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The associative conformal algebra CendN and the corresponding general Lie con-
formal algebra gcN are the most important examples of simple conformal algebras
which are not finite (see Sect. 2.10 in [K1]). One of the most important open prob-
lems of the theory of conformal algebras is the classification of infinite subalgebras
of CendN and of gcN which act irreducibly on C[∂]N . (For a classification of such
finite algebras, in the associative case see Theorem 2.6 of the present paper, and in
the (more difficult) Lie case see [CK] and [DK].)

The classical Burnside theorem states that any subalgebra of the matrix alge-
bra MatNC that acts irreducibly on CN is the whole algebra MatNC. This is
certainly not true for subalgebras of CendN (which is the “conformal” analogue
of MatNC). There is a family of infinite subalgebras CendN,P of CendN , where
P (x) ∈ MatNC[x], det P (x) 6= 0, that still act irreducibly on C[∂]N . One of the
conjectures of [K2] states that there are no other infinite irreducible subalgebras of
CendN . This conjecture was recently proved by Kolesnikov [Ko].

In the Lie conformal case, we have a conjecture on the classification of infinite
Lie conformal subalgebras of gcN acting irreducibly on C[∂]N , see Conjecture 4.4.
This conjecture agrees with recent results of E. Zelmanov [Z2] and A. De Sole - V.
Kac [DeK].

This is an expanded version of a talk given by the second author at the conference
in Guaruja in May, 2004. It is based on a joint work with Victor G. Kac, see [BKL]
for details. This is a summary of this work and an updated version with recent
results by E. Zelmanov, A. De Sole and V. Kac.

The paper is organized as follows:

- Basic definitions

- Irreducible subalgebras of CendN and finite CendN,P -modules

- Automorphisms, anti-automorphisms and anti-involutions of CendN,P

- Irreducible Lie conformal algebras gcN , ocN,P and spcN,P
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1. Basic definitions

An associative conformal algebra R is defined as a C[∂]-module with a C-linear
map,

R⊗R −→ C[λ]⊗R, a⊗ b 7→ aλb

called the λ-product, and satisfying the axioms (a, b, c ∈ R),

(A1)λ (∂a)λb = −λ(aλb), aλ(∂b) = (λ + ∂)(aλb)

(A2)λ aλ(bµc) = (aλb)λ+µc

An associative conformal algebra is called finite if it has finite rank as C[∂]
-module. The notions of homomorphism, ideal and subalgebras of an associative
conformal algebra are defined in the usual way (see [K1]).

A module over an associative conformal algebra R is a C[∂]-module M with a
C-linear map R ⊗ M −→ C[λ] ⊗ M , denoted by a ⊗ v 7→ aM

λ v, satisfying the
properties:

(∂a)M
λ v = [∂M , aM

λ ]v = −λ(aM
λ v), a ∈ R, v ∈ M,

aM
λ (bM

µ v) = (aλb)M
λ+µv, a, b ∈ R.

An R-module M is called trivial if aλv = 0 for all a ∈ R, v ∈ M (but it may be
non-trivial as a C[∂]-module).

Given a C[∂]-module V , a conformal endomorphism of V is a C-linear map
a : V → C[λ]⊗C V , denoted by aλ : V → V , such that [∂, aλ] = −λaλ. Denote by
CendV the vector space of all such maps. CendV has a C[∂]-module structure:

(∂a)λ := −λaλ.

If V is a finite C[∂]-module, then CendV has a canonical structure of an asso-
ciative conformal algebra defined by

(aλb)µv = aλ(bµ−λv), a, b ∈ Cend V, v ∈ V.

Remark. Observe that, by definition, a structure of a conformal module over an
associative conformal algebra R in a finite C[∂]-module V is the same as a homo-
morphism of R to the associative conformal algebra CendV .

We shall use the following notation: CendN :=CendC[∂]N .

