional rela-
tions between hypergeometric functions; therefore, what type of special functions appear
in the computation of a given probe field in the near-horizon geometry is crucial for its
dual interpretation. Among the interesting applications of Kerr/CFT, there are many
that resort to the integrability of the field equations on the NHEK geometry in the probe
approximation. In [8, 9], for example, the conformal symmetry description of rotating
black holes was employed to study the gravitational energy radiated by a massive probe
star orbiting near-horizon zone of an extremal or near-extremal Kerr black hole. There,
again, the crucial ingredient in the calculation is the conformal symmetry of the problem,
which manifests itself in the fact that the solutions of the field equations admit to be
expressed in terms of confluent hypergeometric functions, and so have a natural action
of SL(2,R). This results in the bulk observables precisely reproducing the structure ex-
pected from the CFT2 analysis. This is why solving analytically the field equation in the
5-dimensional case is of importance for a comparative analysis, cf. [10]. In this paper,
we undertake a field theory computation similar to that of [8] in 5 spacetime dimen-
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sions, and show that, despite the apparent complexity of such a generalization, the field
equations can still be solved analytically: We consider the extremal and near-extremal 5-
dimensional black hole with two independent angular momenta in the near-horizon limit,
which is described by the NHEK analogue for a rapidly rotating Myers-Perry black hole
(hereafter referred to as NHEMP). We consider the solutions to the scalar field equation
in this setting. As it happens in 4 dimensions, in the extremal case the field equations
comprise confluent hypergeometric equations, whose solutions can be expressed in terms
of Whittaker functions. In the near-extremal case, on the other hand, the field equations
yield the Riemann-Papperitz differential equation, whose solutions, the so-called Riemann
P-symbols, or Papperitz symbols, can also be expressed in terms of hypergeometric func-
tions, with a consequent natural SL(2,R) action. Finally, the spheroidal equation for
the azimuthal angle reduces to the confluent Heun differential equation. Using all this,
we explicitly compute the scalar field response in the near-horizon geometry, and then
reattach the asymptotically flat region by considering leaking boundary conditions similar
to those discussed in the context of Kerr/CFT. We discuss important differences between
the 4- and 5-dimensional cases.

The paper is organized as follows: In section 2, we review the Myers-Perry black hole
solution and its near-horizon geometry both for the extremal and near-extremal config-
urations. In section 3, we study the scalar field response on these geometries and show
that the field equation in the near-horizon limit can be solved in terms of hypergeomet-
ric equations. This enables us to compute the response of the field excitations in the
probe approximation, preserving certain boundary conditions on the horizon and in the
asymptotic region.

2 Myers-Perry and its near horizon limit

2.1 Myers-Perry solution

The Myers-Perry (MP) solution [11] is the 5-dimensional generalization of the Kerr
solution, i.e. the metric of stationary black hole solution in asymptotically flat spacetime,
with spherical horizon topology and two independent angular momenta. Its metric de-
pends on three parameters, a ∈ R, b ∈ R and µ ∈ R≥0, which are related to the angular
momenta and the mass; see (2.3) below. Written in Boyer-Lindquist type coordinates, its
metric is

ds2 = gµν dx
µdxν = −dt̃2 + µ

ρ̃2
(dt̃− a sin2 θ̃dϕ̃− b cos2 θ̃dψ̃)2

+
r̃2

∆
ρ̃2dr̃2 + ρ̃2dθ̃2 + (r̃2 + a2) sin2 θ̃dϕ̃2 + (r̃2 + b2) cos2 θ̃dψ̃2 ,

(2.1)

with the functions

∆ = (r̃2 + a2)(r̃2 + b2)− µr̃2, ρ̃2 = r̃2 + a2 cos2 θ̃ + b2 sin2 θ̃ . (2.2)
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Coordinates are xµ = {t̃, r̃, ϕ̃, ψ̃, θ̃} for µ = 0, 1, 2, 3, 4, with ranges t̃ ∈ R, r̃ ∈ R≥0, ϕ̃ ∈
[0, 2π], ψ̃ ∈ [0, 2π], θ̃ ∈ [0, π/2]. The determinant of the metric is det g = −1

4
r̃2 ρ̃4 sin2 (2θ̃).

The conserved charges associated to the Killing vectors ∂t̃, ∂ϕ̃ and ∂ψ̃ are given by

M =
3π

8G
µ, Jϕ̃ =

π

4G
µa, Jψ̃ =

π

4G
µb, (2.3)

respectively. These correspond to the Arnowitt-Deser-Misner mass and two angular mo-
menta. Extremality condition for the MP solution corresponds to

µ = (a+ b)2. (2.4)

In this case, the degenerate event horizon is located at r̃2 = ab.

For convenience, we can write the MP metric (2.1) in terms of a new radial coordinate
ũ = r̃2. This coordinate will be useful later to study the near horizon limit. In terms of
ũ, MP metric reads

ds2 =

(
µ

ρ2
− 1

)
dt̃2 + ρ2dθ̃2 − 2aµ

ρ2
sin2 θ̃dt̃dϕ̃+ 2

abµ

ρ2
cos2 θ̃ sin2 θ̃dϕ̃dψ̃ − 2bµ

ρ2
cos2 θ̃dt̃dψ̃

+

(
ũ+ a2 +

µa2

ρ2
sin2 θ̃

)
sin2 θ̃dϕ̃2 +

(
ũ+ b2 +

µb2

ρ2
cos2 θ̃

)
cos2 θ̃dψ̃2 +

ρ2

4∆
dũ2, (2.5)

with

∆ ≡ (a2 + ũ)(b2 + ũ)− ũµ, ρ2 ≡ ũ+ a2 cos2 θ + b2 sin2 θ , (2.6)

and

det g = − 1

16
ρ̃4 sin2 (2θ̃) . (2.7)

To follow the details of the calculation, it is also convenient to have at hand the
components of the inverse metric; namely

gθ̃θ̃ =
1

ρ2
, gũũ =

4∆

ρ2
,

gt̃ϕ̃ = −a µ (b
2 + ũ)

