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Abstract: The central limit theorem states that, in the limits of a large number of terms, an appropri-
ately scaled sum of independent random variables yields another random variable whose probability
distribution tends to attain a stable distribution. The condition of independence, however, only holds
in real systems as an approximation. To extend the theorem to more general situations, previous
studies have derived a version of the central limit theorem that also holds for variables that are
not independent. Here, we present numerical results that characterize how convergence is attained
when the variables being summed are deterministically related to one another through the recurrent
application of an ergodic mapping. In all the explored cases, the convergence to the limit distribution
is slower than for random sampling. Yet, the speed at which convergence is attained varies substan-
tially from system to system, and these variations imply differences in the way information about
the deterministic nature of the dynamics is progressively lost as the number of summands increases.
Some of the identified factors in shaping the convergence process are the strength of mixing induced
by the mapping and the shape of the marginal distribution of each variable, most particularly, the
presence of divergences or fat tails.

Keywords: stable distributions; deterministic systems; central limit theorem

1. Introduction

According to the central limit theorem (CLT), the sum of independent variables with
finite first and second moments is governed by a Gaussian distribution when the number
of summands is asymptotically large. The mean value and the variance of the Gaussian
equal the sum of the individual mean values and variances, respectively. The Gaussian
distribution has maximal entropy for a given variance and is reached independently of the
distributions from which the summands are sampled. The convergence to the Gaussian
limit, therefore, can be viewed as a loss of information about the original data. Extension to
sums of variables with diverging first and second moments have been derived in [1–4]; the
asymptotic distributions of there are no longer Gaussian, but are still members of a family
of so-called stable distributions.

Experience shows that many systems are successfully modeled by stable distributions,
for example, in the theory of errors and propagation of uncertainty. This is often justified
by the fact that errors, as well as many other quantities of interest, can be conceived as
the sum of a large number of variables representing disparate magnitudes that appear to
be unrelated. Yet, Physics, for instance, dictates that all the variables describing a system
of interacting particles (as opposed to an ensemble of free particles) are correlated to one
another. Therefore, the independence condition is no more than an approximation.

To improve this approximation, extensions of the CLT have also been developed for
variables that bear different degrees of statistical dependencies, including those obtained
through the subsequent application of a deterministic rule that produces ergodicity and
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aperiodicity [5–11]. Here, we analyze several systems of this type. As discussed in the
next section, a conveniently modified version of the CLT exists for appropriately scaled
sums of variables deterministically related to one another. Notably, the family of stable
distributions for these cases coincides with the ones obtained for independent variables.
These extensions provide mathematical certainty that sums of strongly correlated variables,
if produced through a chaotic dynamical system, lose all memory of their original distri-
bution, and asymptotically approach a distribution that also happens to be the limit of
sums of independent variables sampled from a certain distribution. The strong statistical
dependencies governing the physical world, therefore, may be legitimately ignored when
describing the probability distributions of macroscopic variables, and it is legitimate to
conceive the latter as a sum of a large number of microscopic, independent variables. This
property greatly simplifies the description of macroscopic systems and has probably played
a crucial role in the development of the theory of probability.

In practical situations, however, it is important to know how many terms a sum needs
to include for its distribution to be well described by the asymptotic result. To shed light
on this question, we study in this paper the convergence of the probability distribution
of a sum of perfectly correlated variables, generated through the iteration of a chaotic,
deterministic map, towards the asymptotic distribution predicted using the extensions of
the CLT. The aim is to characterize how the loss of information about the deterministic
nature of the map depends on the number of variables that are summed together. Since
previous theoretical results do not predict the rate of convergence towards asymptotic
distributions in deterministic systems, our analysis is based on numerical simulations
of several paradigmatic examples, and on a comparison with the behavior of randomly
sampled systems with the same distributions.

The paper is organized as follows. In Section 2, we present the main theoretical tools
to be employed later; these include the extension of the CLT to variables that are strongly
correlated, the information–theoretical measures that quantify the differences between
probability distributions, and the behavior of the variance of a sum of variables that
are correlated. The following three sections apply these tools to the analysis of a chaotic
dynamical system with a uniform marginal distribution and varying Lyapunov exponent
(the Bernoulli map, Section 3), a chaotic dynamical system with a highly nonuniform
marginal distribution and several types of orbits (the logistic map, Section 4), and an
example of a process with fat-tailed distribution (Section 5). Our main conclusions are
summarized in Section 6.

2. Central Limit Theorem for Deterministic Maps

We consider a generic one-dimensional map, x(t + 1) = f [x(t)], with a well-defined
invariant measure ρx(x), determined using the identity

ρx(x)dx = ρx[ f (x)]d f (x) = [ρx ◦ f ](x) f ′(x)dx, (1)

where [ρx ◦ f ](x) is the composition of functions ρx(x) and f (x), and the prime indicates
differentiation with respect to x. We assume that the mean value x̄ is finite over the distri-
bution ρx(x), and—for now—we assume the variance σ2

x of x is also finite:

x̄ =
∫

xρx(x)dx < ∞, σ2
x =

∫
(x − x̄)2ρx(x)dx < ∞, (2)

where the integrals run over the whole domain of variation of x. In Section 5, we study a
case where we relax the condition that σ2

x is finite. A central limit theorem (CLT) for this
kind of system applies [6–11] when the map under study is ergodic and aperiodic. We
recall that a map is ergodic if all its invariant sets are null or co-null, and it is aperiodic if
its periodic orbits form a null set [11]. The combination of ergodicity and aperiodicity is
typically equivalent to the dynamics being chaotic [12]. In this case, the CLT states that the
distribution of the (centered, suitably normalized) sums of N successive values of x(t),
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sN(t) =
1√
N

