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Abstract: Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set of
constraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on the
data, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,
i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee its
convergence to the solution u. We then present several applications that provide the continuous
dependence of the solution with respect to the data K, A and f on the one hand, and the convergence
of an associate penalty problem on the other hand. We use these abstract results in the study of a
frictional contact problem with elastic materials that, in a weak formulation, leads to a stationary
inclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis of
two nonlinear elastic constitutive laws.

Keywords: stationary inclusion; projection operator; convergence criterion; convergence results;
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1. Introduction

Besides existence and uniqueness results, convergence results represent an important
topic in Functional Analysis and Numerical Analysis, as well as Differential and Partial
Differential Equations Theory. They are important in the study of mathematical models that
occur in Mechanics and Engineering Sciences. References in the field include [1–3].

For all these reasons, a considerable effort was undertaken to obtain convergence
results in the study of various mathematical problems, including nonlinear equations,
inequality problems, fixed point problems, and optimization problems. Most of the conver-
gence results obtained in the literature provide sufficient conditions that guarantee that
a given sequence {un} converges to the solution of the corresponding problem, denoted
hereafter as P . In other words, these results do not describe all the sequences that have this
property. Therefore, we naturally consider the following problem.

Problem 1 (QP ). Provided a metric space (X, d), Problem P , which has a unique solution u ∈ X,
provides necessary and sufficient conditions that guarantee the convergence of an arbitrary sequence
{un} ⊂ X to the solution u.

In other words, Problem QP provides a convergence criterion to the solution of
Problem P .
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Note that the solution of Problem QP depends on the structure of the initial problem
P , which cannot be provided in this abstract framework and requires additional assump-
tions. The results after solving Problem QP were obtained in [4], where P represented a
variational inequality and a minimization problem.

Stationary and evolutionary inclusions represent an important topic that arises in the
study of nonsmooth problems with multivalued operators. They are closely related to the
study of variational inequalities, hemivariational inequalities, and fixed point problems,
as explained in [2,5,6], as well as in recent papers [7,8]. Moreover, they can be used in the
analysis of various mathematical models that describe the contact of a deformable body
with an obstacle, the so-called foundation. A reference in this field is the book [3], which
includes results on the well-posedness of stationary and history-dependent inclusions,
together with some applications in contact mechanics.

In this current paper, we continue our research in [4] regarding the study of Problem
QP by considering a case when P is an inclusion problem of the form

−u ∈ NK
(

Au + f ). (1)

In this paper, K is a nonempty subset of a real Hilbert space X, NK represents the
outward normal cone of K, A : X → X is a nonlinear operator, and f ∈ X. Our study is
motivated by possible applications in solid and contact mechanics, among others. Indeed,
a large number of constitutive laws in nonlinear elasticity and plasticity can be cast in
the form (1), as well as a number of mathematical models that describe the contact of a
deformable body with a foundation. We provide such examples in the last two sections
of the current paper. Moreover, we refer the reader to [9], as well as to the recent book [3],
where inclusions of the form (1) have been considered, together with various applications
in contact mechanics.

The current manuscript is structured in several sections, as follows. In Section 2, we
introduce some preliminary material. Then, in Section 3, we state and prove our main result,
Theorem 2. Next, in Section 4, we apply Theorem 2 in order to deduce the continuous
dependence of the solution with respect to the data and to obtain a convergence result
for an associated penalty problem. In Section 5, we use these convergence results in the
study of a specific inclusion problem, which describes the frictional contact of an elastic
body with a foundation. In Section 6 we provide an application of the abstract results,
obtained Section 4, in the study of two elastic constitutive laws. We conclude the results in
Sections 5 and 6 with various mechanical interpretations. Finally, in Section 7, we present
some concluding remarks.

2. Preliminaries

Most of the preliminary results we present here can be found in many books or
surveys. For the convenience of the reader, these are the books [10–14]. There, details on the
framework and notation we used, as well as additional results from the field, can be found.

Throughout this paper, unless otherwise specified, we use the functional framework
described in Introduction. Therefore, X represents a real Hilbert space endowed with the
inner product (·, ·)X and its associated norm ∥ · ∥X :=

√
(·, ·)X. The set of parts of X is

denoted by 2X, and the notations 0X and IX represent the zero element and the identity
operator of X, respectively. All of the limits below are considered as n → ∞, even if we
do not mention it explicitly. We used the symbols “⇀" and “→" for weak and strong
convergence in various spaces, respectively, which will be specified, except in the case
when the convergences takes place in R. For sequence {εn} ⊂ R+, which converges to zero,
we use the simple notation 0 ≤ εn → 0. Finally, we denote by d(u, K) the distance between
the element u ∈ X and the set K, that is

d(u, K) = inf
v∈K

∥u − v∥X . (2)

We now recall the following definition.



Axioms 2024, 13, 52 3 of 18

Definition 1. Let {Kn} be a sequence of nonempty subsets of X and let K be a nonempty subset
of X. We say that the sequence {Kn} converges to K in the sense of Mosco ([15]) and we write

Kn
M−→ K, if the following conditions hold:

(a) for each u ∈ K, there exists a sequence {un}, such that un ∈ Kn for each n ∈ N and un → u
in X;

(b) for each sequence {un}, such that un ∈ Kn for each n ∈ N and un ⇀ u in X, we have u ∈ K.