ρ2∆
, gt̃ψ̃ = −b µ (a

2 + ũ)

ρ2∆
,

gt̃t̃ = −1− µ (a2 + ũ) (b2 + ũ)

ρ2∆
, gϕ̃ψ̃ = −a b µ

ρ2∆
,

gϕ̃ϕ̃ =
1

a2 + ũ

[
1

sin2 θ̃
− a2 µ (b2 + ũ)

ρ2∆

]
, gψ̃ψ̃ =

1

b2 + ũ

[
1

cos2 θ̃
− b2 µ (a2 + ũ)

ρ2∆

]
.
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2.2 Near-horizon limit of extremal Myers-Perry

Now, let us study the geometry near the horizon in the extremal limit. Extremality
condition is (2.4). The geometry of the near-horizon limit of the extremal MP black hole
(NHEMP) is obtained as follows: first, define the rescaled time coordinate

t =
2λ√
ab
t̃, (2.8)

together with the shifted radial coordinate

u =
ũ− ab

λ(a+ b)2
. (2.9)

Then, boost the polar coordinates as follows

ϕ = ϕ̃− t̃

a+ b
, ψ = ψ̃ − t̃

a+ b
, θ = θ̃ . (2.10)

Finally, NHEMP geometry is obtained by taking λ→ 0. This yields

dŝ2 =

(
ab(a+ b)2

4ρ20
u2
)
dt2 + ρ20dθ

2 +
√
ab

(
(a+ b) +

a(a+ b)2

ρ20

)
u sin2 θdtdϕ

+
√
ab

(
(a+ b) +

b(a+ b)2

ρ20

)
u cos2 θdtdψ +

ab(a+ b)2

2ρ20
sin2(2θ) dϕdψ (2.11)

+
a(a+ b)2

ρ20
(a+ b sin2 θ) sin2 θdϕ2 +

b(a+ b)2

ρ20
(b+ a cos2 θ) cos2 θdψ2 +

ρ20
4u2

du2,

with

ρ20 ≡ (a+ b)(a cos2 θ + b sin2 θ); (2.12)

see for instance [6]. The hat on the metric dŝ2 = ĝµνdx
µdxν indicates that it corresponds

to the metric of the near horizon geometry and it has to be distinguished from the MP
metric gµν . The components of the inverse of the NHEMP metric are

ĝtt = − 4

ρ20u
2
, ĝuu = 4

u2

ρ20
,

ĝtϕ = 2

√
b

a

1

ρ20

1

u
, ĝϕϕ =

1

a

(
− b

ρ20
+
b+ a cos2 θ

(a+ b)2
1

sin2 θ

)
,

ĝtψ = 2

√
a

b

1

ρ20

1

u
, ĝψψ =

1

b

(
− a

ρ20
+
a+ b sin2 θ

(a+ b)2
1

cos2 θ

)
,

ĝθθ =
1

ρ20
, ĝϕψ = − 1

(a+ b)2
− 1

ρ20
,

(2.13)

while the determinant of the metric is

det ĝ = −ab(a+ b)4

64
ρ40 sin

2(2θ) . (2.14)

This geometry is the analog of the NHEK geometry in 4-dimensions, cf. [2].
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2.3 Near-Horizon limit of near-extremal Myers-Perry

Now, let us consider the near-horizon geometry of the near-extremal MP metric (often
referred to as near-NHEMP or NHnEMP). It describes the geometry near the horizon
of a MP black hole whose mass is infinitesimally larger than the one needed to saturate
the extremality bound (2.4). To approach the near-horizon limit we may use the same
coordinate transformations as before; namely, we define coordinates as in (2.8), (2.9) and
(2.10) together with a new parameter, η, that controls the departure from extremality;
namely1

µ = (a+ b)2 + ηλ2. (2.15)

When equation (2.5) is rewritten in terms of these new coordinates, and after taking
the limit λ→ 0, one obtains the NHnEMP metric, whose components are

ĝtt =
ab(a+ b)2

4ρ20

[
u2 +

ρ20
(a+ b)6

η

]
, ĝuu =

ρ20
4

(a+ b)4

(a+ b)4u2 − abη
,

ĝtψ =

√
ab(a+ b)

2ρ20

[
ρ20 + b(a+ b)

]
u cos2 θ, ĝtϕ =

√
ab(a+ b)

2ρ20

[
ρ20 + a(a+ b)

]
u sin2 θ,

ĝψψ =
b(a+ b)2

ρ20

[
b+ a cos2 θ

]
cos2 θ, ĝϕϕ =

a(a+ b)2

ρ20

[
a+ b sin2 θ

]
sin2 θ,

ĝθθ = ρ20, ĝϕψ =
ab(a+ b)2

4ρ20
sin2(2θ) ,

(2.16)

with

ρ20 ≡ (a+ b)(a cos2 θ + b sin2 θ). (2.17)

One can easily verify that in the case η = 0 the components of the NHnEMP metric
reduce to those of the NHEMP metric.

With the purpose of keep collecting useful formulae, let us write down the components
of the inverse metric as well,

ĝtt = − 4

ρ20

(a+ b)4

(a+ b)4u2 − abη
, ĝuu =

4

ρ20

(a+ b)4u2 − abη

(a+ b)4
,

ĝtψ = 2

√
a

b

1

ρ20

(a+ b)4u

(a+ b)4u2 − abη
, ĝtϕ = 2

√
b

a

1

ρ20

(a+ b)4u

(a+ b)4u2 − abη
,

ĝθθ =
1

ρ20
, ĝϕψ = − 1

(a+ b)2
− 1

ρ20

(a+ b)4u2

(a+ b)4u2 − abη

(2.18)

1The factor λ2 multiplying η is the minimal power for which all of the metric components become
convergent when the limit λ → 0 is taken.
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together with

ĝϕϕ = − 1

(a+ b)2
− 1

ρ20

(
1− csc2 θ +

b2η

(a+ b)4u2 − abη

)
,

ĝψψ = − 1

(a+ b)2
− 1

ρ20

(
1− sec2 θ +

a2η

(a+ b)4u2 − abη

)
.