These is a natural isomorphism

CendN ' MatNC[∂, x]



ON IRREDUCIBLE INFINITE CONFORMAL ALGEBRAS 3

and the λ-product in MatNC[∂, x] is

A(∂, x)λB(∂, x) = A(−λ, x + λ + ∂)B(λ + ∂, x).

We shall work with this presentation of CendN . The λ-action of CendN on C[∂]N

is
A(∂, x) λ v(∂) = A(−λ, λ + ∂ + α)v(λ + ∂), v(∂) ∈ C[∂]N .

Under the change of basis of C[∂]N by the matrix C(∂) invertible in MatN (C[∂]),
the symbol A(∂, x) changes by the formula:

A(∂, x) 7−→ C(∂ + x)A(∂, x)C(x)−1. (1.1)

Observe that for any C(x) ∈MatN (C[x]), with non-zero constant determinant,
the map (1.1) gives us an automorphism of CendN .

It follows from the formula for λ-product that

CendP,N := P (x + ∂)(CendN ) and CendN,P := (CendN )P (x),

with P (x) ∈ MatN (C[x]), are right and left ideals, respectively, of CendN . In
particular, they are subalgebras of CendN . Another important subalgebra is

CurN := Cur (MatNC) = C[∂] (MatNC).

Remark. If P (x) is nondegenerate, i.e., det P (x) 6= 0, then

CendN,P ' CendN,D,

with D = diag(p1(x), · · · , pN (x)), where pi(x) are monic polynomials such that
pi(x) divides pi+1(x). The pi(x) are called the elementary divisors of P . So, up to
conjugation, all CendN,P are parameterized by the sequence of elementary divisors
of P .

All left and right ideals of CendN were obtained by B. Bakalov. We extend the
classification to CendN,P .

Proposition 1.1. a) All left ideals in CendN,P , with det P (x) 6= 0, are of the form
CendN,QP , where Q(x) ∈ MatN (C[x]).

b) All right ideals in CendN,P , with det P (x) 6= 0, are of the form Q(∂ +
x)CendN,P , where Q(x) ∈MatN (C[x]).

c) CendN,P 'CendP,N
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2. Irreducible subalgebras of CendN

and finite modules over CendN,P

Given R an associative conformal algebra, we will establish a correspondence
between the set of maximal left ideals of R and the set of irreducible R-modules.
Then we will apply it to the subalgebras CendN,P .

Lemma 2.1. a) Let v ∈ M and µ ∈ C, then R−∂−µv is an R-submodule of M .
b) Let M be a non-trivial irreducible R-module. Then there exists v ∈ M and µ ∈ C
such that R−∂−µv 6= 0. In particular, if M is irreducible, then R−∂−µv = M .

By this lemma, given a non-trivial irreducible R-module M we can fix v ∈ M
and µ ∈ C such that R−∂−µv = M and consider the following map

φ : R → M, r 7→ r−∂−µv.

This is onto and therefore we have that as R-modules

M ' (R/Ker φ)µ. (2.1)

where Mµ is the µ-twisted module of M obtained by replacing ∂ by ∂ + µ in the
formulas for the action of R on M .

On the other hand, it is immediate that given any maximal left ideal I of R, we
have that (R/I)µ is an irreducible R-module. Therefore we have

Theorem 2.2. Formula (2.1) defines a surjective map from the set of maximal left
ideals of R to the set of equivalence classes of non-trivial irreducible R-modules.

Using this result, we obtain

Corollary 2.3. The CendN,P -module C[∂]N is irreducible if and only if det P (x) 6=
0. These are all non-trivial irreducible CendN,P -modules up to equivalence, pro-
vided that detP (x) 6= 0.

This Corollary in the case P (x) = I, have been established earlier in [K2], by
a completely different method (developed in [KR]). Another proof of this was also
given by Retakh in [R].

A subalgebra S of CendN is called irreducible if S acts irreducibly in C[∂]N .

Corollary 2.4. The following subalgebras of CendN are irreducible: CendN,P with
detP (x) 6= 0, and CurN := MatN (C[∂]) or conjugates of it by automorphisms (1.1).

