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Abstract

The problem of classification of infinite subalgebras of Gerehd of gg, that acts irreducibly on
C[a1V is discussed in this paper.
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0. Introduction

Since the pioneering papers [2,4], there has been a great deal of work towards
understanding of the algebraic structure underlying the notion of the operator product
expansion (OPE) of chiral fields of a conformal field theory. The singular part of the OPE
encodes the commutation relations of fields, which leads to the notion of a Lie conformal

algebra[11,12].

In the past few years a structure theory [7], representation theory [5,6] and cohomology

theory [1] of finite Lie conformal algebras has been developed.
The associative conformal algebra Cgrehd the corresponding general Lie conformal

algebra gg are the most important examples of simple conformal algebras which are not
finite (see [11, Section 2.10]). One of the most urgent open problems of the theory of

conformal algebras is the classification of infinite subalgebras of £and of gg, which
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act irreducibly onC[3]". (For a classification of such finite algebras, in the associative
case see Theorem 5.2 of the present paper, and in the (more difficult) Lie case see [5] and
[71)

The classical Burnside theorem states that any subalgebra of the matrix algepr@ Mat
that acts irreducibly oi? is the whole algebra MgtC. This is certainly not true for
subalgebras of Cend(which is the “conformal” analogue of MatC). There is a family
of infinite subalgebras Cerdp of Cendy, whereP(x) € Maty C[x], detP(x) # 0, that
still act irreducibly onC[8]" . One of the conjectures of [12] states that there are no other
infinite irreducible subalgebras of Cend

One of the results of the present paper is the classification of all subalgebras af Cend
and determination of the ones that act irreducibly@m@] (Theorem 2.1). This result
proves the above-mentioned conjecture in the dése 1. For generalV we can prove
this conjecture only under the assumption that the subalgebra in question is unital (see
Theorem 5.3). This resultis closely related to a difficult theorem of A. Retakh [16] (but we
avoid using it).

Next, we describe all finite irreducible modules over Cenrd(see Corollary 3.5).
This is done by using the description of left ideals of the algebras gengsee Propo-
sition 1.3(a)). Further, we describe all extensions between non-trivial finite irreducible
Cendy, p-modules and between non-trivial finite irreducible and trivial finite-dimensional
modules (Theorem 3.8). This leads us to a complete description of finiteyGerdules
(Theorem 3.10).

Next we describe all automorphisms of Cend (Theorems 4.1 and 4.2). We
also classify all homomorphisms and anti-homomorphisms of gendo Cend,
(Theorem 4.3). This gives, in particular, a classification of anti-involutions of gend
One case of such an anti-involutioN (= 1, P = x) was studied by S. Bloch [3] on the
level of the Lie algebra of differential operators on the circle to link representations of
the corresponding subalgebra to the valueg -dfinction. Representation theory of the
subalgebra corresponding to the anti-involution of Gemds developed in [14].

The subspace of anti-fixed points of an anti-involution of Gepds a Lie conformal
subalgebra that still acts irreducibly ofi[d]". This leads us to Conjecture 6.8 on
classification of infinite Lie conformal subalgebras ofygacting irreducibly onC[a]".

This conjecture agrees with the results of the papers [8,18].

1. Left and right idealsof Cendy, p

First we introduce the basic definitions and notations, see [11].a8sociative
conformal algebrar is defined as &[d]-module endowed with &-linear map,

R®R—>C[AM®R, a®br ayb
called ther-product, and satisfying the following axionys, b, ¢ € R),

(A1), (3a)ib = —i(arb), a; (3b) = (A + 3)(arb),
(A2);. an(buc) = (@rb)rtuc.
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An associative conformal algebra is callgdite if it has finite rank as &[d]-module.
The notions of homomorphisms, ideals, and subalgebras of an associative conformal
algebra are defined in the usual way.

A moduleover an associative conformal algelitas aC[d]-moduleM endowed with
aC-linearmapR @ M — C[A] ® M, denoted byt ® v ai”v, satisfying the properties:

(8a)£/[v = [8M,a){w]v = —A(aiwv), aeR, veM,
af”(bﬁ"v):(akb)ﬁ#v, a,beR.
An R-moduleM is calledtrivial if ajv =0 foralla € R, v € M (but it may be non-trivial
as aC[d]-module).
Given twoC[d]-modulesU andV, aconformal linear magrom U to V is aC-linear
map a:U — C[A] ®c V, denoted bya, :U — V, such that[d, a,] = —Xa;, that is

8V a; — a,dY = —iay. The vector space of all such maps, denoted by Qlgarir), is
aC[d]-module with

(0a)y ;= —Xa,,.