(2.19)

The determinant of the NHnEMP metric is independent of η, and so it coincides with
(2.14).

3 Scalar field response

Having the explicit form of the NHEMP and NHnEMP geometries, we are ready to
study the field equation on these two spaces. We will study the wave equation for a
massless2 scalar field Φ in the probe approximation, and in different regimes of the MP
geometry. That is to say, we will explicitly solve the field equation

1√
−g

∂µ
(√

−g gµν∂ν
)
Φ(t, u, θ, ϕ, ψ) = 0. (3.1)

First, we will solve the problem in the NHEMP and NHnEMP geometries, and later we
will proceed in a similar manner solving (3.1) in the far region of the full MP geometry.
In all these cases the problem is separable, in the sense that the solution admits an ansatz
of the form

Φ(t, u, θ, ϕ, ψ) = R(u)Θ(θ) ei(−ωt+k1ϕ+k2ψ), (3.2)

with ω ∈ C and k1, k2 ∈ Z, and with R(u) and Θ(θ) being functions of the u and θ
coordinates, respectively.

3.1 Fields in the near-horizon region of extremal black hole

As said before, the wave equation in the NHEMP geometry is separable, as probably
expected due to the integrability of the problem. This separation of variables leads to
the angular and the radial ordinary differential equations for Θ(θ) and R(u). On the one
hand, the equation for the angular coordinate takes the form

∂θ(sin θ cos θ ∂θΘ(θ))

sin θ cos θ
+

[
(k1 + k2)

2a cos
2 θ + b sin2 θ

a+ b
− k21

sin2 θ
− k22

cos2 θ

]
Θ(θ) = −KℓΘ(θ) ,

(3.3)

2The solution for a massive scalar field follows straightforwardly with no major adaptation.
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where Kℓ is the separation constant. On the other hand, the equation for the radial
coordinate is

∂u
(
u2∂uR(u)

)
+

[
A

u2
+
B

u
+
C

4

]
R(u) =

1

4
KℓR(u) , (3.4)

with

A = ω2, B =
ω√
ab

(ak2 + bk1), C = (k1 + k2)
2. (3.5)

Separation constant Kℓ is ultimately associated to the quantity that controls the
asymptotic behaviour of R(u). As in Kerr/CFT computations, the scaling exponent
∆ can be read off from the large u limit of the radial equation. That is to say, as in
AdS/CFT computations, one proposes the asymptotic form R(u) ≃ u−∆+ . . . and inserts
this into the equation above to find the condition

4∆(∆− 1) + (k1 + k2)
2 −Kℓ = 0. (3.6)

This gives two branches with different damping off conditions at large r; namely

∆± =
1

2
± 1

2

√
1 +Kℓ − (k1 + k2)2. (3.7)

Constant Kℓ also enters in the solutions of the angular equation, of course. In equation
(3.3), the Kℓ can be thought of eigenvalues and ℓ represents the set of labels of the modes.
These labels are specified by the eigenvalue problem of the 5-dimensional version of the
spheroidal equation, cf. [8]. In fact, a more convenient notation for Θ(θ) would include
subindices ℓ labeling the solution of the corresponding ℓ-mode; see (3.10) below.

One can easily check that Eq. (3.3) is invariant under

a↔ b, k1 ↔ k2, θ ↔ π

2
− θ (3.8)

as expected. After defining the variable z = sin2 θ, the angular equation takes the form

4∂z(z(1− z)Fℓ(z)) +

[
(k1 + k2)

2a(1− z) + bz

a+ b
− k21

z
− k22

1− z

]
Fℓ(z) = −KℓFℓ(z) , (3.9)

with Fℓ
(
sin2 θ

)
≡ Θℓ(z) and z ∈ [0, 1]. This equation is of the Sturm-Liouville type. For

such an eigenvalue problem, the corresponding eigenfunctions that obey certain bound-
ary conditions yield an orthonormal basis. In our 5-dimensional case, the orthogonality
relation for the elements of that basis reads∫ π

2

0

dθ sin θ cos θΘℓ(θ)Θℓ′(θ) = cℓ δℓ,ℓ′ , (3.10)
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with cℓ being constants that can be reabsorbed in the normalization of the eigenfunctions.
This orthogonality relation enables the decomposition of the scalar field in modes. By
writing Fℓ(z) as

Fℓ(z) = zk1/2(1− z)k2/2Hℓ(z) , (3.11)

with k1 and k2 being the constants in (3.2), equation (3.9) reduces to

∂2zHℓ(z) +

[
(k1 + 1)

z
+

(k2 + 1)

z − 1

]
∂zHℓ(z)

+
1

4

[
(k1 + k2)

2 + 2k1 + 2k2 −
a

a+ b
(k1 + k2)

2 − b− a

b+ a
(k1 + k2)

2z −Kℓ

]
Hℓ(z)

z(z − 1)
= 0.

This is the single confluent Heun differential equation

∂2zHℓ(z) +

(
γ

z
+

δ

z − 1

)
∂zHℓ(z) +

αz − qℓ
z(z − 1)

Hℓ(z) = 0, (3.12)

whose solution is the Heun special function H(α, qℓ, γ, δ; z) with parameters [12]

α = −(k1 + k2)
2

4

b− a

b+ a
, 4qℓ = −(k1 + k2)

2 − 2k1 − 2k2 + (k1 + k2)
2 a

a+ b
+Kℓ,

γ = k1 + 1, δ = k2 + 1.