We have the conformal analog of the Burnside Theorem, originally conjectured
in [K2]:
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Conjecture 2.5. (proved by Kolesnikov [Ko], Feb’2004) Any irreducible subalge-
bra of CendN is one of them.

The (particular case of) classification of finite irreducible subalgebras also follows
from the classification in [DK] at the Lie algebra level, see [BKL]:

Theorem 2.6. Any finite irreducible subalgebra of CendN is a conjugate of CurN .

Now, we study representation theory of these subalgebras.

Remark. It is easy to show that every non-trivial irreducible representation of CurN

is equivalent to the standard module C[∂]N , and that every finite module over CurN

is completely reducible.

Unfortunately, complete reducibility does not hold for CendN . Therefore, we
have to study extensions of modules. Here we present the following:

- Classification of all extensions of CendN,P -modules involving the standard mod-
ule C[∂]N and finite dimensional trivial modules.

- Classification of all finite modules over CendN .

Recall the standard irreducible CendN,P -module C[∂]N with λ-action

a(∂, x)P (x)λv(∂) = a(−λ, λ + ∂ + α)P (λ + ∂)v(λ + ∂).

Consider the trivial CendN,P -module over the finite dimensional vector space VT ,
whose C[∂]-module structure is given by the linear operator T , that is: ∂ ·v = T (v),
v ∈ VT .

We may assume: P (x) = diag{p1(x), · · · , pN (x)} and det P 6= 0.

Theorem 2.7. a) There are no non-trivial extensions of CendN,P -modules of the
form:

0 → VT → E → C[∂]N → 0.

Here and further, all the maps in these sequences are maps of CendN,P -modules.
b) If there exists a non-trivial extension of CendN,P -modules of the form

0 → C[∂]N → E → VT → 0,

then detP (α + c) = 0 for some eigenvalue c of T . In this case, all torsionless
extensions of C[∂]N by finite dimensional vector spaces, are parameterized by de-
compositions P (x + α) = R(x)S(x) and can be realized as follows. Consider the
λ-action of CendN,P on C[∂]N :

a(∂, x)P (x)λv(∂) = S(∂)a(−λ, λ + ∂ + α)R(λ + ∂)v(λ + ∂).
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Then S(∂)C[∂]N is a submodule isomorphic to the standard module, of finite codi-
mension in C[∂]N .
c) If E is a non-trivial extension of CendN,P -modules of the form:

0 → C[∂]N → E → C[∂]N → 0,

then E = C[∂]N⊗C2 as a C[∂]-module (with trivial action of ∂ on C2) and CendN,P

acts by

a(∂, x)λ(c(∂)⊗ u) = a(−λ, λ + ∂ ⊗ 1 + 1⊗ J)c(λ + ∂)(1⊗ u),

where J is a 2× 2 Jordan block matrix.

Corollary 2.8. There are no non-trivial extensions of CendN -modules of the form:

0 → VT → E → C[∂]N → 0 or 0 → C[∂]N → E → VT → 0

Theorem 2.9. Every finite CendN -module is isomorphic to a direct sum of its
(finite dimensional) trivial torsion submodule and a free finite C[∂]-module C[∂]N⊗
T on which the λ-action is given by

a(∂, x)λ(c(∂)⊗ u) = a(−λ, λ + ∂ ⊗ 1 + 1⊗ α)c(λ + ∂)(1⊗ u),

where α is an arbitrary operator on T .

3. Automorphisms and anti-automorphisms of CendN,P

A C[∂]-linear map σ : R → S between two associative conformal algebras is
called a homomorphism (resp. anti-homomorphism) if

σ(aλb) = σ(a)λσ(b) (resp σ(aλb) = σ(b)−λ−∂ σ(a)).

An anti-automorphism σ is an anti-involution if σ2 = 1.