In Problem (1), we consider the following assumptions using the data.

K is a nonempty closed convex subset of X. (3)
A : X → X is a strongly monotone and Lipschitz continuous operator,
that is, mA > 0 and 0 < LA < ∞ exist, such that

(a) (Au − Av, u − v)X ≥ mA∥u − v∥2
X ∀ u, v ∈ X,

(b) ∥Au − Av∥X ≤ LA∥u − v∥X ∀ u, v ∈ X.

(4)

f ∈ X. (5)

Recall that in (1) and below, NK : X → 2X is the outward normal cone of K in the
sense of convex analysis and PK : X → K represents the projection operator on K. Then,
the following equivalences hold, for all u, ξ ∈ X:

ξ ∈ NK(u) ⇐⇒ u ∈ K, (ξ, v − u)X ≤ 0 ∀ v ∈ K, (6)

u = PKξ ⇐⇒ u ∈ K, (ξ − u, v − u)X ≤ 0 ∀ v ∈ K. (7)

Note that (6) represents the definition of the outward normal cone on K and (7)
represents the so-called variational characterization of the projection. Therefore, using (6),
it follows that

−u ∈ NK
(

Au + f ) ⇐⇒ Au + f ∈ K, (Au + f − v, u)X ≤ 0 ∀ v ∈ K. (8)

This equivalence will be repeatedly used in the rest of the manuscript. Moreover,
recall that the projection operator is monotone and nonexpansive, that is,

(PKξ1 − PKξ2, ξ1 − ξ2)X ≥ 0 ∀ ξ1, ξ2 ∈ X, (9)

∥PKξ1 − PKξ2∥X ≤ ∥ξ1 − ξ2∥X ∀ ξ1, ξ2 ∈ X. (10)

In addition, using assumption (3), we deduce that for each u ∈ X, the following
equality holds:

d(u, K) = ∥u − PKu∥X . (11)

On the other hand, it is well known that conditions (4) implies that the operator is
invertible; moreover, its inverse A−1 : X → X is a strongly monotone Lipschitz continuous
operator with constants mA

L2
A

and 1
mA

, respectively. A proof of this result can be found in [16].

Therefore, under assumption (4), the following inequalities hold:

(A−1u − A−1v, u − v)X ≥ mA

L2
A
∥u − v∥2

X ∀ u, v ∈ X, (12)

∥A−1u − A−1v∥X ≤ 1
mA

∥u − v∥X ∀ u, v ∈ X. (13)

We now recall the following existence and uniqueness result.

Theorem 1. Assume (3)–(5). Then, a unique element u ∈ X exists, such that (1) holds.
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Theorem 1 was proven in [9] using a fixed point argument. There, various convergence
results to the solution of this inclusion have been proven and an example arising in Contact
Mechanics has been presented.

We now proceed with the following elementary result, which will be used in the
next section.

Proposition 1. Let K be a nonempty closed convex subset of X and let A = IX. Then, for each
f ∈ X, the solution of the inclusion (1) is provided by

u = PK f − f . (14)

In addition, if K is a closed ball with a radius of 1 centered at 0X , then

u =


(

1
∥ f ∥X

− 1
)

f if ∥ f ∥X > 1,

0 if ∥ f ∥X ≤ 1.
(15)

The proof of Proposition 1 can be found in [3], based on equivalences (6) and (7).
Note that the solution of the inclusion (1) depends on the data A, K, and f . For this

reason, below we sometimes use the notation u( f ) or u(K). This dependence was studied
in [3], where the following results were proven.

Proposition 2. Assume (3)–(5). Then, the solution u = u( f ) of inclusion (1) depends continu-
ously on f , that is, if un = u( fn) denotes the solution of (1) with f = fn ∈ X, for each n ∈ N,
then

fn → f in X =⇒ un → u in X. (16)

Proposition 3. Assume (3)–(5). Then, the solution u = u(K) of inclusion (1) depends continu-
osly on K, that is, if for each n ∈ N, Kn is a nonempty closed convex subset of X and un = u(Kn)
denotes the solution of (1) with K = Kn, then

Kn
M−→ K in X =⇒ un → u in X. (17)

Note that Propositions 2 and 3 provide sequences {un} ⊂ X, which converge to
the solution of the inclusion (1). Nevertheless, these proposition do not describe all the
sequences that have this property, as it results from the two elementary examples below.

Example 1. Consider the inclusion (1) in the particular case X = R, K = [−1, 1], A = IX,
and f = 0. Then, using (14), we deduce that the solution of inclusion (1) is u = PK f − f = 0. Let
{un} ⊂ R be the sequence provided by un = − 1

n for all n ∈ N. Then, un → u, but we cannot
find a sequence { fn} ⊂ R, such that fn → 0 and un = u( fn). Indeed, assume that un = u( fn)
and fn → 0. Then, un = PK fn − fn = − 1

n and, using the analytic expression of the function
x 7→ PKx − x, we deduce that either fn = 1

n + 1 or fn = 1
n − 1, which contradicts the assumption

fn → 0. It follows from here that the convergence un → u above cannot be deduced as a consequence
of Proposition 2.