(3.13)

Therefore, the solution to the angular equation takes the form

Θℓ,k1,k2(θ) = (sin θ)k1(cos θ)k2H
(
α, qℓ, γ, δ; sin

2 θ
)
, (3.14)

with H(α, qℓ, γ, δ; z) being the solution to the confluent Heun equation evaluated in the
parameters (3.13). While it is not obvious from (3.12)-(3.13), one can verify that the
equation is still invariant under

a↔ b, k1 ↔ k2, z ↔ 1− z. (3.15)

While function H(a, b, c; z) is an extensively studied special function [12] and it ap-
pears in many physics problems, including black holes in 3, 4 and 5 dimensions, it is
certainly much more involved than other functions that are more familiar to us, such as
hypergeometric functions. This is why we find illustrative to comment on some special
cases for which the solution to the azimuthal equation (3.12) notably simplifies. In fact,
for specific values of the parameters, the confluent Heun function does become the hy-
pergeometric function. This is useful because, among other things, it enables to connect
the regular behavior at z = 0 with that at z = 1. One can immediately see that there
is an s-wave mode for k1 = k2 = Kℓ = 0, leading to a function Hℓ(z) with a constant
profile. A nontrivial case for which the solution to the angular equation simplifies as well
is k1 = −k2 ∈ Z; in that case, we get

K(I)
n = 4 (k2 + n) (1 + k2 + n) with n = 0, 1, 2, ... . (3.16)

9



It is worth noticing that these eigenvalues do not depend on the black hole angular
momenta, in contrast to what happens in the generic case. A second family for which the
eigenvalues can be found analytically is a = b, with arbitrary k1,2. Also in this case, the
angular momentum of the black hole does not appear in the angular equation, yielding

K(II)
n =

1

2
(k1 + k2) (4 + k1 + k2) + 4 (1 + k1 + k2)n+ 4n2 with n = 0, 1, 2, ... . (3.17)

When k1 = −k2, the set K
(II)
n reduces to K

(I)
n ; nevertheless, the set K

(I)
n is valid for

arbitrary values of the black hole angular momenta. For arbitrary values of k1, k2 ∈ Z
and a, b ∈ R one must solve the equation numerically. Opposite to what happens in
dimension 4, the equation for the angular dependence of the probe does depend on the
angular momenta. Still, due to symmetry, to explore the parameter space it is sufficient
to vary the quotient 0 ≤ a/b, fixing k1 and varying k2; see Figure 1.

0.5 1.0 1.5 2.0
a/b

10

20

50

K
k1=1 & k1=2

0.5 1.0 1.5 2.0
a/b

20

30

40

50

60

70

K
k1=1 & k1=3

0.5 1.0 1.5 2.0 2.5 3.0
a/b

20

40

60

80

100
K

k1=1 & k1=4

Figure 1: The solid lines represent the first three eigenvalues Kℓ of the angular equation
(3.3), for different values of k1 and k2, as a function of the ratio of the angular momenta
a/b . The dashed line represents a critical value of Kℓ above which the eigenvalues Kℓ

lead to bound states in the near horizon geometry, instead of traveling waves; namely, for
eigenvalues above the dashed line, the ∆± in (3.7) are real. The behavior is similar to
that presented in the table with numerical values in page 9 of [2].

Now, let us focus on the radial equation (3.4); that is,

∂u
(
u2∂uR(u)

)
+

(
1

4
(k1 + k2)

2 +
ω(ak2 + bk1)√

ab u
+
ω2

u2

)
R(u) =

1

4
KℓR(u) . (3.18)

After a change of variable, this equation becomes the confluent hypergeometric equation:
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defining ζ ≡ −2iωu−1, it reads

∂2ζW (ζ) +

(
−1

4
+
λ

ζ
+

1− 4µ2

4ζ2

)
W (ζ) = 0, (3.19)

with3

λ = i
(bk1 + ak2)

2
√
ab

, µ2 =
Kℓ + 1− (k1 + k2)

2

4
. (3.20)

The latter equation admits solutions of the form

W (ζ) =
∑
ϵ=±1

CϵMλ,ϵµ(ζ) =
∑
ϵ=±1

Cϵ ζ
ϵµ+1/2e−ζ/2 1F1

(
1

2
+ ϵµ− λ, 1 + 2ϵµ; ζ

)
, (3.21)

where C± are arbitrary coefficients and where the confluent hypergeometric function

1F1(α, γ; ζ) is defined as

1F1(α, γ; ζ) =
∞∑
s=0

Γ(α) Γ(γ + s)

Γ(γ) Γ(α + s)

ζs

s!
. (3.22)

The set of solutions of the form (3.21) is valid for 2µ /∈ Z; it is not complete otherwise.
In order to obtain a basis that is also valid for 2µ ∈ Z, one introduces the Whittaker
functions

Wλ,µ(ζ) =
Γ(−2µ)

Γ(1/2− µ− λ)
Mλ,µ(ζ) +

Γ(2µ)

Γ(1/2 + µ− λ)
Mλ,−µ(ζ) . (3.23)

In our case, λ = i(ak2 + bk1)/(2
√
ab), µ =

√
1 +Kℓ − (k1 + k2)2/2, and ζ = −2iω/u.

Also, from (3.7) we have ∆+ = 1/2 + µ. Therefore, we can write the solution in terms of
the scaling dimensions ∆± and the parameter

p1,2 ≡
1

2

√
a

b
k2 +

1

2

√
b

a
k1 = −iλ . (3.24)

Functions Mλ,±µ(ζ) and Wλ,±µ(ζ) obey some functional relations that it might be
convenient to collect as they will be useful for our analysis. In particular, from (3.23) and
the series expansion (3.21) we obtain the following asymptotic expansion, valid for small
|u| (i.e. large |ζ|),

Mip,∆+− 1
2

(
−2iω

u

)
≃ Γ(2∆+)

Γ(∆+ − ip)
e−

iω
u

(
−2iω

u

)−ip

+
Γ(2∆+)

Γ(∆+ + ip)

(
−2iω

u

)ip
e

iω
u
±(∆+−ip)iπ

(3.25)