N

∑
k=1

[x(t + k − 1)− x̄], (3)

becomes normal for N → ∞:

ρs(s) =
1√

2πσ2
s

exp
(
− s2

2σ2
s

)
≡ Gσs(s), (4)

for some value of the variance σ2
s . Here, Gσs denotes the Gaussian centered at zero, with

standard deviation σs.
For each value of N, the variables x(t) and sN(t) can be integrated into a single

two-dimensional map:{
x(t + 1) = f [x(t)],
sN(t + 1) = sN(t)− 1√

N
x(t) + 1√

N
f (N)[x(t)], (5)

where f (N)(x) =

N︷ ︸︸ ︷
f ◦ f ◦ · · · ◦ f (x) is the N-th self-composition of f (x). Thus, for N → ∞,

the marginal invariant measures of the variables x and sN in map (5) are, respectively, ρx(x)
and the Gaussian ρs(s) = Gσs(s) of Equation (4).

In contrast with the sums of statistically independent random variables drawn from a
given distribution, in the limit N → ∞, the variance of the sums sN(t) does not necessarily
coincide with that of the summands, σ2

x . The difference arises from the correlations between
successive values of x(t), induced by the map x(t + 1) = f [x(t)], with the ensuing mutual
correlations between the values of sN(t). For a finite number of summands N, the variance
of sN(t) is given by the Green–Kubo formula [13]:

σ2
sN

= σ2
x + 2

N−1

∑
k=1

(
1 − k

N

)
[x(t)− x̄][x(t + k)− x̄], (6)

where the overline indicates the average with respect to the distribution ρx(x). The value
of σ2

sN
becomes independent of t when the process x(t) has reached a stationary regime.

For N → ∞, the variance is

σ2
s = lim

N→∞
σ2

sN
= σ2

x + 2
∞

∑
k=1

[x(t)− x̄][x(t + k)− x̄]. (7)

Provided that the sum converges, this formula gives the variance of the asymptotic normal
distribution Gσs(s) of increasingly long sums sN(t).

In the following, we study the process of convergence towards the asymptotic distri-
bution predicted by the above CLT for some selected deterministic maps, as the number of
terms in the sums sN grows. For each N, we numerically iterate Equation (5) and estimate
the distribution of the sums sN , ρsN (sN), as a suitably normalized 103-column histogram
built from, typically, 107 values of sN . To quantify the difference between ρsN and the
expected asymptotic Gaussian distribution Gσs(s), we use the Kullback–Leibler divergence
(KLD). Recall that the KLD between two distributions ρ1(s) and ρ2(s) is defined as

D(ρ1||ρ2) =
∫

ρ1(s) log2

[
ρ1(s)
ρ2(s)

]
ds. (8)

This quantity measures the inefficiency with which the data s is represented by a code
optimized to be maximally compact under the assumption that the distribution is ρ2 when,
in reality, the data are generated from ρ1. The inefficiency equals the mean number of extra
bits per sample [14]. The divergence only vanishes when the two distributions coincide,
and is otherwise positive. For brevity, we hereafter denote as DG the KLD between the
distribution ρsN and the asymptotic normal distribution Gσs : DG ≡ D(ρsN ||Gσs).
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Additionally, for each N, it is interesting to compare ρsN with a normal distribu-
tion with the variance σ2

sN
given by Equation (6), namely, the same variance as the sums

sN . Since σ2
sN

→ σ2
s as N → ∞, this is an alternative way of characterizing the con-

vergence to the asymptotic Gaussian Gσs . For this comparison, we introduce the KLD
DGN ≡ D

(
ρsN ||GσsN

)
.

Finally, in order to contrast the deterministic dynamics of the chaotic map under study
with a genuinely aleatory process, we calculate the KLD for the distribution of sums of the
same form as in Equation (3), but with the N values of the variable x drawn at random from
the invariant measure ρx(x). According to the standard CLT for statistically independent
variables, as N grows, the distribution ρrandom

sN
of these random sampling sums is expected

to asymptotically converge to a Gaussian with variance σ2
x . To quantify this convergence,

we compute Drandom ≡ D
(

ρrandom
sN

||Gσx

)
.

The measures Drandom, DG and DGN reflect three different aspects of the convergence
of ρsN to Gσs . The process by which Drandom tends to zero describes how independent
variables, when summed together, lose the memory of the distribution from which they
are sampled and approach a Gaussian. The Gaussian distribution is the one with maximal
entropy among those with fixed variance. By acquiring a Gaussian shape, therefore, the
distribution of the sum maximizes uncertainty. In Appendix B, we show that, for large N,
the divergence Drandom decays as N−1 if ρx is not symmetric around its mean value, and at
least as fast as N−2 if there is symmetry.

A steep decay of DGN with N, at a faster rate than DG, implies a rapid evolution
of ρsN towards a bell-shaped distribution, whose variance may still have to evolve to its
asymptotic value σ2

s . The convergence process can therefore be conceived as a sequence
of two stages, the first one consisting of shedding all the structure in ρ(x) and becoming
Gaussian-like, and the second, adjusting the variance. Once ρsN is approximately Gaussian,
its KLD with the asymptotic distribution Gσs can be analytically calculated in terms of their
respective variances:

DG ≈ log2

(
σsN

σs

)
+

1
2 ln 2

σ2
s − σ2

sN

σ2
sN

. (9)

3. The Bernoulli Map

As a first case of study, we take the generalized Bernoulli map

x(t + 1) = f [x(t)] = {mx(t)}, (10)

where {·} indicates a fractional part, and m > 1 is an integer factor. This map has been
extensively studied since long ago as a paradigm of deterministic chaotic systems, due to
its combination of complex behavior and analytical traceability. Its Lyapunov exponent
equals ln m. The invariant measure of x(t) is particularly simple:

ρx(x) =
{

1 for x ∈ [0, 1),
0 otherwise,

(11)

for all m, with x̄ = 1/2 and σ2
x = 1/12. We show in Appendix A that the variances of the

sums sN can be explicitly calculated:

σ2
sN

=
1

12
+

1
6(m − 1)

(
1 − m

m − 1
1 − m−N

N

)
. (12)

Note that for N ≫ (ln m)−1, this variance takes the approximate form

σ2
sN

≈ 1
12

m + 1
m − 1

(
1 − N0

N

)
, (13)
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with N0 = 2m/(m2 − 1). For N → ∞, in turn,

σ2
sN

→ σ2
s =

1
12

m + 1
m − 1

. (14)

We first consider the Bernoulli map for m = 2. Dark full lines on the left column
of Figure 1 show numerical results for the distributions of the sums sN , ρsN , for three
small values of N. Light-colored curves stand for the asymptotic Gaussian ρs = Gσs , and
dashed curves are the Gaussians GσsN

for each N. Their respective variances, σ2
s and σ2

sN
, are

given by Equation (12). On the right column, dark- and light-colored curves, respectively,
show the distributions of the sums of randomly sampled values of x, ρrandom

sN
, calculated

analytically as N-th order self-convolutions of ρx(x), and the expected asymptotic Gaussian
Gσx . A comparison of the two columns illustrates the difference between the distributions
of the sums generated by map iteration on one side and by random sampling on the other.
It also shows that convergence to the asymptotic distribution is faster in the latter case.

−2 −1 0 1 2
0.0

0.3

0.6

0.9

1.2

−1 0 1
0.0

0.3

0.6

0.9

1.2

1.5

−2 −1 0 1 2
0.0

0.3

0.6

0.9

1.2

−1 0 1
0.0

0.3

0.6

0.9

1.2

1.5

−2 −1 0 1 2
0.0

0.3

0.6

0.9

1.2

−1 0 1
0.0

0.3

0.6

0.9

1.2

1.5

 

 

N  = 2

 

 

N  = 2

N  = 3

 

 

� s N

 � s N

N  = 3

 

 

ran
dom

N  = 5

 

 

s N

N  = 5

 

 

s N
Figure 1. Left, dark line: Numerical results for the distribution ρsN of the sums sN defined in
Equation (3), in the case the Bernoulli (10) map with m = 2, for three small values of N. The light
curve is the Gaussian expected for N → ∞, and the dashed curve is a Gaussian with the same
variance as predicted for ρsN . Right, dark curve: The distribution ρrandom

sN
for sums of N values of x

randomly sampled from ρx(x) is a normalized version of the Irwin–Hall distribution [15,16], which
can be obtained analytically through the successive self-convolution of ρx. The light curve is the
Gaussian expected for N → ∞. Note the different scales on the left and right columns.

The main panel of Figure 2 shows, with different symbols, the KLDs DG, DGN , and
Drandom, defined in the preceding section. For N = 1, by definition, Drandom = DGN . For
large N (Appendix B), Drandom decays as N−2. The straight lines in the log–log plot of
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the figure have slope −2, suggesting that the decay of the divergence DG approximately
follows the same asymptotic dependence on N. The inset in Figure 2 shows, as dots, the
numerical estimation of the variance of sN over the distribution ρsN as a function of N. The
dashed curve corresponds to the analytical expression of Equation (12).
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Figure 2. Main panel: The Kullback–Leibler divergences DG, DGN , and Drandom, defined in the text,
as functions of the number of terms in the sums sN of Equation (3), for the Bernoulli map (10) with
m = 2. The straight lines in this log–log plot have a slope −2. The inset shows, as dots, numerical
results for the variance σ2

sN
over the distribution ρsN (sN). The dashed line joins the analytical values

predicted from Equation (12).

In the range shown in the figure, for N ≳ 10, DG is larger than Drandom by a factor
of around 14. Meanwhile, in the same range, DGN decays faster, approximately as N−2.3.
As discussed at the end of Section 2, this faster decay of DGN suggests that ρsN is rapidly
approaching a Gaussian distribution, with a KLD with the asymptotic distribution ρS as
given by Equation (9). Replacing Equation (13) into Equation (9) and expanding up to
second order in N0/N yields

DG ≈ 1
4 ln 2

N2
0

N2 . (15)

For m = 2 we have N0 = 4/3 so that, according to the above equation, DG ≈ 0.64 N−2. A
power–law fitting of the data for DG for N ≤ 20 ≤ 50 gives DG ≈ 0.69 N−1.9, which fits the
prediction of Equation (15) remarkably well. This agreement provides strong evidence in
favor of the hypothesis that ρsN converges to ρs in two stages, acquiring a Gaussian shape
in the first, and adjusting the variance in the second. The transition from the first stage to
the second, however, does not imply that ρsN is strictly speaking a Gaussian distribution.

What are the implications of the fact that after the initial transient DG and Drandom
both decay with the same power law, approximately proportional to N−2? In this regime,
DG ≈ 14 Drandom which means that, for each N, Drandom(N) is approximately equal
to DG(

√
14N). By increasing the number of random samples drawn from the invariant

measure (11), Drandom diminishes by the same amount as DG diminishes when running the
Bernoulli deterministic mapping a re-scaled, larger number of samples, with a scaling factor
of α ≈

√
14 ≈ 3.7. In other words, α samples of the deterministic map are as informative

about the asymptotic distribution as a single sample in the random drawing. The presence
of correlations makes each new sample from the deterministic dynamics less informative
(by a factor of α) than from purely independent draws.