Example 2. Keep the same notation as those in Example 1. We claim that we cannot find a sequence

{Kn} ⊂ R, such that Kn
M−→ K and un is the solution of the inclusion (1) with Kn instead of

K. Indeed, arguing by contradiction, assume that there exists Kn, such that un = u(Kn) and

Kn
M−→ K. Then, un = PKn f − f = PKn 0 = − 1

n . Therefore, Kn is an interval of the form
(−∞,− 1

n ] or [a,− 1
n ] with a ∈ R, a ≤ − 1

n . In both cases, we arrive to a contradiction, as the

Mosco convergence Kn
M−→ K does not hold. We conclude that the convergence un → u above

cannot be deduced as a consequence of Proposition 3.
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3. A Convergence Criterion

In this section, we state and prove a convergence criterion for the solution of the inclu-
sion (1). To this end, under the assumption of Theorem 1, the solution of the inclusion (1)
is denoted by u. Moreover, provided an arbitrary sequence {un} ⊂ X, we consider the
following statements:

un → u in X. (18){
there exists 0 ≤ εn → 0 such that d(Aun + f , K) ≤ εn and

(Aun + f − v, un)X ≤ εn(∥v∥X + 1) ∀ v ∈ K, ∀ n ∈ N.
(19)

Our main result in this section is the following.

Theorem 2. Assume (3)–(5). Then, the statements (18) and (19) are equivalent.

Proof. Assume that (18) holds and let n ∈ N. Then, the regularity Au + f ∈ K implies that

d(Aun + f , K) ≤ ∥(Aun + f )− (Au + f )∥X = ∥Aun − Au∥X

and, using assumption (4)(b), we find that

d(Aun + f , K) ≤ LA∥un − u∥X . (20)

Consider now an arbitrary element v ∈ K. Then, using the equality

(Aun + f − v, un)X

= (Aun − Au, un)X + (Au + f − v, un − u)X + (Au + f − v, u)X

and inequality
(Au + f − v, u)X ≤ 0

in (8), we find that

(Aun + f − v, un)X ≤ (Aun − Au, un)X + (Au + f − v, un − u)X (21)

≤ ∥Aun − Au∥X∥un∥X + ∥Au + f ∥X∥un − u∥X + ∥v∥X∥un − u∥X .

Note also that assumption (18) implies that the sequence {un} is bounded in X. There-
fore, using assumption (4)(b), we deduce that there exists a constant C, which does not
depend on n, such that

∥Aun − Au∥X∥un∥X ≤ C∥un − u∥X . (22)

We now combine inequalities (21) and (22) to see that

(Aun + f − v, un)X ≤
(
C + ∥Au + f ∥X

)
∥un − u∥X + ∥v∥X∥un − u∥X . (23)

Denote

εn = max
{
(C + ∥Au + f ∥X)∥un − u∥X , ∥un − u∥X , LA∥un − u∥X)

}
(24)

and note that, using assumption (18), it follows that

0 ≤ εn → 0. (25)

Finally, we use (25), (24), (20), and (23) to see that (19) holds.
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Conversely, assume that (19) holds. Let n ∈ N and denote

vn = PK(Aun + f ), wn = Aun + f − vn. (26)

Then, we have
vn = Aun + f − wn (27)

and, using (11) and (19), we deduce that

wn → 0X , (28)

(Aun + f − v, un)X ≤ εn(1 + ∥v∥X) ∀ v ∈ K. (29)

We now take v = Au + f in (29) and v = vn = Aun + f − wn in (8) to deduce that

(Aun − Au, un)X ≤ εn(1 + ∥Au + f ∥X), (Aun − Au, u)X−(wn, u)X ≤ 0

and, adding these inequalities, we find that

(Aun − Au, un − u)X ≤ εn(1 + ∥Au + f ∥X)− (wn, u)X .

Next, we use assumption (4)(a) on the operator A to find that

mA∥un − u∥2
X ≤ εn(1 + ∥Au + f ∥X) + ∥wn∥X∥u∥X . (30)

Finally, we combine inequality (30) with the convergences εn → 0 and wn → 0X, guaran-
teed by (19) and (28). As a result, we deduce un → u in X, which concludes the proof.

We remark that Theorem 2 provides an answer to Problem QP in the particular case
when Problem P is the inclusion problem (1). Indeed, it provides a convergence criterion
to the solution of this problem.

4. Some Applications

Theorem 2 is useful to obtain various convergence results in the study of the inclu-
sion (1). In this section, we present two types of such results: results concerning the
continuous dependence of the solution with respect to the data and a result concerning the
convergence of the solution of a penalty problem.

(a) We start with a continuous dependence result of the solution with respect to the data A and f .
To this end, we consider two sequences {An} and { fn}, such that

An : X → X satisfies condition (4) with mn > 0 and Ln > 0

and, moreover, there exists an ≥ 0, m0 > 0 such that:

(a) ∥Anv − Av∥X ≤ an(∥v∥X + 1) ∀ v ∈ X, n ∈ N.

(b) an → 0 as n → ∞.

(c) mn ≥ m0 ∀ n ∈ N.

(31)

fn ∈ X, fn → f in X. (32)

It follows from Theorem 1 that for each n ∈ N, there exists a unique solution to the
inclusion problem.

−un ∈ NK
(

Anun + fn). (33)

Moreover, the solution satisfies

Anun + fn ∈ K, (Anun + fn − v, un)X ≤ 0 ∀ v ∈ K. (34)
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Our first result in this section is the following.