3Do not mistake the parameter µ here for the mass parameter in MP solution (2.3)-(2.5). Since we
are involved with extremal solutions, we will not longer need to refer to the black hole mass parameter.
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with

∆+ − 1

2
∓ ip ̸= −1

2
,−3

2
, . . . (3.26)

and

Wip,∆+−1/2

(
−2iω

u

)
≃ e

iω
u

(
−2iω

u

)ip
. (3.27)

For large |u| (i.e. small |ζ|), the asymptotic behaviour is

Mip,∆+− 1
2

(
−2iω

u

)
≃
(
−2iω

u

)∆+

, 2∆+ − 1 ̸= −1,−2,−3, . . . (3.28)

and either

Wip,∆+− 1
2

(
−2iω

u

)
≃ Γ(2∆+ − 1)

Γ(∆+ − ip)

(
−2iω

u

)1−∆+

, Re[∆+] ≥ 1, ∆+ ̸= 1 (3.29)

or

Wip,∆+− 1
2

(
−2iω

u

)
≃ Γ(2∆+ − 1)

Γ(∆+ − ip)

(
−2iω

u

)1−∆+

+
Γ(1− 2∆+)

Γ(1−∆+ − ip)

(
−2iω

u

)∆+

,
1

2
≤ Re[∆+] < 1, ∆+ ̸= 1

2
. (3.30)

All these formulae will be useful when solving the matching problem between the
solution in the near horizon geometry and that in the flat region.

3.2 Fields in the near-horizon region of near-extremal black hole

Now, let us perform a similar analysis for the near-extremal case (η ̸= 0). In this
case, the near-horizon analysis is much more involved; however, it can still be solved
analytically by following the same method: first, in equation (3.1) with the background
(2.16) we propose a separable ansatz, yielding

∂u

[(
u2 − abη

(a+ b)4

)
∂uR(u)

]
+

[
(k1 + k2)

2 −Kℓ

4

+
(a+ b)4

(a+ b)4u2 − abη

(
ω2 +

ak2 + bk1√
ab

ωu+
(ak2 + bk1)

2

4(a+ b)4
η

)]
R(u) = 0 (3.31)

which in the limit η → 0 reduces to that of the NHEMP case, cf. (3.4). Then, we notice
that the differential equation (3.31) is of the class

∂u((u− α)(u− β)∂uR(u)) +

[
Au+B

(u− α)(u− β)
+ C

]
R(u) = 0, (3.32)
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with its constants being

A =
bk1 + ak2√

ab
ω, B = ω2 +

(ak2 + bk1)
2

4(a+ b)4
η, C =

(k1 + k2)
2 −Kℓ

4
, (3.33)

and its roots4

α = −β =

√
abη

(a+ b)2
. (3.34)

Then, we rewrite

Au+B

(u− α)(u− β)
=

D

u− α
+

E

u− β
, (3.35)

with

D =
Aα +B

α− β
, E =

Aα−B

α− β
, (3.36)

and get

∂u[(u− α)(u− β)∂uR(u)] +

(
D

u− α
+

E

u− β
+ C

)
R(u) = 0. (3.37)

Defining u = 1/t, the equation takes the form

∂2t T (t) +

(
1

t− t1
+

1

t− t2

)
∂tT (t)

+

[
C

αβ t
− D

α2β(t− t1)
− E

αβ2(t− t2)

]
T (t)

t(t− t1)(t− t2)
= 0,

(3.38)

where T (t) = R(1/t) and

t1 =
1

α
, t2 =

1

β
= − 1

α
. (3.39)

Finally, we can compare (3.38) with the so-called Riemann-Papperitz differential equation
[13], whose generic expression is given by

0 = ∂2t T (t) +

(
1− a1 − a2
t− t0

+
1− b1 − b2
t− t1

+
1− c1 − c2
t− t2

)
∂tT (t) +

[a1a2(t0 − t1)(t0 − t2)

t− t0

+
b1b2(t1 − t0)(t1 − t2)

t− t1
+
c1c2(t2 − t0)(t2 − t1)

t− t2

] T (t)

(t− t0)(t− t1)(t− t2)
. (3.40)

4This procedure is valid for complex roots α, β ∈ C.
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The regular singular points of this equation are t0, t1 and t2, with the pairs of exponents
for each point being a1, a2; b1, b2; c1, c2, respectively. These exponents are constrained
to fulfill the condition

a1 + a2 + b1 + b2 + c1 + c2 = 1, (3.41)

which is equivalent to demanding the sum of the numerators of the terms multipliying
∂tT (t) to equal 2. Condition (3.41) is actually satisfied for (3.38). In fact, by comparing
(3.38) and (3.40), we get

a1 + a2 = 1, b1 + b2 = 0, c1 + c2 = 0. (3.42)

In order to completely identify the parameters in (3.38) with those in (3.40), we have to
solve the system

a1a2(t0 − t1)(t0 − t2) =
A

αβ
, (3.43)

b1b2(t1 − t0)(t1 − t2) = − D

α2β
, (3.44)

c1c2(t2 − t0)(t2 − t1) = − E

αβ2
, (3.45)

which in our case, since t0 = 0 and t2 = −t1, reduces to

a1a2t
2
1 =

A

α2
, 2b1b2t

2
1 =

D

α3
, 2c1c2t

2
1 = − E

α3
. (3.46)

This yields six algebraic equations, which are solved by

a1 =
1−

√
1− 4C

2
, a2 =

1 +
√
1− 4C

2
, (3.47)

b1 =
1

2α

√
−Aα−B b2 = −b1, (3.48)

c1 =
1

2α

√
Aα−B c2 = −c1. (3.49)

