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No-go theorem for static configurations of two charged dust species

Andrés Aceña and Bruno Cardin Guntsche
Instituto Interdisciplinario de Ciencias Básicas, CONICET, Mendoza, Argentina and

Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina

Ivan Gentile de Austria
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina

We consider static spacetimes with no specific spacial symmetry where the matter content consists
of two charged dust species. This comes motivated by the fact that static configurations are possible
with one dust, but only if it is electrically counterpoised dust. In order to have such dust, the
quotient between electric charge density and mass density needs to be fine-tuned to a value that is
far less than the charge-mass quotient for any known particle. Here we prove that there are no static
configurations with two dust species unless each one is electrically counterpoised dust. This shows
that electrically counterpoised dust spacetimes can not be made with matter that has on average
the correct charge-mass ratio, but that the underlying particles must have such ratio.

I. INTRODUCTION

In the present article we consider spacetimes whose
matter content is electrically counterpoised dust (ECD).
Such matter corresponds to a charged perfect fluid with-
out pressure, where the charge and mass densities are
perfectly balanced. As the fluid is electrically charged,
we need to consider the Einstein-Maxwell system of equa-
tions coupled to the equations of motion for the fluid
itself. This may give the impression that the system of
equations would turn out to be prohibitively complicated,
while the opposite is true. In Newtonian Mechanics it is
straightforward to see that if a collection of particles have
the same mass as charge, then any static distribution is
possible, as gravitational and electrostatic forces are al-
ways balanced. Strikingly, the same happens in General
Relativity (GR). This was first shown for a system of dis-
crete particles by Majumdar [16] and Papapetrou [19],
following the work of Weyl [25] on axisymmetric space-
times. If the matter content is restricted to said particles,
then to each particle there is an event horizon, which is
interpreted as an extremal Reissner-Nordström (ERN)
black hole [10]. If instead of black holes one wants to
consider regular objects, then the exterior solution can be
matched with static interiors made of ECD [7], [23]. The
reach of the results presented in [25], [16], [19] and [7],
together with the minimum set of assumptions needed
to obtain them, was analyzed by De and Raychaudhuri
[8]. There, it was shown that if the spacetime is static
and the matter content is dust with a constant charge to
mass ratio (or if the surface of each charged dust cloud
is an equipotential surface without any hole inside), then
the dust is necessarily ECD and there is a particular rela-
tionship between the tt-component of the metric and the
electrostatic potential, which by the results in [16] imply
that the metric is in fact conformastatic. The assump-
tions made in [25], [16], [19], [7] and [8] has been relaxed
in several ways, and the results extended to charged per-
fect fluids with pressure, for example in [11], [9], [15], or
to higher dimensions [13], [14].

Considering ECD, the fact that any static charge dis-
tribution gives rise to a solution of the Einstein-Maxwell
field equations has been exploited to test features of GR,
by constructing spacetimes tailored for such analysis.
Therefore, properties that turned out to be difficult in
a general analysis were studied in particular cases. As
examples of such endeavours is the study of the relation
between charge and mass in the Reissner-Nordström solu-
tion and the construction of a point charge model [3], the
construction of static objects with unbounded density [5],
to show that unbounded redshifts can be obtained from
regular objects [6], and to discuss the hoop conjecture
[4]. In general, the engineered solutions can be made to
be as close to the ERN black hole as desired, and this has
been analyzed in relation to the bifurcation of solutions
[12] and it has been shown that such black hole limit is
a general feature of ECD solutions [17]. This means that
a regular ECD object could mimic an ERN black hole as
well as desired.

One underlying assumption when extrapolating results
obtained from specific spacetimes and matter models to
more general settings is that said solutions are stable. If
the solution is stable one expects that physical realistic
solutions close to the theoretical construction could ap-
pear in nature. If the solution is unstable then there is no
expectation of finding it in nature, as it would always be
subjected to some perturbations. Regarding ECD solu-
tions, in general they are considered to possess an indif-
ferent equilibrium, as one can go from one static distri-
bution to another, and the system is going to remain in
whichever distribution it is left. But this is true only in
the sense of considering ”static perturbations”. For the
spherically symmetric case, in the linear regime, it was
shown in [1] that perturbations to a static ECD solution
travel at constant speed. This is a reflection of said indif-
ferent equilibrium, but also was shown that this permits
the passage from a regular solution to a black hole so-
lution via the perturbation. Related to the question of
stability of ECD is the stability of chaged fluid spheres
with pressure. This problem was considered in [2], where
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it was shown that in general there is a stability limit,
before which the spheres are stable, and beyond it the
spheres are unstable and therefore undergo gravitational
collapse. In all cases the stability transition occurs before
they reach the ERN limit. The combination of reaching
the ERN limit and at the same time the pressure going
to zero seems to be the reason why ECD ends up with
an indifferent stability for static perturbations.
Another point that calls into question the feasibility of