Theorem 3. Assume (3)–(5) and (31), (32). Then un → u in X.

Proof. Let n ∈ N and v0 ∈ K be fixed. We use inequality (34) to write

(Anun − An0X , un)X ≤ (v0 − fn, un)X − (An0X , un)X

and, using assumption (31)(a),(c), we deduce that

m0∥un∥2
X ≤ mn∥un∥2

X ≤ ∥v0 − fn∥X∥un∥X + ∥An0X∥X∥un∥X

≤ ∥v0 − fn∥X∥un∥X + ∥An0X − A0X∥X∥un∥X + ∥A0X∥X∥un∥X

≤ ∥v0 − fn∥X∥un∥X + an∥un∥X + ∥A0X∥X∥un∥X .

It follows from here that

∥un∥X ≤ 1
m0

(
∥v0 − fn∥X + an + ∥A0X∥X

)
and, using assumptions (31)(b), (32), we deduce that there exists M > 0, which does not
depend on n, such that

∥un∥X ≤ M ∀ n ∈ N. (35)

Next, we use the regularity Anun + fn ∈ K in (34), definition (2), and assump-
tion (31)(a) to see that

d(Aun + f , K) ≤ ∥Aun + f − Anun − fn∥X

≤ ∥Aun − Anun∥X + ∥ f − fn∥X ≤ an(∥un∥X + 1) + ∥ f − fn∥X

and, using the bound (35), we deduce that

d(Aun + f , K) ≤ an(M + 1) + ∥ f − fn∥X ∀ n ∈ N. (36)

Consider now an arbitrary element v ∈ K and let n ∈ N. Then, using the equality

(Aun + f − v, un)X

= (Aun − Anun + f − fn, un)X + (Anun + fn − v, un)X

and inequality in (34), we find that

(Aun + f − v, un)X ≤ (Aun − Anun + f − fn, un)X

and, therefore,

(Aun + f − v, un)X ≤ ∥Aun − Anun∥X∥un∥X + ∥ fn − f ∥X∥un∥X .

We now use assumption (31)(a) and the bound (35) to deduce that

(Aun + f − v, un)X ≤ an(M + 1)M + M∥ fn − f ∥X . (37)

Denote

εn = max
{

an(M + 1) + ∥ fn − f ∥X , an M(M + 1) + M∥ fn − f ∥X

}
. (38)
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and note that, using assumptions (31)(b), (32), it follows that

0 ≤ εn → 0. (39)

Finally, we use (36)–(39) to see that condition (19) is satisfied. We are now in a position
to use Theorem 2 to deduce the convergence un → u in X, which concludes the proof.

(b) We proceed with a result that shows the dependence of the solution with respect to the set
of constraints. To this end, we consider two sequences of {an} ⊂ R and {bn} ⊂ X,
such that  (a) an ̸= 0 ∀ n ∈ N, an → 1 as n → ∞.

(b) bn → 0X as n → ∞.
(40)

We define the set Kn by equality

Kn = anK + bn. (41)

Then, it follows from Theorem 1 that for each n ∈ N, there exists a unique solution un
to the inclusion problem

−un ∈ NKn

(
Aun + f ). (42)

Moreover, the solution satisfies

Aun + f ∈ Kn, (Aun + f − v, un)X ≤ 0 ∀ v ∈ Kn. (43)

Our second result in this section is the following.

Theorem 4. Assume (3)–(5) and (40), (41). Then, un → u in X.

Proof. We use Theorem 2 and, to this end, we check in what follows that condition (19) is
satisfied. Let n ∈ N. As Aun + f ∈ Kn, it follows from (41) that there exists vn ∈ K, such
that Aun + f = anvn + bn, which implies that

vn =
1
an

(Aun + f − bn). (44)

Therefore,

d(Aun + f , K) ≤ ∥Aun + f − vn∥X =
∥∥∥Aun + f − 1

an
(Aun + f − bn)

∥∥∥
X

=
∥∥∥(1 − 1

an
)(Aun + f ) +

1
an

bn

∥∥∥
X

,

which implies that

d(Aun + f , K) ≤
∣∣∣1 − 1

an

∣∣∣∥Aun + f ∥X +
1

|an|
∥bn∥X . (45)

Now, using (41) and arguments similar to those used in the proof of inequality (35),
we find that the sequence {un} is bounded in X and, therefore, there exists N > 0, which
does not depend on n, such that

∥un∥X ≤ N, ∥Aun + f ∥X ≤ N. (46)
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Thus, it follows from (45) that

d(Aun + f , K) ≤ N
∣∣∣1 − 1

an

∣∣∣+ 1
|an|

∥bn∥X . (47)

Assume now that v ∈ K. We write

(Aun + f − v, un)X = (Aun + f − anv − bn, un)X + ((an − 1)v + bn, un)X (48)

and, as anv + bn ∈ Kn, using (43), we deduce that

(Aun + f − anv − bn, un)X ≤ 0. (49)

We now combine (48) and (49) to see that

(Aun + f − v, un)X ≤ (|an − 1|∥v∥X + ∥bn∥X)∥un∥X

and, using (46), we find that

(Aun + f − v, un)X ≤ N(|an − 1|∥v∥X + ∥bn∥X). (50)

Denote

εn = max
{

N
∣∣∣1 − 1

an

∣∣∣+ 1
|an|

∥bn∥X , N|an − 1|, N∥bn∥X

}
. (51)

and note that, using assumptions (40), it follows that

0 ≤ εn → 0. (52)

Finally, we use (52), (51), (47) and (50) to see that condition (19) is satisfied. We are
now in a position to use Theorem 2 to deduce the convergence of un → u in X, which
concludes the proof.