Notice also that

Aα±B = ±
(
−ω ∓ ak2 + bk1

2(a+ b)2
√
η

)2

= ±(−ω ∓ pα) (3.50)

where p = p1,2 is given in (3.24). In summary, the radial equation (3.38) is a Riemann-
Papperitz equation5 whose exponents are given by

a1 =
1

2
+

1

2

√
1 +Kℓ − (k1 + k2)2 = ∆+, a2 =

1

2
− 1

2

√
1 +Kℓ − (k1 + k2)2 = ∆−,

b1 =
1

2α

√
−(−ω − pα)2 = −i ω

2α
− i

p

2
, b2 = −b1,

c1 =
1

2α

√
−(−ω + pα)2 = −i ω

2α
+ i

p

2
, c2 = −c1,

(3.51)

5Do not mistake the parameter z here for the variable introduced in (3.9).
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and

t0 = 0, t1 =
1

α
=

(a+ b)2√
abη

, t2 = − 1

α
= −(a+ b)2√

abη
. (3.52)

Interestingly enough, the solution of the Riemann-Papperitz equation (3.40) admits to
be written in terms of hypergeometric functions as well. In fact, one such solution is given
by (see u5 in page 284 of [14])

T (t) =

(
t− t1
t− t2

)b1( t

t− t2

)a1
2F1(ℓ,m, s, ξ) , ξ =

(t− t1)t2
(t− t2)t1

, (3.53)

with

ℓ = a1 + b1 + c1, m = a1 + b1 + c2 = a1 + b1 − c1, s = 1 + b1 − b2 = 1 + 2b1. (3.54)

A more general solution to (3.40) is given by the linear combination

T (t) = F (ξ) = (1− ξ)a1ξb1(C1h(ξ) + C2k(ξ)) , (3.55)

with (see y5 ibid.)

h(ξ) = 2F1(ℓ,m; s; ξ) , (3.56)

and (see y6 ibid.)

k(ξ) = ξ1−s2F1(ℓ− s+ 1,m− s+ 1; 2− s; ξ) , (3.57)

with C1 and C2 being two arbitrary constants.

The singular point t = t1 corresponds to ξ = 0; the solutions expanded around this
point are valid near the horizon. The point t = 0, on the other hand, corresponds to
ξ = 1, and the solutions expanded around this point are valid in the asymptotic region
u → ∞. Let us start by analyzing the solutions close to the horizon, i.e. around ξ = 0.
We observe that the second term in (3.55) goes like ξ−b1 and then it violates the incoming
condition at the horizon. Then, we have to set C2 = 0, so that the solution takes the form

F (ξ) = C1(1− ξ)a1ξb1 2F1(ℓ,m; s; ξ) . (3.58)

In order to see what happens at infinity, we resort to the Kummer relations and write

F (ξ) = C1(1− ξ)a1ξb1
Γ(s) Γ(s− ℓ−m)

Γ(s− ℓ) Γ(s− ℓ)
2F1(ℓ,m; ℓ+m− s+ 1; 1− ξ) + C1(1− ξ)a1 ξb1

(1− ξ)s−ℓ−m
Γ(s) Γ(ℓ+m− s)

Γ(ℓ) Γ(ℓ)
2F1(s− ℓ, s−m; s− ℓ−m+ 1; 1− ξ) . (3.59)
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keeping in mind that

a1 = ∆+, ℓ = ∆+ − iω

α
, m = ∆+ − ip, s = 1 + i

(
−ω
α
− p
)
, (3.60)

ℓ+m− s = 2∆+ − 1, a1 + s− ℓ−m = 1−∆+. (3.61)

Then, close to ξ ≃ 1, we find that the solution behaves as follows

F (ξ) ≃ C1(1− ξ)∆+
Γ
(
1− iω

α
− ip

)
Γ(1− 2∆+)

Γ(1−∆+ − ip) Γ
(
1−∆+ − iω

α

)
+ C1(1− ξ)1−∆+

Γ
(
1− iω

α
− ip

)
Γ(2∆+ − 1)

Γ
(
∆+ − iω

α

)
Γ(∆+ − ip)

. (3.62)

These behaviors are useful to solve the matching condition when reattaching the asymp-
totic region.

3.3 Reattaching the asymptotic region

Now, we move to study the scalar field equation (3.1) formulated on the full MP
geometry and then analyze the behavior in the far region. We will study the solution in
the extremal case and for large ũ, and then we will match this solution with the solution
we obtained for the problem in the near horizon zone. The type of matching condition
we will consider are the same leaking boundary conditions studied in [8] in the context of
Kerr/CFT in 4 dimensions.

Considering in (3.1) the ansatz

Φ(t̃, r̃, θ̃, ϕ̃, ψ̃) = U(r̃)Θ(θ̃)ei(−ω̃t̃+k1ϕ̃+k2ψ̃) (3.63)

we get

0 =
1

r̃ U(r̃)
∂r̃

(
1

r̃
∆∂r̃U(r̃)

)
+

1

∆

(
α̃ + β̃ r̃2 + γ̃ r̃4

)
− k21

sin2 θ̃
− k22

cos2 θ̃
+

ω̃2ρ̃2 +
1

cos θ̃ sin θ̃

1

Θ(θ̃)
∂θ̃

(
cos θ̃ sin θ̃∂θ̃Θ(θ̃)

)
,

(3.64)

with

α̃ = −(a2 − b2)(a2k22 − b2k21) + (ak2 + bk1)
2 µ− 2ab(ak2 + bk1)µω̃ + a2b2 µ ω̃2 ,

β̃ = (a2 − b2)(k21 − k22)− 2(ak1 + bk2)µ ω̃ + (a2 + b2)µ ω̃2 ,

γ̃ = µ ω̃2 .