Theorem 3.1. Let P (x) ∈MatNC[x] with det P (x) 6= 0. Then all automorphisms
of CendN,P are those that come from CendN by restriction. More precisely, any
automorphism is of the form:

a(∂, x)P (x) 7−→ C(∂ + x)a(∂, x + α)B(x)P (x),

where α ∈ C, and B(x), C(x) ∈MatNC[x] are invertible and

P (x + α) = B(x)P (x)C(x).
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Theorem 3.2. Let P (x) ∈MatNC[x] with det P (x) 6= 0. Then we have,
a) All non-zero homomorphisms from CendN,P to CendN are of the form:

a(∂, x)P (x) 7−→ S(∂ + x)a(∂, x + α)R(x),

where α ∈ C, and R(x), S(x) ∈MatNC[x] such that

P (x + α) = R(x)S(x).

(b) All non-trivial anti-homomorphisms from CendN,P to CendN are of the form:

a(∂, x)P (x) 7−→ A(∂ + x)at(∂,−∂ − x + α)B(x),

where α ∈ C, and A(x) and B(x) are matrices in MatNC[x] such that

P t(−x + α) = B(x)A(x).

(c) The conformal algebra CendN,P has an anti-automorphism (i.e. it is isomorphic
to its opposite conformal algebra) if and only if the matrices P t(−x + α) and
P (x) have the same elementary divisors for some α ∈ C. In this case, all anti-
automorphisms of CendN,P are of the form:

a(∂, x)P (x) 7−→ Y (∂ + x)at(∂,−∂ − x + α)W (x)P (x),

where Y (x) and W (x) are invertible matrices in MatNC[x] such that

P t(−x + α) = W (x)P (x)Y (x).

(d) The conformal algebra CendN,P has an anti-involution if and only if there exist
an invertible in MatNC[x] matrix J(x) such that

J t(−x + α)P t(−x + α) = εP (x)J(x) (3.1)

for ε = 1 or −1. In this case all anti-involutions are given by

σ
P,J,ε,α

(a(∂, x)P (x)) = εJ(∂ + x)at(∂,−∂ − x + α)J t(−x + α)−1P (x)

where J(x) is an invertible in MatNC[x] matrix satisfying (3.1).

Corollary 3.3. Let P (x), Q(x) ∈MatNC[x] be two non-degenerate matrices. Then
CendN,P is isomorphic to CendN,Q if and only if there exist α ∈ C such that Q(x)
and P (x + α) have the same elementary divisors.

Two anti-involutions σ, τ of an associative conformal algebra R are called conju-
gate if σ = ϕ ◦ τ ◦ ϕ−1 for some automorphism ϕ of R.
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Theorem 3.4. Any anti-involution of CendN is, up to conjugation by an auto-
morphism of CendN :

a(∂, x) 7→ a∗(∂,−∂ − x),

where ∗ is the adjoint with respect to a non-degenerate symmetric or skew- sym-
metric bilinear form over C.

In [BKL], we also found a characterization of equivalent anti-involutions in
CendN,P and a relation of anti-involutions for different P .

4. Lie conformal algebras gcN , ocN,P and spcN,P

A Lie conformal algebra R is a C[∂]-module endowed with a C-linear map R ⊗
R −→ C[λ]⊗R, a⊗ b 7→ [aλb], called the λ-bracket, satisfying the following axioms
(a, b, c ∈ R),

(C1)λ [(∂a)λb] = −λ[aλb], [aλ(∂b)] = (λ + ∂)[aλb]

(C2)λ [aλb] = −[a−∂−λb]

(C3)λ [aλ[bµc] = [[aλb]λ+µc] + [bµ[aλc]].

A module M over a conformal algebra R is a C[∂]-module endowed with a C-
linear map R ⊗ M −→ C[λ] ⊗ M , a ⊗ v 7→ aλv, satisfying the following axioms
(a, b ∈ R), v ∈ M ,

(M1)λ (∂a)M
λ v = [∂M , aM

λ ]v = −λaM
λ v,

(M2)λ [aM
λ , bM

µ ]v = [aλb]Mλ+µv.