(c) We now present a convergence result concerning a penalty method. To this, end we consider
a numerical sequence {λn}, such that

λn > 0 ∀ n ∈ N, λn → 0 as n → ∞, (53)

together with the problem of finding un, such that

un ∈ X, un +
1

λn

(
Aun + f − PK(Aun + f )

)
= 0X . (54)

Our third result in this section is the following.

Theorem 5. Assume (3)–(5) and (53). Then, for each n ∈ N, Equation (54) has a unique solution.
Moreover, un → u in X.

Proof. The proof is obtained in five steps, which we present in the following.
(Step i) We prove the unique solvability of Equation (54). Let n ∈ N, un ∈ X and denote

σn = Aun + f . (55)

Then, as A : X → X is invertible, we have

un = A−1(σn − f ). (56)
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Using these equalities, it is easy to see that un is a solution of Equation (54) if and only
if σn is a solution of the equation

A−1(σn − f ) +
1

λn
(σn − PKσn) = 0X . (57)

Consider now the operator Bn : X → X defined by

Bnσ = A−1(σ − f ) +
1

λn
(σ − PKσ) ∀ σ ∈ X. (58)

Then, using the properties (9), (10) and (12), (13) of the operators PK and A, respectively,
it is easy to see that the operator Bn is strongly monotone and Lipschitz continuous with
constants mA

L2
A

and 1
mA

+ 2
λn

, that is

(Bnσ1 − Bnσ2, σ1 − σ2)X ≥ mA

L2
A
∥σ1 − σ2∥2

X ∀ σ1, σ2 ∈ X, (59)

∥Bnσ1 − Bnσ2∥X ≤
( 1

mA
+

2
λn

)
∥σ1 − σ2∥X ∀ σ1, σ2 ∈ X. (60)

Therefore, it is invertible, and its inverse, denoted by B−1
n , is defined on X with values

in X. We conclude that from here, there exists a unique element σn, such that Bnσn = 0X.
Using the definition (58), we obtain the unique solvability of the nonlinear Equation (57)
and, equivalently, the unique solvability of the nonlinear Equation (54).

(Step ii) We prove the boundedness of the sequences {σn} and {un}. Let n ∈ N and let v0 be
a fixed element in K. We use (59) to deduce that

mA

L2
A
∥σn − v0∥2

X ≤ (Bnσn − Bnv0, σn − v0)X

and, since Bnσn = 0X , Bnv0 = A−1(v0 − f ), we find that

mA

L2
A
∥σn − v0∥2

X ≤ (A−1(v0 − f ), v0 − σn)X ≤ ∥A−1(v0 − f )∥X∥σn − v0∥X ,

which proves that the sequence {σn − v0} is bounded in X. This implies that the sequence
{σn} is bounded in X and, using (56) we deduce that {un} is a bounded sequence in X.

(Step iii) We prove the inequality

(Aun + f − v, un)X ≤ 0 ∀ v ∈ K, n ∈ N. (61)

Let n ∈ N and v ∈ K. We use (55)–(57) and equality v = PKv to see that

(Aun + f − v, un)X = (σn − v, A−1(σn − f ))X

= − 1
λn

(σn − v, σn − PKσn)X = − 1
λn

(σn − v, (σn − PKσn)− (v − PKv))X

which shows that

(Aun + f − v, un)X = − 1
λn

[
∥σn − v∥2

X − (PKσn − PKv, σn − v)X

]
. (62)

Recall that λn > 0 and, moreover, (10) implies that

(PKσn − PKv, σn − v)X ≤ ∥PKσn − PKv∥X∥σn − v∥X ≤ ∥σn − v∥2
X .

Therefore, using (62), we deduce that (61) holds.
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(Step iv) We prove that there exists M > 0, such that

d(Aun + f , K)X ≤ Mλn ∀ n ∈ N. (63)

Let n ∈ N. We use (55) and (57) to see that

d(Aun + f , K) = d(σn, K) = ∥σn − PKσn∥X = λn∥A−1(σn − f )∥X . (64)

On the other hand, it follows from the proof of Step (ii) that the sequence {σn} is
bounded in X. Therefore, using the properties of the operator A−1, we deduce that there
exists M > 0, which does not depend on n. such that

∥A−1(σn − f )∥X ≤ M ∀ n ∈ N. (65)

Inequality (63) is now a consequence of relations (64) and (65).
(Step v) End of proof. We now combine inequalities (61) and (63) with assumptions (53)

to see that condition (19) is satisfied with εn = Mλn. Finally, we use Theorem 2 to conclude
that the convergence un → u in X holds.

5. An Example in Contact Mechanics

In this section, we apply the abstract results in Sections 3 and 4 in the variational
analysis of a mathematical model that describes the bilateral contact between an elastic
body and a foundation. The classical formulation of the problem is the following.