Now, we define Cen#f := Chom(V, V) and, provided thaV is a finiteC[d]-module,
CendV has a canonical structure of an associative conformal algebra defined by

(ab)pv=a,(by—pv), a,be Cendv, veV.

Remark 1.1. Observe that, by definition, a structure of a conformal module over an
associative conformal algebRain a finite C[0]-moduleV is the same as a homomorphism
of R to the associative conformal algebra Céhd

For a positive integeV, let Cengy = CendC[3]". It can also be viewed as the
associative conformal algebra associated to the associative algebYaDifif all N x N
matrix valued regular differential operators @rf, that is (see [11, Section 2.10] for more
details)

Conf(Diff ¥ C*) = € C[a]J" ® Maty C

nely
with A-product given by (£ = J* ® A)
“L(k P kl—j
INTE=Y" <j>()\ +a)

Jj=0

Given « € C, the natural representation of DVfiC* on e *CN[r,r~1] gives rise
a conformal module structure @3] over ContDiff ¥ C*), with A-action

Jiv=0A+d+a)"Av, meZi, veCV.
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Now, using Remark 1.1, we obtain a natural homomorphism of conformal associative
algebras from CoriDiff ¥ C*) to Cendy, which turns out to be an isomorphism (see [7]
and [11, Proposition 2.10]).

In order to simplify the notation, we will introduce the following bijective map, called
thesymbo)

Symb: Cengr — Maty CJ[9, x],
DM@ T Y Ae(@)x*,
k k

whereA(0) € Maty (C[d]). The transferred-product is
A9, x);B(0,x) = A(—A, x + 1+ 9)B(A + 9, x). (1.1)
The abover-action of Ceng onC[3]V is given by the following formula:
A0, x)0(0) = A(=1, A+ 0 +a)v(A +9), v(d) eC[a]". (1.2)

Note also that under the change of basis@d]V by the matrix C(d) invertible in
Maty (C[d]), the symbolA (3, x) changes by the formula:

A, x) > C(O+x)A0, x)C(x)" L. (1.3)

Observe that for any(x) € Maty (C[x]), with non-zero constant determinant, the
map (1.3) gives us an automorphism of Cgnd
It follows immediately from the formula fax-product that

Cendb v := P(x +3)(Cendy) and Ceng, p:=(Cendy)P(x),

with P(x) € Maty(C[x]), are right and left ideals, respectively, of CendAnother
important subalgebra is

Cury := Cur(Maty C) = C[d](Maty C). (1.4)

Remark 1.2. If P(x) is non-degenerate, i.e., detx) # 0, then by elementary transfor-
mations over the rows (left multiplications) we can maRéx) upper triangular with-
out changing Ceng p. After that, applying to Cend p an automorphism of Cendof
the form (1.3), with de€(x) = 1 (in order to multiply P on the right, which are el-
ementary transformations over the columns), we get gend- Cendy p, with D =
diag(p1(x), ..., py(x)), where p;(x) are monic polynomials such that;(x) divides
pi+1(x). The p;(x) are called the elementary divisors Bf So, up to conjugation, all
Cendy, p are parameterized by the sequence of elementary divisdts of

All left and right ideals of Cengl were obtained by B. Bakalov. Now, we extend the
classification to Cengd p.
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Proposition 1.3. (a) All left ideals in Cendy, p, with detP(x) # O, are of the form
Cendy,gp, WwhereQ(x) € Maty (C[x]).

(b) All right ideals inCendy, p, with detP (x) # 0, are of the formQ(d + x) Cendy, p,
whereQ(x) € Maty (C[x]).

Proof. (a) By Remark 1.2, we may suppose tifais diagonal with deP (x) # 0. Denote
by p1(x), ..., pn(x) the diagonal coefficients.

Let J C Cendy be a left ideal. First, let us see thdtis generated ove€[d] by
I :=J N Maty(C[x]). If a(d, x) = Y1 gda;(x) € J, then

Er i P(x)ra(d,x) = pr(A+ 0+ x)Egra(A+9,x)

P+ +x)Ek,k(Z(A + ) a; (x)) eCAl®J, (1.5

1

using that deP(x) # 0 and considering the coefficient of the maximal powern.ah
(1.5), we getEx ram(x) € J for all k. Hencea,, (x) € J. Applying the same argument
toa(d, x) — 0™a,(x) € J, and so on, we get; (x) € J for all i. Therefore,J is generated
overC[d] by I := J N Maty (C[x]).