The factor α may also be semi-quantitatively associated with the relation between the
asymptotic variance σ2

s and the original variance σ2
x . In Equation (3), the normalization
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factor 1/
√

N compensates for the fact that the variance of a sum of N independent samples
is proportional to N. Yet, when the summands bear statistical interdependence, the in-
tended compensation need not be attained. The higher the correlations in the deterministic
map, the less informative each new datum is, the more unsuccessful the compensation,
and the larger the increase in the asymptotic variance. In the present case, the variance
increases threefold, from 1/12 to 1/4, which is similar to the factor relating DG and Drandom,
namely, α.

Considering now the other values of m in the Bernoulli map (10), the numerical results
presented in Figure 3 show that the dependence of DG on N is similar to that obtained for
m = 2, with the only difference that DG becomes progressively smaller as m grows. As
before, the convergence may be conceived as consisting of two stages, with Equation (9)
approximately holding for the second stage. According to the results of Figure 3, the second
state is reached faster for larger values of m. As expected from the large-N asymptotic
behavior of DG predicted by Equation (15) with N0 = 2m/(m2 − 1) [cf. Equation (13)], it
approaches Drandom for large m. This implies that the effect of the statistical dependencies
induced by the deterministic nature of the map decreases as m grows. The KLD DGN is not
shown in Figure 3, but its behavior is similar to that of the case of m = 2 (Figure 2).
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er 

div
erg

enc
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N
Figure 3. The Kullback–Leibler divergence DG for the Bernoulli map (10) with various values of m,
and Drandom (which is the same for all m). The straight lines have slope −2.

In summary, in the Bernoulli map, DGN decreases faster than DG during the first
stage of the convergence process, where ρsN acquires a Gaussian-like shape. Only later is
the variance adjusted towards its final value. The second stage can be modeled analyti-
cally, providing a good qualitative description of the asymptotic behavior inferred from
numerical results.

4. The Logistic Map: Full Chaos and Intermittency

We now turn our attention to the logistic map [17,18]

x(t + 1) = f [x(t)] = λx(t)[1 − x(t)], (16)

with 0 < λ ≤ 4. Much like Bernoulli’s, the logistic map hardly needs any presentation.
We first consider the case λ = 4, which we call the regime of “full chaos”. For this value
of λ, the dynamics are chaotic and therefore comply with the hypotheses of the CLT for
deterministic systems discussed in Section 2. Moreover, due to the existence of a nonlinear
change of variables that transforms the logistic map with λ = 4 into the Bernoulli map
of Equation (10) with m = 2, several analytical results for the latter can be extended to
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the former. In spite of this connection, as we show below, the statistics of the sums sN are
qualitatively different between the two maps.

For λ = 4, the invariant measure of the logistic map can be written explicitly as [19]

ρx(x) =
1

π
√

x(1 − x)
(17)

for 0 ≤ x ≤ 1, and 0 otherwise. The mean value is x̄ = 1/2 and the variance is
σ2

x = 1/8. As we show in Appendix A, the correlations between iterations of the map,
ck = [x(t)− x̄][x(t + k)− x̄], vanish for all k. From Equations (6) and (7), this implies that
the variances of the sums sN are the same for all N, and therefore coincide with both the
variance of x and with the limit for N → ∞: σ2

sN
= σ2

s = σ2
x . Therefore—in contrast with the

Bernoulli map studied in the preceding section—it is not possible to discern between a first
stage of convergence to a Gaussian profile and a second stage of adjustment of the variance.

In Figure 4, the left column shows numerical estimations of the distributions ρsN (sN)
of the sums of N consecutive iteration of the logistic map with λ = 4, for three values of N.
The light-colored curve corresponds to the expected asymptotic Gaussian.
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Figure 4. As in Figure 1 for the logistic map of Equation (16) in the regime of full chaos, λ = 4. The
distributions ρrandom

sN
, dark lines on the right column, have now been obtained numerically. Note the

different scales in different panels.

In addition to the sharp peaks in the profile of ρsN for small N, an important difference
with the Bernoulli map (Figure 1) is that ρsN is no longer symmetric with respect to zero.
This asymmetry may come as a surprise, taking into account that both f (x) and ρx(x) are
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symmetric around the mean value x̄. The asymmetry, however, originates from the fact
that the functions x + f (x), x + f (x) + f (2)(x), x + f (x) + f (2)(x) + f (3)(x), . . . , which
ultimately determine the distributions of the sums sN , are not symmetric around x̄.

On the right column of Figure 4 we show, for the same values of N, the distributions
ρrandom

sN
of sums of N random values of x sampled from ρx. In contrast with the case of

the Bernoulli map, ρrandom
sN

is here estimated numerically. As expected, the distributions
of random sampling sums are now symmetric with respect to zero, and exhibit a fast
convergence to the asymptotic Gaussian.