Problem 2 (M). Find a displacement field u : Ω → Rd and a stress field σ : Ω → Sd, such that

σ = Aε(u) in Ω, (66)

Div σ + f 0 = 0 in Ω, (67)

u = 0 on Γ1, (68)

σν = f 2 on Γ2, (69)

uν = 0 on Γ3, (70)

∥στ∥ ≤ g, στ = −g
uτ

∥uτ∥
if uτ ̸= 0 on Γ3. (71)

Here, Ω ⊂ Rd (d ∈ {2, 3}) is a domain with smooth boundary Γ divided into three
measurable disjoint parts, Γ1, Γ2, and Γ3, such that meas (Γ1) > 0. It represents the reference
configuration of the elastic body. Moreover, ν is the unit outward normal to Γ, Sd denotes
the space of second order symmetric tensors on Rd. and, below, we use the notation “ · ”,
∥ · ∥, and 0 for the inner product, the norm, and the zero element of the spaces Rd and Sd,
respectively. We use notation x = (xi) to represent a generic point in Ω ∪ Γ.

We now provide a short description of Problem M and send the reader to [1,2,17–20]
for more details and comments. First, Equation (66) represents the constitutive law of
the material, in which A is the elasticity operator and ε(u) denotes the linearized strain
tensor. Equation (67) is the equilibrium equation, in which f 0 denotes the density of body
forces acting on the body. The boundary condition (68) is the displacement condition,
which we use because we assume that the body is held fixed on the part Γ1 on its boundary.
Condition (69) is the traction boundary condition. It models the fact that a traction of density
f 2 is acting on the part Γ2 of the surface of the body. The boundary conditions (70) and (71)
are the interface laws on Γ3, where the body is assumed to be in contact with an obstacle,
the so-called foundation. Here, uν and uτ denote the normal and tangential displacement,
respectively, and στ is the tangential part of the stress vector σν. Condition (70) is the
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bilateral contact condition and condition (71) represents the Tresca friction law, in which g
denotes the friction bound.

In the analysis of Problem M, we use the standard notation for Sobolev and Lebesgue
spaces associated with Ω and Γ. Moreover, for an element v ∈ H1(Ω)d, we still write v for
the trace of v to Γ and its normal and tangential components are denoted by vν and vτ on
Γ, provided by vν = v · ν and vτ = v − vνν. In addition, recall that στ = σν − σνν with
σν = σν · ν.

Next, for the displacement field, we need the space V, and for the stress and strain
fields, we need the space Q, defined as follows:

V = { v ∈ H1(Ω)d : v = 0 on Γ1, vν = 0 on Γ3 },

Q = { σ = (σij) : σij = σji ∈ L2(Ω) ∀ i, j = 1, . . . , d }.

We use the notation ε for the deformation operator, that is,

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i) ∀ u ∈ V,

where an index that follows a comma denotes the partial derivative with respect to the
corresponding component of x, e.g., ui,j =

∂ui
∂xj

. It is well known that the spaces V and Q
are real Hilbert spaces endowed with the inner products

(u, v)V =
∫

Ω
ε(u) · ε(v) dx, (σ, τ)Q =

∫
Ω

σ · τ dx. (72)

The associated norms on these spaces are denoted by ∥ · ∥V and ∥ · ∥Q, respectively.
Note that, from the definition of the inner product in the spaces V and Q, we have

∥v∥V = ∥ε(v)∥Q ∀ v ∈ V. (73)

In the study of Problem M, we assume that the operator A satisfies the following
condition. 

(a) A : Ω × Sd → Sd.

(b) There exists LA > 0 such that
∥A(x, ε1)−A(x, ε2)∥ ≤ LA∥ε1 − ε2∥
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ∥ε1 − ε2∥2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ A(x, ε) is measurable on Ω,
for any ε ∈ Sd.

(e) The mapping x 7→ A(x, 0) belongs to Q.

(74)

Moreover, the density of body forces and the friction bound are such that

f 0 ∈ L2(Ω)d, f 2 ∈ L2(Γ2)
d. (75)

g > 0. (76)

Assume now that (u, σ) represents a couple of regular functions that satisfy (66)–(71).
Then, using standard arguments, it follows that
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u ∈ V,
∫

Ω
σ · (ε(v)− ε(u)) dx + g

∫
Γ3

∥vτ∥ da − g
∫

Γ3

∥uτ∥ da (77)

≥
∫

Ω
f 0 · (v − u) dx +

∫
Γ2

f 2 · (v − u) da ∀ v ∈ V.

We now introduce the operator A : Q → Q, the functional j : V → R the element
f ∈ V, and the set K defined by

(Aσ, τ)Q =
∫

Ω
Aσ · τ dx ∀ σ, τ ∈ Q, (78)

j(v) =
∫

Γ3

∥vτ∥ da, ∀ v ∈ V, (79)

( f , v)V =
∫

Ω
f 0 · v dx +

∫
Γ2

f 2 · v da ∀ v ∈ V, (80)

K =
{

τ ∈ Q : (τ, ε(v))Q + gj(v) ≥ ( f , v)V ∀ v ∈ V
}

. (81)

Then, using (77) and notation (79), (80) we obtain that

(σ, ε(v)− ε(u))Q + gj(v)− gj(u) ≥ ( f , v − u)V . (82)

We now use (82) with v = 2u and v = 0V to find that

(σ, ε(u))Q + gj(u) = ( f , u)V . (83)

Therefore, by (82) and (83), we see that

(σ, ε(v))Q + gj(v) ≥ ( f , v)V .