ECD solutions as physical objects, and the main moti-
vation for the present work, is the particular fine tuning
necessary between charge density and mass density. Such
fine tunning is difficult to justify from more fundamen-
tal matter models. If we use geometrized units, where
G = c = 1, and ǫ0 = (4π)−1, then the ECD condition is
simply

σ = ±ρ, (1)

where σ is the electric charge density and ρ is the mass
density. If for comparison we take a gas made of protons,
we have

e

mp

≈ 1.1× 1018.

Therefore, if we want to construct an object of ECD with
ionized hydrogen, we need to ionize a mere one in 1018

atoms. This comes from the fact that all known parti-
cles fall into two classes, in the first the particles have no
electric charge and therefore the gravitational attraction
can not be balanced by electric repulsion, in the second
the electric repulsion is huge in comparison to the grav-
itational attraction. This means that there is no natu-
rally occurring fluid where (1) is satisfied. If we want to
continue with this construction, where we take a neutral
gas and ionize the right proportion of atoms, then we
are forced to consider the presence of two species. From
the previous example, one is neutral hydrogen, with no
charge to balance the gravitational pull, and the other is
ionized hydrogen, with charge density much higher than
required. This argument leads to the consideration of
two charged dust species, to see if it is possible within
GR to construct configurations where the required rela-
tionship (1) is satisfied only on average and not for each
fluid species separately. If this is not possible, as we prove
here, then we consider that there is no natural situation
where ECD could be expected to occur.
The article is organized as follows. In Section II we

state the problem and present the result. The proof of
the no-go theorem is developed in Section III, followed
by the conclusions in Section IV.

II. PROBLEM STATEMENT AND NO-GO

THEOREM

We consider a static spacetime where the matter con-
tent are two electrically charged dust species, which we
denote by A and B. The proper energy density of the

first fluid is ρA, and its proper electric charge density is
σA. Respectively for the second fluid we have ρB and
σB. We use coordinates adapted to the staticity of the
spacetime, (t, x, y, z), but assume no spacial symmetry.
Therefore, the named densities are functions of (x, y, z).
Following [8], we further assume that the ratio of total
matter density to total charge density is constant, in our
setting this means that

σ

ρ
=

σA + σB

ρA + ρB
= constant. (2)

This assumption, while technical, is justified by the fact
that what we are trying to test is the existence of solu-
tions that satisfy (1), that is, test the existence of solu-
tions that are on average ECD. Although we have this
motivation, we do not need to assume in (2) that the
ratio is that of ECD. The theorem is stated as:

No-go theorem: There is no static spacetime with

two electrically charged dust species that satisfy (2) unless

σA = ±ρA and σB = ±ρB. (3)

Please note that the same sign needs to be chosen in the
equalities (3), as both species have to repel each other to
balance the gravitational attraction. Also, the assump-
tion (2) can be replaced by the assumption that the sur-
face of each dust cloud is an equipotential surface without
any hole inside, but we prefer (2) as our intention is to
test the feasibility of ECD solutions. If (3) are satisfied,
then the two species can not be distinguished by their
mass-charge ratio, and therefore they are effectively only
one fluid for the setting at hand.

III. PROOF OF THE THEOREM

We need to consider the Einstein-Maxwell system of
equations together with the equations of motion for each
dust species. The Einstein equations are

Gµν := Rµν −
1

2
gµνR = 8πTµν ,

where the energy-momentum tensor has contributions
from the fluids as well as from the electromagnetic field,

Tµν = TA
µν + TB

µν + TEM
µν .

If we denote by uA
µ and uB

µ the four-velocities of each
fluid species, then, as they are both dusts,

TA
µν = ρAu

A
µu

A
ν , TB

µν = ρBu
B
µ u

B
ν .

The electromagnetic contribution is

TEM
µν =

1

4π

(

FγµF
γ
ν −

1

4
FγλF

γλgµν

)

,
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where the Faraday tensor, Fµν , is written in terms of the
electromagnetic four-potential, Aµ,

Fµν = ∇µAν −∇νAµ.