Figure 5 shows DG and Drandom for the fully chaotic logistic map, as functions of N.
Since, as explained above, σ2

sN
equals σ2

s for all N, now DGN coincides with DG. Due to the
symmetry of ρx with respect to its mean value, the arguments given in Appendix B apply
to this case, and Drandom decays as N−2 for large N. The full straight line in the log–log
plot of the figure has slope −2, confirming this prediction in the plotted range. Yet, the
behavior of DG is considerably different. It starts with a small increment between N = 1
and 2, where it attains a maximum, and thereafter decays rapidly up to N ≈ 20. This
decay corresponds to the interval of N for which the distribution ρsN displays identifiable
singularities. For N ≳ 20, the singularities start to overlap, and the distribution ρsN varies
more smoothly and displays a well-defined asymmetric bell-shaped profile. In this zone,
the decay of DG is slower and approximately behaves as N−1, as illustrated by the dashed
straight segment of slope −1. As shown in Appendix B, a decay as N−1 is expected for the
KLD of the distribution of random sampling sums when the distribution of the individual
summands is not symmetric with respect to the mean value. If the disparate dependence
on N between DG and Drandom persists as N grows beyond the range considered here, their
relative difference would increase indefinitely for N → ∞.
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Figure 5. The Kullback–Leibler divergence DG for the logistic map of Equation (16) in the regime of
full chaos, λ = 4, and Drandom, as a functions of N. In this case, DGN coincides with DG. The full and
dashed straight lines have slopes −2 and −1, respectively.

Although still chaotic, other values of λ in Equation (16) give rise to qualitatively
different dynamical features in the logistic map. For λ = 3.828, which is our next case of
study, the dynamics are intermittent. Just above this value of λ, at λ3 = 1 + 2

√
2 ≈ 3.8284,

the logistic map enters the largest stability window within its chaotic regime, where x(t)
becomes asymptotically locked in a period-3 orbit. For λ ≲ λ3, the vicinity of the critical
point manifests itself in the form of intermittent behavior for x(t). Namely, the dynamics
alternate intermittently between intervals of “turbulent” evolution, where its behavior is
conspicuously chaotic, and “laminar” evolution, where x(t) remains temporarily close to



Entropy 2024, 26, 51 10 of 18

the period-3 orbit, but eventually departs away from it. The left panel of Figure 6 shows
900 successive iterations of x(t) for the above value of λ, illustrating both kinds of behavior.

0 300 600 900
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1.0

0 30 60 90
−0.06

−0.03

0.00

0.03
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x

t

 

 

c k

k
Figure 6. Left: 900 successive iterations of the logistic map, Equation (16), in the intermittent regime,
λ = 3.828. The arrows at t = 300 and 500 point at “turbulent” and period-3 “laminar” intervals,
respectively. Right: The correlation ck = [x(t)− x̄][x(t + k)− x̄] as a function of k in the same
intermittent regime, calculated numerically from sequences of 107 iterations of x(t). Symbols are
connected by lines to facilitate visualization.

For λ = 3.828, no analytical description of the logistic map exists, and we must resort
to numerical techniques. As inferred from the left panel of Figure 6, in this case, ρx(x)
covers only a portion of the interval [0, 1], between x ≈ 0.157 and 0.957, and displays three
peaks near the values of x in the period-3 orbit. Our numerical estimations for the mean
value and the variance are x̄ ≈ 0.593 and σ2

x ≈ 0.0864. In principle, the variance of the sums
sN could be obtained from Equations (6) and (7) by numerically computing the correlations
ck = [x(t)− x̄][x(t + k)− x̄]. These quantities, however, exhibit sharp oscillations and slow
convergence as k grows, as well as persistent fluctuations for large k. The right panel in
Figure 6 shows ck up to k = 90. In practice, such features make impossible the evaluation
of the variances σ2

sN
and σ2

s using the sums in Equations (6) and (7). We therefore resort to
their direct numerical calculation using the values of sN(t) obtained from successive map
iterations. In particular, our estimation for the variance of the sums in the limit N → ∞ is
σ2

s ≈ 0.0403.
Colored symbols in the main panel of Figure 7 stand for DG in the case of the logistic

map with λ = 3.828, as a function of N. As with full chaos (cf. Figure 5), two distinct decay
regimes are identifiable. Moreover, the behavior for N ≲ 50 now contains signatures of the
pseudo-periodic nature of the mapping in the “laminar” intervals, namely, the relatively
large values of DG when N is a multiple of 3 (triangles). In fact, for those values of N, the
distributions ρsN are narrower and sharper than for the remaining values, giving rise to
higher KLDs. This is clearly illustrated by the dependence of the variance σ2

sN
on N, shown

in the inset of the figure. After an abrupt initial decay, σ2
sN

displays oscillations of period 3,
which progressively damp out as N grows. For N ≳ 50, the difference in DG for multiples
of 3 rapidly smooths out, as the KLD enters a regime where it decays approximately as
N−1, as indicated by the dashed segment of slope −1.

For this case of intermittent dynamics, we have also calculated DGN , finding qualita-
tively the same behavior as for DG. As a matter of fact, DG and DGN typically differ from
each other in just about a 10%. Thus, for the sake of clarity, the numerical estimations of
DGN were not included in Figure 7. As for the KLD of the distribution of random sampling
sum, Dramdom, the results of Appendix B indicate that it should decay as N−1 for large
N. This behavior, however, has not yet been reached in the range of values displayed in
Figure 7. Assuming nevertheless that this is the asymptotic dependence of Drandom, our
results suggest that the KLD for random sampling sums is no less than three orders of
magnitude smaller than DG for large N.
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Figure 7. The Kullback–Leibler divergences DG for the logistic map (16) in the intermittent regime,
λ = 3.828, and Drandom, as functions of N. For the former, triangles correspond to values of N which
are multiples of 3. The slope of the dashed straight line is −1. Inset: Numerical results for the variance
σ2

sN
of the sums sN , as a function of N. The arrow to the right indicates the variance obtained for large

N. Symbols are connected by dashed lines to facilitate visualization.

In summary, both for λ = 4 and 3.828, the main difference between the statistics of
the sums sN obtained from the iteration of the logistic map and from a random sampling
of the corresponding invariant measures, as N grows, resides in their disparate rates of
approach towards the asymptotic distribution. Within the range of N considered in our
numerical calculations, the decay of DG as N−1 can be qualitatively understood by the
lack of symmetry in the invariant measures although, strictly speaking, the corresponding
result in Appendix B holds for random sampling only.