In general, given any associative conformal algebra R with λ-product aλb, the
λ-bracket defined by

[aλb] := aλb− b−∂−λa

makes R a Lie conformal algebra.
Let V be a finite C[∂]-module. The λ-bracket on Cend V , makes it a Lie confor-

mal algebra denoted by gc V and called the general conformal algebra (see [DK]).
For any positive integer N , we define

gcN := gcC[∂]N = MatNC[∂, x],

and the λ-bracket:

[A(∂, x)λB(∂, x)] = A(−λ, x + λ + ∂)B(λ + ∂, x)−B(λ + ∂,−λ + x)A(−λ, x).
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Recall that, any anti-involution in CendN is, up to conjugation

σ∗(A(∂, x)) = A∗(∂,−∂ − x),

where ∗ stands for the adjoint with respect to a non-degenerate symmetric or skew-
symmetric bilinear form over C. These anti-involutions give us two important
subalgebras of gcN : the set of −σ∗ fixed points is the orthogonal conformal algebra
ocN (resp. the symplectic conformal algebra spcN ), in the symmetric (resp. skew-
symmetric) case.

- Description in terms of conformal bilinear forms:

The conformal subalgebras ocN and spcN , as well as the anti-involutions given by
Section 3, can be described in terms of conformal bilinear forms. Let V be a C[∂]-
module. A conformal bilinear form on V is a C-bilinear map 〈 , 〉λ : V × V → C[λ]
such that

〈∂v, w〉λ = −λ〈v, w〉λ = −〈v, ∂w〉λ, for all v, w ∈ V.

The conformal bilinear form is non-degenerate if 〈v, w〉λ = 0 for all w ∈ V , im-
plies v = 0. The conformal bilinear form is symmetric (resp. skew-symmetric) if
〈v, w〉λ = ε〈w, v〉−λ for all v, w ∈ V , with ε = 1 (resp. ε = −1).

Given a conformal bilinear form on a C[∂]-module V , we have a homomorphism
of C[∂]-modules, L : V → V ∗, v 7→ Lv, given as usual by

(Lv)λw = 〈v, w〉λ, v ∈ V. (4.1)

where V ∗ is the conformal dual of V .
Let V be a free finite rank C[∂]-module and fix β = {e1, · · · , eN} a C[∂]-basis

of V . Then the matrix of 〈 , 〉λ with respect to β is defined as Pi,j(λ) = 〈ei, ej〉λ.
Hence, identifying V with C[∂]N , we have

〈v(∂), w(∂)〉λ = vt(−λ)P (λ)w(λ). (4.2)

Observe that P t(−x) = εP (x) with ε = 1 (resp. ε = −1) if the conformal bilinear
form is symmetric (resp. skewsymmetric). We also have that Im L = P (−∂)V ∗,
where L is defined in (4.1). Indeed, given v(∂) ∈ V , consider gλ ∈ V ∗ defined by
gλ(w(∂)) = vt(−λ)w(λ), then by (4.2)

(Lv(∂))λw(∂) = vt(−λ)P (λ)w(λ) = gλ(P (∂)w(∂)) = (P (−∂)g)λ(w(∂)),

where in the last equality we are identifying V ∗ with C[∂]N in the natural way,
that is f ∈ V ∗ corresponds to (f−∂e1, · · · , f−∂eN ) ∈ C[∂]N . Therefore, if the
conformal bilinear form is non-degenerate, then L gives an isomorphism between V
and P (−∂)V ∗, with det P 6= 0.