If a(x) € I, then

EijP(x)a(x) = pj(A+93+x)E; ja(x)
= AM¥E; ja(x) + lower termse C[A] ® J. (1.6)

Therefore, May (C) - I C 1.

Now, considering the next coefficientinin (1.6) if p; is non-constant, or the constant
termini of xE; ; P(x))a(x) if p; is constant, we get thatu(x) € /. It follows that/ is a
left ideal of Maty (C[x]). But all left ideals of Mat; (C[x]) are principal, i.e., of the form
Maty (C[x])R(x), since Ma}; (C[x]) andC[x] are Morita equivalent. This completes the
proof of (a).

In a similar way, but using the expressia(®, x) =), 8'a; (3 +x), we get (b). O

Proposition 1.4. Cendy, p >~ B(d + x)(Cendy)A(x) if P(x) = A(x)B(x). In particular,
Cendy, p ~Cendp y.

Proof. It is easy to see that the map(d, x)P(x) — B(d + x)a(d,x)A(x) is an
isomorphism provided tha® (x) = A(x)B(x). O
2. Classification of subalgebras of Cendy

We can identify Cengdwith C[d, x], then ther-product is

r(0,x)3s(0,x)=r(=A, A+ 0+ x)s(A+ 09, x), (2.1)
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wherer (9, x), s(9, x) € C[9, x].
The main result of this section is

Theorem 2.1. (a) Any subalgebra o€end is one of the following

(1) C
(2) C
(3 C
4 C

15

,x] p(x), with p(x) € C[x];

,x1g(® + x), with ¢ (x) € C[x1;

3, x]1p(x)q@+ x) =CJ[a, x]p(x) NC[9, x]g (3 + x), with p(x), g(x) € C[x].

a
a
a

(b) The subalgebra€[a, x] p(x) with p(x) # 0, andC[d] are all the subalgebras of
Cend that act irreducibly onC[a].

In order to prove Theorem 2.1, we first need some lemmas and the following important
notation. Givenr(d, x) € C[d,x], we denote byr; and7; the coefficients uniquely
determined by

n m

r@.x) =Y ri()d =Y 7(@+x)d/ (2.2)

i=0 j=0
with r;, (x) # 0 and7,, (9 + x) # 0.
Lemma2.2. Let S be a subalgebra d€end and letr (3) € C[d] be a non-zero polynomial.

(@) If t(0) € S, thenC[d] C S.
(b) If £(98),7(d,x) € S and r(9,x) depends non-trivially ont, then § = Cend. In
particular, if 1 € S, then eitherS = C[d] or S = Cend.

Proof. (a) If 1(3) € S, we deduce from the maximal coefficient inof ¢(3),7(3) =
t(—=A)t(A + 9) that 1€ S, proving (a).

(b) From (a), we have thatd S. Then the coefficients of in 7(3, x),1=r(—x, A +
d 4+ x) are in S. Therefore, using notation (2.2), we obtain thatd 4+ x) € S for all ;.
Sincer (9, x) depends non-trivially ow, there existjo such that*;, is non-constant, that
is 7j,(z) = Y\ _paiz' with ¢ # 0 andl > 0. Now, using thaC[d] < S and

Lij,@+x)=rj;(A+0+x)= A+ (la,(a +x)+ al_l)kl‘l + lower powers in

we obtain thatc € S. Then by induction and taking-products of typer; x* we see that
xk*1le Sforallk > 1, proving (b). O

Lemma 2.3. Let § be a subalgebra o€end, let p(x) and ¢(x) be two non-constant
polynomials.

@) If p(x) € S, thenC[d, x]p(x) C .
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(b) If g(d +x) € S, thenC[d, x]g(d +x) C S.
(c) If p(x)q(@ +x) € S, thenC[3, x]p(x)g(d+x) C S.

Proof. Part (a) and (b) follows from the proof of (c).

(c) Assume thaty (x + 3) p(x) € S. Then, we compute(x + 9) p(x),g(x + 9) p(x) =
gx+3)p(h+9+x)g(A+ x + 9)p(x), and looking at the monomial of highest degree
minus one, we get thatx + d)g(x + 9)p(x) € S, and since by definitiors is a C[d]-
module, we deduce that(x + 9)p(x) := xq(x + ) p(x) € S. Applying this argument
to ¢(x + 9)p(x) we deduce that*g(x + d)p(x) € S for any k € Z,, and therefore
q(x+3)px)C[a,x]CSS. O

Lemma 2.4. Let S be a subalgebra o€end which does not contaih.