(3.65)

16



Defining ũ = r̃2, the equation for the radial and azimuthal coordinates reads

0 =
4

R̃(ũ)
∂ũ

(
∆∂ũR̃(ũ)

)
+

1

∆

(
α̃ + β̃ ũ+ γ̃ ũ2

)
+

ω̃2ρ̃2 − k21
sin2 θ̃

− k22
cos2 θ̃

+
1

Θ(θ̃)

∂θ̃

(
cos θ̃ sin θ̃∂θ̃Θ(θ̃)

)
cos θ̃ sin θ̃

,

(3.66)

for R̃(ũ) = R(u); see coordinates change in (2.9). Finally, we find that the equation
separates in its radial and angular parts; namely

4

R(u)
∂u
(
u2∂uR(u)

)
+

1

λ2µ2u2

(
α̃ + β̃ (λµu+ ab) + γ̃ (λµu+ ab)2

)
+ ω̃2λµu = Kℓ (3.67)

and

ω̃2(a+ b)(a cos2 θ+ b sin2 θ)− k21
sin2 θ

− k22
cos2 θ

+
1

Θ(θ)

∂θ(cos θ sin θ∂θΘ(θ))

cos θ sin θ
= −Kℓ , (3.68)

respectively. More succinctly, we have

∂u
(
u2∂uR(u)

)
+

1

4

[
α(ω̃)

u2
+
β(ω̃)

u
+ γ(ω̃)−Kℓ + uλµω̃2

]
R(u) = 0 (3.69)

with

α =
α̃ + β̃ab+ γ̃a2b2

λ2µ2
, β =

β̃ + 2γ̃ab

λµ
, γ = γ̃. (3.70)

We can read the relation between the NHEMP frequency ω and MP frequency ω̃ by
comparing the exponents in the dependence on t, ϕ, ψ and t̃, ϕ̃, ψ̃. This yields

(−ω̃t̃+ k1ϕ̃+ k2ψ̃) =

√
ab

2λ

(
−ω̃ +

k1 + k2
a+ b

)
t+ k1ϕ+ k2ψ = −ωt+ k1ϕ+ k2ψ ; (3.71)

so that

2λω = −
√
ab

a+ b
(k1 + k2) + ω̃

√
a b . (3.72)

In the λ → 0 limit, we see the frequencies ω on the NHEMP geometry to flow to the
unique frequency ω̃ = (k1+ k2)

2/(a+ b) in the asymptotic region. The latter is analogous
to the threshold frequency in superradiance.

We can use the relation (3.72) between frequencies to implement the matching condi-
tion. In order to do so, we need to match the small u behavior of the solution in the far
region, with the large u behavior of the solution in the near horizon region. This would
build a bridge between both regimes. In the u≪ 1 limit, the radial equation becomes

∂u
(
u2∂uR(u)

)
+

[
α

4u2
+

β

4u
+
γ

4
− Kℓ

4

]
R(u) = 0. (3.73)
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This permits to verify that equations (3.67) and (3.68), once the frequency (3.72) is
replaced in the coefficients (3.70), coincide with the NHEMP analogs (3.4) and (3.3) in
the limit λ → 0. It is also worth noticing that considering (3.72) and taking the limit
λ→ 0, i.e. ω̃ = (k1 + k2)/(a+ b) in (3.69), the coefficients α and β identically vanish. As
a consistency check, in the limit λ → 0 we get α = A, β = B and γ = C, as defined in
(3.5).

Now, taking the opposite limit, namely u≫ 1 large, in the extremal case µ = (a+ b)2

the equation (3.69) becomes

∂u
[
u2∂uR(u)

]
+

[
Ω2 u

4
+

1

4
− q2

]
R(u) = 0 , (3.74)

with

q2 ≡ 1 +Kl − ω̃2(a+ b)2

4
, Ω2 ≡ (a+ b)2ω̃2 . (3.75)

The condition given in (3.72) with λ = 0 yields

q2 =
1 +Kl − (k1 + k2)

2

4
, Ω2 = (k1 + k2)

2 ω̃ =
k1 + k2
a+ b

. (3.76)

It is remarkable that the solution to this radial equation can be written in terms of
Bessel functions; more precisely, as a linear combination of the functions

u−
1
2J2q(Ωu

1
2 ) and u−

1
2J−2q(Ωu

1
2 ) , (3.77)

where J2q are Bessel functions. Therefore, up to confluent points, the general solution in
the far region takes the form

RF (u) = Au−
1
2J2q(Ωu

1
2 ) +Bu−

1
2J−2q(Ωu

1
2 ) (3.78)

where the subindex F refers to the solution that is valid in the far region. For u≫ 1, the
Bessel functions behaves like

J2q(Ωu
1
2 ) ≃

√
2

Ωπ
u−

1
4

[
cos

(
Ωu

1
2 − π

2

(
2q +

1

2

))
+O

(
u−

1
2

)]
(3.79)

and, then, the solution goes like

RF (u) ≃
√

2

Ωπ
u−

3
4

[
eiΩu

1
2

(
Ae−i

π
2
(2q+ 1

2
) +Be−i

π
2
(−2q+ 1

2
)
)

+ e−iΩu
1
2

(
Aei

π
2
(2q+ 1

2
) +Bei

π
2
(−2q+ 1

2
)
)
+ ...

]
; (3.80)

the ellipsis stand for subleading terms in powers of 1/u.
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Demanding no incoming flux from past null infinity, for λ = 0 we find

A

B
= −e2πiq = −eiπ

√
1+Kℓ−(k1+k2)2 = e2πi∆+ . (3.81)

It is worth noticing that, unexpectedly, the solution (3.78) we find in the 5-dimensional
case is substantially simpler than its 4-dimensional analog, cf. (3.50) in [8]. The fact that
the solution to the equation above admits to be expressed in terms of Bessel functions
–in contrast to the hypergeometric functions appearing in the 4-dimensional Kerr/CFT
calculation– leads to the rather simple expression (3.81), much simpler than the 4-dimensional
expressions (3.50) and (4.37) in reference [8]. This is relevant because these expressions
are what ultimately leads to the CFT2 interpretation of a reflection coefficient. This
phenomenon had already been observed in [10]; see footnote 9 in page 10 therein. The
authors of [10] noticed that, unlike in 4 dimensions, where one encounters hypergeometric
functions, in 5-dimensions the solution in the far region involves Bessel functions. This
was interpreted as an indication that there may be some kind of SL(2,R) or even confor-
mal symmetry associated with the far region in 4 dimensions: in the 4-dimensional case,
the expression analogous to (3.81) has additional Γ-functions, exhibiting the characteristic
form of a CFT2 correlator.