We have the following result:



10 C. BOYALLIAN AND J. I. LIBERATI

Proposition 4.1. (a) Let 〈 , 〉λ be a non-degenerate symmetric or skew-symmetric
conformal bilinear form on C[∂]N , and denote by P (λ) the matrix of 〈 , 〉λ with
respect to the standard basis of C[∂]N over C[∂]. Then the map aP 7→ (aP )∗ from
CendN,P to CendN defined by

〈aµv, w〉λ = 〈v, a∗µw〉λ−µ.

is the anti-involution of CendN,P given by

(a(∂, x)P (x))∗ = εat(∂,−∂ − x)P (x), (4.3)

where P t(−x) = εP (x) with ε = 1 or −1, depending on whether the conformal
bilinear form is symmetric or skew-symmetric.
(b) Consider the Lie conformal subalgebra of gcN defined by

g∗ = {a ∈ CendN,P : a∗ = −a }
= {a ∈ CendN,P : 〈aµv, w〉λ + 〈v, aµw〉λ−µ = 0, for all v, w ∈ C[∂]N},

where ∗ is defined by (4.3). Then under the pairing (4.1) we have C[∂]N '
P (−∂)(C[∂]N )∗ as g∗-modules.

Observe that ocN (resp. spcN ), can be described as the subalgebra g∗ of gcN in
Proposition 4.1(b), with respect to the conformal bilinear form

〈p(∂)v, q(∂)w〉λ = p(−λ)q(λ) (v, w) for all v, w ∈ CN ,

where (·, ·) is a non-degenerate symmetric (resp. skew-symmetric) bilinear form on
CN . For general P , see (6.16) in [BKL].

Observe that gcN,P := gcNP (x) is a conformal subalgebra of gcN , for any P (x) ∈
MatNC[x].

A matrix Q(x) ∈ MatNC[x] will be called hermitian (resp. skew-hermitian) if

Qt(−x) = εQ(x) with ε = 1 ( resp. ε = −1).

Up to conjugacy, it suffices to consider the anti-involutions

σP,ε(a(∂, x)P (x)) = εat(∂,−∂ − x)P (x)

where P is non-degenerate hermitian or skew-hermitian, depending on whether
ε = 1 or −1.

Notation (P non-degenerate):

ocN,P :={a ∈ CendN,P : σP,1(a) = −a} if P hermitian

spcN,P :={a ∈ CendN,P : σP,−1(a) = −a} if P skew-hermitian.
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Remark. a) These subalgebras can be obtained in a more invariant form using
conformal bilinear forms.
b) In the special case N = 1 and P (x) = x, the involution σx,−1 is the conformal
version of the involution used by S. Bloch [B] in connection with certain values of
ζ-function.

Proposition 4.2. The subalgebras gcN,P , ocN,P and spcN,P with det P (x) 6= 0
are simple and act irreducibly on C[∂]N .

Two matrices a and b in MatNC[x] are called congruent if b = c∗ac for some
invertible in MatNC[x] matrix c, where c(x)∗ := c(−x)t.

Proposition 4.3. (a) The subalgebras ocN,P and ocN,Q (resp. spcN,P and spcN,Q)
are conjugated by an automorphism of CendN if and only if P and Q are congruent
hermitian (resp. skew-hermitian) matrices.

(b) The subalgebras ocN,P and spcN,Q are not conjugated by any automorphism of
CendN .

A classification of finite irreducible subalgebras of gcN was given by D’Andrea-
Kac. It is natural to propose:

Conjecture 4.4. Any infinite Lie conformal subalgebra of gcN acting irreducibly
on C[∂]N is conjugate by an automorphism of CendN to one of the following sub-
algebras:

(a) gcN,P , where detP 6= 0,

(b) ocN,P , where detP 6= 0 and P (−x) = P t(x),
(c) spcN,P , where detP 6= 0 and P (−x) = −P t(x).

This conjecture agrees with the results of the E. Zelamov [Z1]-[Z2] and A. De
Sole-V. Kac [DeK]. It is proved in [DeK] that every infinite irreducible Lie conformal
subalgebra of gcN which is sl2-module (with respect to certain Virasoro-like element
of gcN ) is of type ocN,P . On the other hand, E. Zelmanov shows that every simple
irreducible Lie conformal subalgebra of gcN of infinite type that contains Cur(sl2),
is isomorphic to either gcN,P or ocN,P .
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E-mail address: boyallia@mate.uncor.edu, liberati@mate.uncor.edu