(a) Let p(x) be of minimal degree such thatx) € S. ThenC[d, x]p(x) = S.

(b) Letg(d + x) be of minimal degree such thato + x) € S. ThenS = C[3d, x]¢ (3 + x).

(c) Let g(@ + x)p(x) be of minimal degredin x) such thatg(d + x)p(x) € S. Then
S =pkx)q@+x)C[o, x].

Proof. (a) From Lemma 2.3(a), we have thatx)C[d, x] € S (by our assumptionp(x)

is non-constant). Now, suppose that there exjsts x) € S with ¢ (9, x) ¢ p(x)C[9, x]

and p as above. Then, by applying the division algorithm to each coefficient of
q(d,x)= Zizoqk(x)ak, we may writeq (9, x) = t(3, x) p(x) + r(3, x) with r(d, x) =
Yi—ork(0)d* =7 57(d + x)8* and degx < degp (cf. notation (2.2)). Using that
p(x)CJ[a, x] C S, we obtain that (9, x) € S. Now, since

r(0,x)r@,x)=r(=A, A+ 0+ x)r(A+0,x), (2.3)

looking at the coefficient of maximum degreeirn (2.3), we getr, (x)7,(x + 9) € S.

By our assumption, one of the polynomials in this product is non-constapt(f+ a) is
constant, them, (x) € S, but deg,, < degp which is a contradiction. If, (x) is constant,
thenr, (x 4+ 9) € S. Then, looking at the leading coefficient of the following polynomial
inA: p()afm(x +9)=p+ 9+ x)i,(x + 1+ ) we have that & S, which contradicts
our assumption.

If neither 7, (x + 3) nor r,(x) are constants, we ook gi(x),7,(x + d)r,(x) =
p(A+ 0+ x)rp (X +x + 9)r,(x) € S and looking at the coefficient of maximum degree
in A we get that, (x) € S, which contradicts the minimality gf(x).

(b) The proof is the same as that of (a).

(c) We may assume thatandg are non-constant polynomials, otherwise we are in the
cases (a) or (b). By Lemma 2.3(c), we haxg)q (x + 39)C[d, x] C S. Letz(3, x) € S, but
t(9,x) ¢ C[d, x]p(x)g(x + 98). Then we may have three cases:

(1) 7(3, x) € p(x)C[ad, x] or

(2)t(,x) € g(@+ x)C[9, x] or

(3)1(9,x) ¢ p(x)C[9, x] andz (9, x) ¢ g (0 + x)C[9, x].

Note that these cases are mutually exclusive. Suppose we are in Case (1), so that
t(d,x) = p(x)r(d,x) with r(d,x) ¢ q(@ + x)C[d,x]. Then we getr(d,x) = q(@@ +
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x)7 (9, x) + s(9, x), with (9, x) # 0, and (using notation (2.2)) de§ < degg for all
k=0,...,m. Therefore, we have thaid, x) = p(x)r(d,x) = p(x)q(d + x)F (9, x) +
p(x)s(9, x) and thenp(x)s (3, x) € S. Now, we can compute:

px)s(@,x)apx)q(@+x)=pA+0+x)s(—A,A+0+x)p(x)g(A+ 9+ x)

and looking at the coefficient of maximum degreeé.jrwe have (using notation (2.2)) that
p(x)$, (0 + x) € S which is a contradiction.

Similarly, Case (2) also leads to a contradiction.

In the remaining Case (3) we may assume thatpdegdegg since the case of the
opposite inequality is completely analogous. We hadex) € S, but¢ C[d, x]p(x). Then

t(9,x)=px)h(d,x)+r(d,x) (2.4)

With 0 (3, x) = Y _grk(x)dk = o7 (@ + x)d* where degy < degp and deg; <
degp.
If h(3,x) € C[9, x]q(d + x), thenr(d, x) € S, but the leading coefficient of

px)g@+x)r@,x)=pA+0+x)g@+x)r(A+09,x)

is in S which is ¢(d + x)r,(x), and this contradicts the assumption of minimality of
p(x)q(d+x). )

So, suppose that(d, x) ¢ C[d, x]g(d + x). Thenh(d, x) = h(d, x)q(d + x) + s(3, x)
with 0 5(3,x) = Y _ose(x)dk = Y7_45;(9 + x)9* and deg; < degq. By (2.4) we
havep(x)s (9, x) + (9, x) € S. Now, we compute:

(p(x)s(d,x) +7r(3,x)), p(x)q(d + x)
=(p(h4+0+x)s(=A, A+ 0 +x)+r(=A, A+ 3 +x))p(x)g(A + 9 + x).