Both when λ = 4 and 3.828, for N ≳ 20, the difference between DG and Drandom is well
above two orders of magnitude. In the intermittent case, moreover, the pseudo-periodic
character of the “laminar” dynamics reveals itself in the form of oscillations in DG for small
N, which are naturally absent in Drandom. Plausibly, pseudo-periodicity is also responsible
for the slow decrease in DG during the oscillatory regime. Intermittency degrades the
mixing properties of the mapping since, during the pseudo-periodic intervals, the dynamics
only explore a reduced portion of the available range in x.

5. A Fat-Tailed Invariant Distribution

Much like the standard CLT, the CLT for deterministic systems can be generalized
to the situation where the variance of the relevant variable x diverges [11]. In particular,
this is the case of invariant distributions with a sufficiently slow algebraic decay for large
|x|: ρx(x) ∼ |x|−α−1 with 0 < α < 2. Under the same hypotheses of ergodicity and
aperiodicity stated in Section 2, and assuming for simplicity that x̄ = 0—for instance, due
to the symmetry of ρx(x) around zero—the distribution of the sums

sN(t) =
1

N1/α

N

∑
k=1

x(t + k − 1) (18)

[cf. Equation (3)] converges to a stable distribution given by the Fourier anti-transform
of Qγs(k) = exp(−γα

s |k|α), for some value of the dispersion parameter γs. The result for
distributions with finite variance is re-obtained in the limit α = 2, with γs ≡ σs as defined
in Equation (7).
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In this section, we give an example of convergence toward a stable distribution
different from a Gaussian in the case of a map with a fat-tailed invariant distribution
decaying as |x|−2 for large |x| (i.e., α = 1). This specific case has the analytical advantage
that the stable distribution predicted by the CLT can be explicitly written out, namely,

Cγs(s) =
1
π

γs

γ2
s + s2 , (19)

which is nothing but the Cauchy (or Lorentzian) distribution. Like the Gaussian, the Cauchy
distribution is a maximum entropy distribution, but with a different constraint.

To obtain a deterministic chaotic map with a variable distributed following a fat-tailed
function, we use the ad hoc procedure of applying a suitable transformation to a map
whose invariant distribution is known in advance. Specifically, we take the Bernoulli
map of Equation (10) with m = 2, for which we know that the invariant distribution is
the function given by Equation (11), and introduce a change of variables that transforms
this function into the desired fat-tailed profile. This is formally achieved by defining the
two-variable map {

u(t + 1) = {2u(t)},
x(t + 1) = τ[{2u(t)}], (20)

where

τ(u) =
{

(2u − 1)/2u for 0 < u ≤ 1/2,
(2u − 1)/2(1 − u) for 1/2 ≤ u < 1

(21)

transforms a variable u with uniform distribution in (0, 1) into a variable τ ∈ (−∞, ∞)
with distribution ρτ(τ) = 1/2(1 + |τ|)2. By construction, thus, the invariant measure of
variable x in map (20) is

ρx(x) =
1

2(1 + |x|)2 , (22)

with x varying from −∞ to ∞.
By analyzing the behavior of the Fourier transform of ρx(x) near the origin, it is possi-

ble to obtain the dispersion parameter for the Cauchy distribution of sums of independently
chosen values of x, which turns out to be γs = π/2. Unfortunately, the value of γs when
the summands are successive iterations of x in map (20) cannot be found analytically in
an explicit way. However, we have numerically found that, for N → ∞, the dispersion
parameter again coincides with γs = π/2 to a high precision. This is the value of γs that
we use to compute the KLD DC = D(ρsN ||Cγs) between the distribution of the sums sN of
Equation (18) and the Cauchy distribution (19). In addition, we do not have a practical
procedure to assign a value to the dispersion parameter when the number of summands
N is finite. Therefore, in the present case, we do not calculate a quantity analogous to
the KLD DGn of Sections 3 and 4. Regarding Drandom, due to the non-analytic behavior of
the Fourier transform of ρx(x) at the origin, it is now not possible to use the procedure of
Appendix B to predict how this KLD decreases as N grows. Our analysis must thus rely on
numerical results.

In Figure 8, we show the distributions ρsN (sN) (left column) and ρrandom
sN

(sN) (right
column) for three small values of N. Light-colored curves correspond to the expected
asymptotic Cauchy distribution, given by Equation (19) with γs = π/2. Note that for
N = 2, due to the peak at sN = 0, the difference between ρrandom

sN
and the asymptotic

distribution seems to be larger than that of ρsN . The KLDs, however, reveal that ρrandom
sN

is slightly closer to the Cauchy distribution (see Figure 9). For N = 10, it is already clear
that the approach to the Cauchy distribution is faster for the random sampling sums.
Comparison with the results for the Bernoulli and the logistic maps (cf. Figures 1 and 4)
suggest however that, in the present situation, the convergence to the corresponding
asymptotic distribution is considerably slower than for those cases.
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Figure 8. As in Figure 4, for the sums of Equation (18) with x(t) obtained from map (20). Note that
the scales are the same in all plots.