This inequality and the definition (81) imply that

σ ∈ K. (84)

Next, we use (81) and (83) to deduce that

(τ − σ, ε(u))Q ≥ 0 ∀ τ ∈ K

and, with notation ω = ε(u) for the strain field, we see that

(τ − σ, ω)Q ≥ 0 ∀ τ ∈ K. (85)

On the other hand, the constitutive law (66), definition (78), and equality ω = ε(u)
show that

(σ, τ)Q = (Aω, τ)Q ∀ τ ∈ Q

and, therefore,
σ = Aω. (86)

We now combine (84)–(86) to deduce that

Aω ∈ K, (Aω − τ, ω)Q ≤ 0 ∀ τ ∈ K. (87)

Finally, inequality (87) and (6) lead to the following variational formulation of Problem M.

Problem 3. MV . Find a strain field ω ∈ Q such that

−ω ∈ NK(Aω). (88)
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We now consider the sequences { f 0n}, { f 2n}, {gn} such that, for each n ∈ N, the fol-
lowing hold.

f 0n ∈ L2(Ω)d, f 2n ∈ L2(Γ2)
d. (89)

gn ≥ g. (90)

f 0n → f in L2(Ω)d, f 2n → f 2 in L2(Γ2)
d. (91)

gn → g. (92)

Then, for each n ∈ N, we consider the element f n ∈ V and the set Kn provided by

( f n, v)V =
∫

Ω
f 0n · v dx +

∫
Γ2

f 2n · v da ∀ v ∈ V, (93)

Kn =
{

τ ∈ Q : (τ, ε(v))Q + gn j(v) ≥ ( f n, v)V ∀ v ∈ V
}

, (94)

together with the following problem.

Problem 4. MV
n . Find a strain field ωn ∈ Q, such that

−ωn ∈ NKn(Aωn). (95)

Our main result in this section is the following.

Theorem 6. Assume (74)–(76), (89) and (90). Then, Problem MV has a unique solution ω,
and, for each n ∈ N, Problem MV

n has a unique solution ωn. Moreover, if (91) and (92) hold, then
ωn → ω in Q.

Proof. For the existence part, we use Theorem 1 on space X = Q. First, we note that

(w, v)V = (ε(w), ε(v))Q ∀w, v ∈ V (96)

and, as gj(v) ≥ 0 for each v ∈ V, using definition (81), we deduce that ε( f ) ∈ K and,
therefore, K is nonempty. On the other hand, it is easy to see that K is a convex subset of Q.
We conclude from here that condition (3) is satisfied. In addition, using assumption (74),
we see that

(Aσ − Aτ, σ − τ)Q ≥ mA∥σ − τ∥2
Q, ∥Aσ − Aτ∥Q ≤ LA ∥σ − τ∥Q

for all σ, τ ∈ Q. Therefore, condition (4) holds with mA = mA and LA = LA. We
are now in a position to use Theorem 1 with f = 0Q to deduce the unique solvability
of the inclusion (88). The unique solvability of the inclusion and (95) follows from the
same argument.

Assume now that convergences (91) and (92) hold. Then, using definitions (93) and (80), it
is easy to see that f n → f in V and, therefore, (73) implies that

ε( f n) → ε( f ) in Q. (97)

On the other hand, using definitions (81) and (94) of sets K and Kn, together with
equality (96), it is easy to set that the following equivalence holds, for each n ∈ N:

σ ∈ K ⇐⇒ gn

g
σ − gn

g
ε( f ) + ε( f n) ∈ Kn.
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We deduce from here that

Kn = anK + bn with an =
gn

g
and bn = ε( f n)−

gn

g
ε( f ).

It follows from here that condition (41) is satisfied. Moreover, the convergences (92) and (97)
guarantee that the sequences {an} and {bn} defined above satisfy conditions (40). The con-
vergence result in Theorem 6 is now a direct consequence of Theorem 4.

Theorem 6 is important from a mechanical point of view as it shows that the weak
solution of the contact problems M also continuously depends on the density of body
forces, the density of the traction forces, and the friction bound.

6. An Application in Solid Mechanics

In this section, we provide an example of inclusion in solid mechanics for which
the results in Theorem 5 work. More precisely, we introduce and analyze two nonlinear
constitutive laws for elastic materials. To this end, again, we use notation Sd for the space
of second order symmetric tensors on Rd with d ∈ {1, 2, 3}, and recall that the indices i, j,
k, and l run between 1 and d. Our construction below is based on rheological arguments,
which can be found in [21].