Then the leading coefficient ik is either p(x)s,, (3 + x) € S, which is impossible since
degs,, < degq, or p(x)i, (0 + x) € S. But in the latter case, dég > degg, but by
construction deg,, < degp, and this contradicts the assumption geg degg. O

Proof of Theorem 2.1. (a) LetS be a non-zero subalgebra of Centd S € C[d] then by
Lemma 2.2(a) we have th&t= C[d]. Therefore we may assume that there(, x) € S
which depends non-trivially ox. Recall that we can write(d, x) = Y " p;(x)d' =
304, + x)37. We have

r(@,r(@,x) = r(=A, A+ 09 +x)r(k+9,x)

=YD i@ +x)pi () (=) (. + ).

i=0 ;=0

Then, considering the leading coefficient of thipolynomial, we havep,, (x)g, (3 + x)
€ S. Therefore, we may have one of the following situations:
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() pm(x) andg, (3 + x) are constant,

(2) g, (3 + x) is constant angh,, (x) is hon-constant,

(3) pm (x) is constant ang, (3 + x) is non-constant, or

(4) both polynomials non-constant.
Let us see what happens in each case.

(1) By Lemma 2.2(b), we have that= Cend.

(2) In this case, we may tak®(x) € S of minimal degree, then using Lemma 2.4(a) we
haveS = C[3, x]p(x).

(3) Itis completely analogous to (2).

(4) Here, we have thai(x)q (x + 9) € S and, again we may assume that it has minimal
degree. Now, by Lemma 2.4(c), we finish the proof of (a).

The proof of (b) is straightforward. O

3. Finitemodulesover Cendy, p

Given an associative conformal algelRa(not necessarily finite), we will establish
a correspondence between the set of maximal left ideal® afid the set of irreducible
R-modules. Then we will apply it to the subalgebras Genpd

First recall that the following property holds in @moduleM (cf. [7, Remark 3.3]):

ay(b_y—uv) =(arb)—p—yv, a,beR, veM. (3.2)

Remark 3.1. (a) Letv € M and fixu € C, then due to (3.1) we have th&t 5_,v is an
R-submodule of\.

(b) TorM is a trivial R-submodule ofVf [7, Lemma 8.2].

(c) If M isirreducible and\f = TorM, thenM ~ C.

(d) If M is a non-trivial finite irreducibleR-module, thenV is free as &[d]-module.

Lemma 3.2. Let M be a non-trivial irreducibleR-module. Then there existse M and
w € C such thatR_s_,.v # 0. In particular, R__,v = M if M is irreducible.

Proof. Suppose thak_;_,v =0 forallv e M andu € C, then we have that_ 3_,v=0

in C[u] ® M for all r € R andv € M. Thus writing dowrv_;_, v as a polynomial inx

and looking at thex-products that are going to appear in this expansion, we conclude that
ryv=0forallv e M andr € R. HenceM is a trivial R-module, a contradiction. O

By Lemma 3.2, given a non-trivial irreducibR-moduleM we can fixv € M andu € C
such thatR_,_,v = M and consider the following map:

¢ R—> M, r—>r_y,v.

Observe thatp(dr) = (0 + w)¢(r) and using (3.1) we also haw@(ris) = rig(s).
Therefore, the mag is a homomorphism oR-modules intoM_,,, where M, is the
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wu-twisted module off obtained by replacing by 0 + u in the formulas for the action of
R on M, and Kel¢) is a maximal left ideal oR. Clearly this map is ontd/_,, .
Therefore we have thaf_, >~ (R/Ker¢) asR-modules, or equivalently,

M~ (R/Kerg),. (3.2)

On the other hand, it is immediate that given any maximal left idezfl R, we have that
(R/1), is an irreducibleR-module. Therefore we have proved the following

Theorem 3.3. Formula(3.2)defines a surjective map from the set of maximal left ideals of
R to the set of equivalence classes of non-trivial irreducilenodules.

Remark 3.4. (a) Observe that given aR-module M andv € M, the setl = {a € R |
a,v = 0} is a left ideal, but not necessarild ~ R/I. For example, considet[d] as a
Cend-module, then the kernel af— a,v is {0}.