Figure 9 presents numerical results for the KLDs DC and Drandom. In order to have
significant statistics in the construction of the 1000-column histogram that represents
ρsN (s) from 107 samples of the sums sN , we have cut off the interval of variation of sN
to (−10, 10), disregarding samples outside that interval. Otherwise, for the fat-tailed
distributions involved in the present case, the calculation of the KLDs would be dominated
by sampling fluctuations for large values of |sN |. Along most of the range of N spanned
by the figure, both DC and Drandom exhibit rather well defined power–law decays. Their
different exponents, however, make that they progressively diverge from each other as N
grows, while Drandom approximately decays as N−1; as illustrated by the full straight line
of slope −1, a linear fitting of DC for N ≥ 2, shown as a dashed line, points to a slower
decay with a nontrivial exponent: N−0.68. This result suggests that the convergence to an
asymptotic distribution for the sums sN in the case of fat-tailed invariant measures may
generally be characterized by unusual exponents in the decay of the KLD. This conjecture
will be thoroughly explored in future work, through both analytical and numerical means.
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Figure 9. The Kullback–Leibler divergences DC and Drandom for the distributions of the sums of
Equation (18), with the values of x obtained from the map (20) and the distribution of Equation (22),
respectively. The full straight line has slope −1, and the dashed line, with slope −0.68, is a linear
fitting of DC for N ≥ 2.

6. Conclusions

We here analyzed the convergence to the asymptotic probability density distribution ρs
of a succession of distributions ρsN for a conveniently scaled sum of N samples obtained
from iterations of a deterministic map. Previous analytical studies had established that a
modified version of the central limit theorem (CLT) exists for these cases. Yet, as far as we
know, the convergence to the limit had not yet been characterized. Here, we studied several
archetypal examples that expose a variety of ways the limiting distributions are approached.

Our characterization was based on the behavior of the Kullback–Leibler divergence
(KLD) DG between ρs and ρsN , in that specific order. With this choice, the KLD equals the
number of extra bits required to encode a sample from ρs if the code has been optimized
for ρsN . The CLT for sums of random samples with finite variance predicts a KLD Drandom
that decreases as N−2 if each sample is drawn from a distribution that is symmetric around
its mean value, and as N−1 if it is not. This is a bold statement, since an infinitesimal
modification may suffice to turn a symmetric distribution into an asymmetric one, so
even a minute modification would suffice to change the entire asymptotic behavior of the
KLD—the change, however, would only become relevant at increasingly larger values of
N, as the asymmetry tended to disappear. We are not aware of an analogous theoretical
prediction for the case of correlated samples, but the results presented have revealed
similar behaviors: DG decreased as N−2 for the Bernoulli map, for which the sums are
distributed symmetrically around their mean value, and as N−1 for the logistic map, where
the distributions are asymmetric.

In both the Bernoulli and the logistic map, the rates at which ρsN approached the
asymptotic distribution increased with the strength of mixing. Moreover, for the inter-
mittent logistic map, where mixing is virtually absent during pseudo-periodic intervals,
convergence to the asymptotic distribution was particularly slow. Therefore, even though
all the explored examples were equally deterministic, their behavior differed considerably.
Details in the chaotic dynamics are crucial to the behavior of DG for large N.

The convergence of ρsN in the Bernoulli map could be divided into two stages, one in
which the distribution acquired an approximately Gaussian profile, and a subsequent one,
in which the variance was adjusted to approach its asymptotic value. Remarkably, in the
second stage and for sufficiently large N, the divergence DG(N) was equal to Drandom(αN)
with α ≈ 3.74, implying that each sample of the deterministic map was as informative
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about the asymptotic distribution as α random samples. This equivalence could not be
established in the other explored examples, since in all of them, Drandom and DG decreased
with N with different power laws. No re-scaling procedure, hence, could transform one
into the other.

The last example involved variables with divergent variance. In this case, the deriva-
tion of Appendix B is no longer valid, and no theoretical formulation describing how
Drandom tends to zero is known to us. Our numerical explorations revealed a behavior pro-
portional to N−1 for Drandom, even for samples drawn from distributions that are symmetric
around their mean values. The deterministic counterpart DG exhibited an even slower
evolution, at a rate that is also slower than the one observed in the cases of finite variance.

In conclusion, in all the examples explored here, the asymptotic trend of the KLD be-
haved as a power law. Different deterministic maps yielded different exponents, displaying
a variety of behaviors. The factors that influenced the exponents were (a) the strength of
mixing in the chaotic map, (b) the tendency of the system to evolve near periodic orbits,
and (c) the tails of the distribution of individual variables. We stress that the open question
of establishing a quantitative connection between the rate of mixing, on one hand, and
of KLD decay, on the other, remains an interesting problem for future work. Remarkably,
except for the logistic map in the intermittent regime, all the maps explored here are related
to each other by simple, nonlinear transformations. Despite these deterministic functional
relations, their nonlinear nature determines differences in the statistical behavior of the
sums of samples drawn from each map, with a large impact on the convergence towards
their asymptotic distributions.
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Appendix A. Calculation of the Variances of N-Term Sums, Equation (6)

Appendix A.1. The Bernoulli Map

To calculate the variances σ2
s(N) of the sums s(N)

t of Equation (3), as given by Equation (6),
it is necessary to compute the correlations

ck = [x(t)− x̄][x(t + k)− x̄] =
∫
(x − x̄)

[
f (k)(x)− x̄

]
ρx(x)dx, (A1)

where f (k)(x) is the k-th self-iteration of f (x). For the Bernoulli map, Equation (10), f (k)(x)
can be explicitly given as a piece-wise linear function over the interval [0, 1):

f (k)(x) = mk
[

x − (j − 1)m−k
]
, for (j − 1)m−k ≤ x < jm−k, (A2)

and j = 1, 2, . . . , mk. Taking into account that ρx(x) = 1 over the same interval, with
x̄ = 1/2, the correlation in Equation (A1) turns out to be

ck =
1

12
m−k. (A3)