The first constitutive law is obtained by connecting an elastic rheological element
in parallel with a rigid–elastic element with constraints. Therefore, we have an additive
decomposition of the total stress σ ∈ Sd, i.e.,

σ = σE + σRC. (98)

Here, σE is the stress in the elastic element and σRP is the stress in the rigid–elastic
element with constraints. We denote the strain tensor by ε ∈ Sd and we recall that, as the
connection is in parallel, this tensor is the same in the two rheological components we
considered. We also assume that the constitutive law of the elastic element is provided by

σE = Aε (99)

in which A = (Aijkl) : Sd → Sd is a fourth order tensor. Moreover, we assume that
the constitutive law of the rigid-elastic element is provided by

ε ∈ NK(σ
RC) (100)

where K ⊂ Sd represents the set of constraints and, as usual, NK represents the outward
normal cone to K. The interior of K in the topology of Sd is denoted by int K. Then, for stress
fields σRC, such that σRC ∈ int K we have NK(σ

RC) = 0 and, therefore, Equation (100)
implies that ε = 0. We conclude that this equation describes a rigid behavior. For stress
fields σRC such that σRC ∈ K − int K we can have ε ̸= 0 and therefore, (100) describes a
nonlinear elastic behaviour. An example of set of constraints is the von Mises convex used
in [18,22], for instance. It is given by

K = { τ ∈ Sd : ∥τD∥ ≤ k } (101)

where τD represents the deviatoric part of the tensor τ and k is a given yield limit.
We now use relations (98)–(100) to write

ε ∈ NK(σ
RC) = NK(σ − σE) = NK(σ − Aε)

and, using notation ω = −ε we obtain the following constitutive law:

−ω = NK(Aω + σ) (102)
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The second consitutive law is obtained by connecting a linearly elastic rheological
element in parallel with a rigid–elastic rheological element without constraints. Therefore,
we keep the notation σ, σE, and ε introduced above and we denote the stress in the
rigid–elastic element by σRE. We have

σ = σE + σRE. (103)

and we assume now that the constitutive law of the rigid–elastic element is provided by

ε =
1
λ
(σRE − PKσRE). (104)

Here, again K represents the domain of rigidity of the material, assumed to be a
nonempty closed convex subset of Sd and, in addition, PK denotes the projection operator
on K and λ > 0 is a provided elastic coefficient. Note that for stress fields σRE, such that
σRE ∈ K, we have σRE = PKσRE and, therefore, (104) implies that ε = 0, which shows that
this equation describes a rigid behavior. For stress fields σRE, such that σRE /∈ K, we have
ε ̸= 0.

We now use relations (104), (103) and (99) to write

ε =
1
λ
(σRE − PKσRE) =

1
λ

(
σ − σE − PK(σ − σE))

=
1
λ

(
σ − Aε − PK(σ − Aε)

)
and, using notation ε = ελ = −ωλ in order to underline the dependence of the strain field
on the coefficient λ, we obtain the following constitutive law:

ωλ +
1
λ

(
Aωλ + σ − PK(Aωλ + σ)

)
= 0 (105)

A brief comparaison between the constitutive laws (105) and (102) reveals the fact
that (102) is expressed in terms of inclusions and involves unilateral constraints. In contrast,
the law (105) is in the form of an equality and does not involve unilateral constraints.
For these reasons, we say that (105) is more regular that the constitutive law (102). Consider
now the following assumptions.

A : Sd → Sd is a positively symmetric fourth order tensor. (106)

K ⊂ Sd is an nonempty closed subset. (107)

Our main result in this section is the following.

Theorem 7. Assume (106) and (107). Then, for every stress tensor σ ∈ Sd there exists a unique
solution ω ∈ Sd to include (102) and, for every σ ∈ Sd and λ > 0, there exists a unique solution
ωλ ∈ Sd to Equation (105). Moreover, ωλ → ω in Sd is denoted as λ → 0.

Theorem 7 is a direct consequence of Theorem 5. In addition to the mathematical
interest in this theorem, it is important from a mechanical point of view as it shows that:

• a stress field σ ∈ Sd results in a unique strain field ε ∈ Sd associated with the
constitutive law (102);

• a stress field σ ∈ Sd results in a unique strain field ελ ∈ Sd associated with the
constitutive law (105);

• the constitutive law (102) can be approached by the more regular constitutive law (105)
for a small elasticity coefficient λ.



Axioms 2024, 13, 52 17 of 18

7. Conclusions

In this paper, we considered a stationary inclusion in a Hilbert space X, for which we
provided a convergence criterion, Theorem 2. This criterion provided necessary and suffi-
cient conditions on the sequence {un}, which guaranteed its convergence to the solution
u of the inclusion problem.We used this criterion to deduce the continuous dependence
results of the solution with respect to the data, as well as a convergence result in the study
of an associated penalty problem. Besides the novelty of Theorem 2, we illustrated its use
in contact and solid mechanics. This represents a new evidence of the cross fertilization be-
tween the models and applications, on the one hand, and the nonlinear functional analysis,
on the other hand.

Our results in this work should be extended in several directions.First, it would
be interesting to relax the assumption (4) concerning the operator A. Second, it would
be interesting to use the abstract result in Theorem 2 in order to obtain the continuous
dependence of the solution with respect to all of the data (K, A, f ). The use of Theorem 2
in the study of the convergence of the solution of a discrete version of the inclusion (1)
as the discretization parameter converges also represents a problem that deserves to be
studied in the future. Computer simulations of these theoretical convergence results
would be welcome, too. Extensions to evolutionary inclusions (similar to those used
in [5], for instance) could also be investigated. Any result in this last direction would have
applications in the study of constitutive laws with viscoelastic or viscoplastic materials and
the associated contact problems.
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