To implement the matching condition, we have to compare the expressions of the
solution RF for u≪ 1 with the solution in the NHEMP geometry for u≫ 1. The former
behaves like

RF (u) ≃ −
(
Ω

2

)2q
B e2πiq

Γ(1 + 2q)
u−

1
2
+q +

(
Ω

2

)−2q
B

Γ(1− 2q)
u−

1
2
−q + ... (3.82)

On the other hand, the NHEMP solution

RN(u) = P Wip,µ

(
−i2ω

u

)
+QMip,µ

(
−i2ω

u

)
, (3.83)

for u≫ 1 behaves like

RN(u) ≃ Pc1u
− 1

2
+µ +

(
Q(−2iω)

1
2
+µ + Pc2

)
u−

1
2
−µ, (3.84)

with

c1 = (−2iω)
1
2
−µ Γ(2µ)

Γ(1
2
+ µ− ip)

and c2 = (−2iω)
1
2
+µ Γ(−2µ)

Γ(1
2
− µ− ip)

. (3.85)

Comparing (3.82) with (3.84) we can express P and Q as functions of B. This can be
achieved if and only if µ = q, a condition that is guaranteed by the identity C = γ in the
limit λ→ 0. In this way, we obtain

B = Q(−2iω)
1
2
+q

(
Ω

2

)2q

Γ(1− 2q)

[
1−
(
Ω

2

)4q

ei2qπ(−2iω)2q
Γ(1− 2q)2

Γ(1 + 2q)2
Γ(1

2
+ q − ip)

Γ(1
2
− q − ip)

]−1

(3.86)
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together with

P = −
(
Ω

2

)2q
e2πiq B

Γ(1 + 2q)
. (3.87)

Expression (3.86) is different from its 4-dimensional analog; cf. equation (3.53) in [8].
More precisely, the 5-dimensional expression lacks a quotient of Γ-functions to admit
the same CFT2 interpretation than its 4-dimensional counterpart. The reason of this
qualitative difference can be traced back to the Bessel functions in (3.77), which in 4
dimensions get rePlaced by hypergeometric functions.

3.4 Horizon boundary conditions

So far, we have examined solutions in both the far and the near horizon regions. Now,
let us impose conditions at the horizon: by imposing incoming boundary conditions for
the modes on the horizon and outgoing boundary conditions in the far region, we will
obtain a constraint for the wave numbers k1,2 and the frequency ω̃. The condition for
purely outgoing flux at infinity was addressed above; the incoming boundary conditions
at the horizon can be implemented by expanding the NHEMP solution (3.83) for u≪ 1,
namely

RN(u) ≈ (−i2ω)ipPeif(u) +Q

[
(−i2ω)−ipe−if(u) Γ(1 + 2µ)

Γ(1
2
+ µ− ip)

+ (−1)
1
2
+µ+ip(−2iω)ipeif(u)

Γ(1 + 2µ)

Γ(1
2
+ µ+ ip)

]
+ ...

(3.88)

where we define the function

f(u) = p log
1

u
+
ω

u
. (3.89)

We observe from this that both incoming and outgoing modes are present in this solution.
Considering that near u = 0, the u−1 term dominates in (3.89), which is a decreasing
dependence in the radial coordinate, the outgoing part of the solution (remember that
Φ ∼ R(u) e−iωt) is given by the first term inside the brackets in (3.88), namely

Qe−if(u)(−i2ω)−ip Γ(1 + 2µ)

Γ(1
2
+ µ− ip)

, (3.90)

which, therefore, must vanish. This can be achieved by either setting the coefficient Q
equal to zero or by studying the poles of the Γ-function in the denominator. Let us focus
on the latter possibility: For Q ̸= 0, (3.90) exhibit zeros at

1

2
+ µ− ip = −n with n ∈ Z≥0. (3.91)
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With the definitions of µ in (3.20), of p in (3.24), and of ∆± in (3.7), we have

∆± − i
1

2

(√
a

b
k1 +

√
b

a
k2

)
= −n (3.92)

In order to satisfy these equations, and for sign(a) = sign(b), we need ∆± to be real. This
implies bk1 + ak2 = 0, which makes (3.92) become simply ∆± = −n, or equivalently

k1 =
a

a− b

√
1 +Kℓ − (2n+ 1)2

k2 =
b

b− a

√
1 +Kℓ − (2n+ 1)2

(3.93)

This yields the quantization condition for the frequency ω̃ in the limit λ→ 0, namely

ω̃ =
k1 + k2
a+ b

=

√
Kℓ − 4n(n+ 1)

a+ b
. (3.94)

Before concluding, let us briefly discuss the interpretation of the frequency (3.94). ω̃ is
the frequency of the solution in the asymptotic region that, according to (3.72), matches
the solutions in the near-horizon region. That is to say, all the frequencies of the solutions
in the NHEMP geometry connect with (3.94) in the limit λ → 0; this is due to the high
redshift. Frequency (3.94) is the 5-dimensional analog to the superradiance threshold
frequency of a Kerr black hole, cf. [15], i.e. the critical frequency to extract energy from
the black hole by substracting angular momentum carried by the k1,2 quantum numbers;
this yields (3.72). In addition, we observe that ω̃ in (3.94) is the frequency for which
the effective potential in the radial equation (3.69) qualitatively changes, suppressing the
terms that would be dominant for small u. In this sense, ω̃ can be thought of as a
penetration frequency. More precisely, in (3.69) we can ask the functions α(ω(ω̃)) and
β(ω(ω̃)) to vanish, which precisely yields the first equality in (3.94). The second identity
in (3.94) is nothing but the quantization condition for the frequency ω̃ induced by the
incoming flux condition in the horizon. A similar result is obtained for the near-extremal
case.
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