Inserting this result in Equation (6), the variances of Equation (12) are straightforwardly
obtained. Equation (A3) shows that, for the Bernoulli map, correlations between successive
values of x(t) decay exponentially with the span k, decreasing the faster the larger m is.
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Appendix A.2. The Logistic Map in the Fully Chaotic Regime

The correlations ck = [x(t)− x̄][x(t + k)− x̄] for the fully chaotic logistic map,
x(t + 1) = 4x(t)[1 − x(t)], can be conveniently computed by exploiting the exact solution
of the map [20,21],

x(t) = sin2(2tξ0
)
, (A4)

where ξ0 is determined using the initial condition x(0) through the relation x(0) = sin2 ξ0.
Recalling that ρx(x) = [π

√
x(1 − x)]−1 and x̄ = 1/2, Equation (A1) implies

ck = −1
4
+

1
π

∫ 1

0

√
x

1 − x
sin2

(
2k arcsin

√
x
)

dx. (A5)

The integral in this equation may look somehow intimidating but, using the change of vari-
ables x = sin2 ξ, it becomes the much simpler form 2

∫ π/2
0 sin2 ξ sin2(Kξ)dξ, with K = 2k.

Now, it can be easily shown—for instance, by induction over K—that the integral equals
π/8 for all integers K > 1. From this result, it follows that ck = 0 for all k. Remarkably,
therefore, successive iterations of the logistic map in the fully chaotic regime are linearly
uncorrelated with each other, although their functional correlation is obviously very large.
Thus, the variance of the sums s(N)

t is

σ2
sN

= σ2
x =

1
8

(A6)

for all N.

Appendix B. Kullback–Leibler Divergence for the Distribution of Random Sampling Sums

According to the Berry–Esséen theorem [22,23], the difference between the distribution
for the sum of N independent random variables and the Gaussian predicted by the standard
central limit theorem decays as 1/

√
N or faster as N grows. We show in this Appendix

that, when the distribution of the individual random variables ρx(x) admits a cumulant
expansion—i.e., when the logarithm of its Fourier transform can be expanded in powers of
its variable—that difference decays as 1/

√
N if ρx(x) is asymmetric with respect to the mean

value x̄, and as 1/N if it is symmetric. This implies that the Kullback–Leibler divergence
Drandom defined in the main text decays as 1/N in the former case, and as 1/N2 in the latter.
In the distributions considered in the main text, the symmetry with respect to the mean
value is verified for the Bernoulli map and for the logistic map in the fully chaotic regime.

Without generality loss, we assume that the mean value over the distribution ρx(x) of
the individual random variables is zero. For the sums s = ∑N

i=1 xi/
√

N, where xi are inde-
pendent samples of ρx, the distribution ρs(s) results from the N-th order self-convolution
of ρx(x). This operation is most conveniently expressed in terms of the characteristic
functions (Fourier transforms) Gx(k) and Gs(k) of, respectively, ρs(s) and ρx(x). Namely,
Gs(k) = [Gx(k/

√
N)]N , or

ln Gs(k) = N ln Gx

(
k√
N

)
= N

∞

∑
j=1

(
− ik√

N

)j κj

j!
, (A7)

where the sum in the right-hand side is the power expansion of ln Gx(k) around k = 0,
which we assume to exist, and κj is the j-th order cumulant of ρx(x) [24]. We recall that
κ1 = x̄ = 0, κ2 = σ2

x is the variance of x over ρx, and κ3 = (x − x̄)3.
Using this information, the anti-transform of Gs(k) can be written as

ρs(s) =
1

2π

∫ ∞

−∞
exp

(
iks − σ2

x
2

k2
)

exp

[
∞

∑
j=3

(−ik)j

N−1+j/2

κj

j!

]
dk

≡ exp(−s2/2σ2
x)√

2πσ2
x

+ ∆ρs(s), (A8)
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with

∆ρs(s) =
1

2π

∫ ∞

−∞
exp

(
iks − σ2

x
2

k2
)[

∞

∑
j=3

(−ik)j

N−1+j/2

κj

j!
+ · · ·

]
dk, (A9)

where the ellipsis stands for higher-order terms in the power expansion of the second
exponential in the integrand of Equation (A8). Note that ∆ρs(s) is nothing but the difference
between ρs(s) and the asymptotic Gaussian distribution Gσx (s) and that, due to normal-
ization, it must verify

∫
∆ρs(s)ds = 0. If ρx(x) is asymmetric around zero, the third-order

cumulant κ3 is different from zero, and the leading term in powers of N in ∆ρs(s) is given
by the summand with j = 3 in Equation (A9), which implies ∆ρs ∼ 1/

√
N. If, on the other

hand, ρx(x) is symmetric around zero, we have κ3 = 0. In this case, the sum effectively
starts at j ≥ 4, and ∆ρs decreases as 1/N or faster. Of course, if ρx is Gaussian from the start,
all the higher-order cumulants vanish, and ∆ρs(s) is trivially equal to 0 for all N.

For the Kullback–Leibler divergence we have, from Equation (8),

Drandom = D(ρs||Gσx ) =
∫
[Gσx (s) + ∆ρs(s)] log2

[
1 +

∆ρs(s)
Gσx (s)

]
ds

≈
∫
[Gσx (s) + ∆ρs(s)]

∆ρs(s)
Gσx (s)

ds =
∫

[∆ρs(s)]
2

Gσx (s)
ds, (A10)

where the approximation holds if ∆ρs(s) is sufficiently small. If the distribution ρx(x) is
asymmetric around zero, since ∆ρs(s) decays asymptotically as 1/

√
N, then the decay

of Drandom turns out to be as 1/N. If it is symmetric, Drandom decays as 1/N2 or faster,
depending on whether the subsequent cumulants vanish or not.
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