The Maxwell equations are

∇νF
µν = 4πjµ,

where jµ is the current density. With the previous nota-
tion we have

jµ = σAu
µ
A + σBu

µ
B.

The equations of motion for the dust species are

ρAu
ν
A∇νu

µ
A = f

µ
A, ρBu

ν
B∇νu

µ
B = f

µ
B, (4)

where f
µ
A and f

µ
B are the Lorentz forces on each fluid,

f
µ
A = σAF

µνuA
ν , f

µ
B = σBF

µνuB
ν .

Now we restrict to the static case. The metric can be
written as

ds2 = gttdt
2 + gijdx

idxj

where gtt and gij are functions of the spatial coordinates,
xi, only. Due to staticity, the four-velocities are

u
µ
A = u

µ
B = (−gtt)

−

1

2 ∂t,

and there is an electrostatic potential, V (xi), whith
which the electromagnetic four-potential takes the form

Aµ = V dt.

In [8] it is proven that given the Einstein-Maxwell equa-
tions plus the hypothesis that (2) is satisfied then there
is a functional relationship between gtt and V , which can
be written as

gtt = −V 2,

and that σ = ±ρ. Furthermore, by the results in [16],
the metric is conformastatic, which means that it can be
written in the form

ds2 = −H−2dt2 +H2(dx2 + dy2 + dz2),

where H is a function of (x, y, z). These results carry
over to the case at hand directly with ρ = ρA + ρB and
σ = σA + σB. It is then concluded that the Einstein-
Maxwell equations reduce to a single equation for H ,

∆H = −4πH3(ρA + ρB), (5)

where ∆ is the flat Laplacian. Therefore, given ρA and
ρB, (5) is solved for H , the electromagnetic field is ob-
tained through

V = ±H−1 (6)

and the charge densities have to satisfy

σA + σB = ±(ρA + ρB),

where the same sign needs to be chosen in these last
two equations. Here it may seem that the ECD con-
dition can be satisfied on average. This is due to the
fact that in the energy-momentum tensor all dust species
contributions enter in the same way, and therefore from
the energy-momentum tensor it is not possible to dis-
entangle to which species corresponds a particular mat-
ter density contribution. The same happens regarding
the charge contributions in the Maxwell equations. As
a consequence we have that from the Einstein-Maxwell
equations alone it is not possible to find the equations of
motion for the fluids. These are (4) and for the case at
hand they give

− ρA
∂iH

H2
= σA∂iV, −ρB

∂iH

H2
= σB∂iV,

where the index i stands for x, y and z. By (6) this
simply reduces to

σA = ±ρA, σB = ±ρB,

which means that both dust species have to be ECD.
Here the sign needs to coincide with the one in (6). This
concludes the proof.

IV. CONCLUSIONS

We have considered spacetimes where the matter con-
tent is given by two electrically charged dust species and
shown that there are no static distributions unless each
one is individually ECD. This implies that it is not possi-
ble to form static ECD objects using charged dust species
that do not satisfy (1) and averaging the mass and charge
densities. The generalization of the result to more than
two species is straightforward. Also, given that no known
particle satisfies (1), being the charge and mass not bal-
anced by orders of magnitude, then static distributions
of charged dust are not expected to occur.
The present result adds to the still open question posed

in [2]: ”Can relativistic charged spheres form extremal
black holes?”. This question is also part of a more general
discussion concerning the cosmic censorship conjecture,
where extremal black holes are seen as the way of pass-
ing (or being an impassable barrier) between black holes
and naked singularities. Starting a fruitful discussion in
[24], it was shown that Kerr-Newman black holes can
not be overspun or overcharged by test particles. This
was extended to a plethora of more general settings, for
example in [18] and [22]. These works strongly indicate
that to form an extremal black hole by gravitational col-
lapse it is necessary to start with a distribution of matter
which is already extremal. In [2] it was shown that before
this extremal matter limit is attained the object under-
goes gravitational collapse, which strongly suggests that
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ERN black holes can not be produced by the collapse
of charged spheres. Although less physically reasonable
from the point of view of its equation of state, ECD is
the natural candidate to form an ERN black hole by col-
lapse, being the relationship (1) the microscopic equiva-
lent of the extremality condition Q = M . In [1] it was
shown that indeed, in the linear perturbations regime,
an ERN black hole can be formed, wich indicates that
if ECD spacetimes were possible, then the formation of
ERN black holes would be a reality. Opposing this, the
present result shows that unless there is a particle with
the correct charge-mass ratio to start with then ECD

spacetimes are not possible.
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