(b) If we fix n € C, there are examples of irreducible modules wherg_,, v = 0 for
all v e M (cf. Lemma 3.2). Indeed, consid€{fd] as a Cend,,)-module.

Using Remark 3.1, Proposition 1.3 and Theorem 3.3, we have

Corollary 3.5. TheCendy, p-moduleC[3]" defined by(1.2)is irreducible if and only if
detP(x) # 0. These are all non-trivial irreducibl€endy, p-modules up to equivalence,
provided thatdetP (x) # 0.

Note that Corollary 3.5 in the cag®(x) = I, have been established earlier in [12], by
a completely different method (developed in [13]). Another proof of this was also given in
[17].

A subalgebras of Cendy is calledirreducibleif S acts irreducibly inC[a]" .

Corollary 3.6. The following subalgebras ofendy are irreducible Cendy p with
detP(x) # 0, andCury := Maty (C[d]) or conjugates of it by automorphisrtis 3).

Remark 3.7. It is easy to show that every non-trivial irreducible representation of,Cur
is equivalent to the standard modul§d]", and that every finite module over Guiis
completely reducible.

We will finish this section with the classification of all extensions of Gepdmodules
involving the standard modul€[d]" and finite-dimensional trivial modules, and the
classification of all finite modules over Cend

We shall work with the standard irreducible C@;r_]pl-module(C[a]N with A-action (see

(1.2))

a(®, x)P(x)w@) =a(—r, A+ +a) PO+ d)v(h + 9).
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Consider the trivial Ceng p-module over the finite-dimensional vector spake,
whoseC[d]-module structure is given by the linear operaforthat is: 9 - v = T (v),
v € Vr. As usual, we may assume thfx) = diag{p1(x), ..., py (x)}. We shall assume
that detP # 0.

Theorem 3.8. (a) There are no non-trivial extensions 6&ndy, p-modules of the form

0— Vy —» E—C[3]N = 0.

Here and further, all the maps in these sequences are mapsmaly p-modules.
(b) If there exists a non-trivial extension 6&ndy p-modules of the form

0—C[o1N > E— vy -0, (3.3)
thendetP (a + ¢) = 0 for some eigenvalue of T. In this case, all torsionless extensions
of C[8]V by finite-dimensional vector spaces, are parameterized by decompositions

P(x+a) = R(x)S(x) and can be realized as follows. Consider the following isomorphism
of conformal algebras

Cendy.p — S(0+x)Cendy R(x), a(d,x)P(x)— S(d+x)a(d,x)R(x),
where P(x + @) = R(x)S(x) (this is the isomorphism betwe&endy s and Cend x

(Propositionl1.4), restricted toCendy, g S(x)). Using this isomorphism, we get an action
of Cendy p onC[3]V:

a(d,x)P(x) v(@)=S0@a(—r, A +0+a)R(A+d)v(h+9).
ThenS(3)C[a]" is a submodule isomorphic to the standard module, of finite codimension

in C[a1V.
(c) If E is a non-trivial extension o€endy, p-modules of the form

0— C[a]N - E - C[a]N — 0,

thenE = C[3]" ® C? as aC[d]-modulewith trivial action ofd onC?) andCendy, p acts
by

a(@,x).(c@®u)=a(-1,1+0®1+1Q J)c(A+0)(1®u), (3.4)
whereJ is a2 x 2 Jordan block matrix.

Proof. (a) Consider a short exact sequenc&ef Cendy, p-modules

0O—-T—>E—>V-—=>D0, (3.5)
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whereV is irreducible finite, and" is trivial (finite-dimensional vector space). Take E
with v ¢ T, and letu € C be such tha# := R_;_, v # 0. Then we have three possibilities.

(1) The image ofd in V is 0, thenA = T, which is impossible sincd corresponds to
a leftideal of Ceng p.

(2) The image ofA in V isV andA N T =0, thenA is isomorphic toV, hence the
exact sequence splits.

(3) TheimageofAin VisV andT’'=ANT # 0. Now, if T’ =T thenA = E andE is
a cyclic module, which is impossible since it has torsiorf'I#£ T, we consider the exact
sequence 8> T’ — A — V — 0, by an inductive argument on the dimension of the trivial
module, the last sequence splits, i£4+=T'® V' C E with V' >~V,henceE=T @ V'
as Ceng p-modules, proving (a).

(b) We may assume without loss of generality that 0. Consider an extension of
Cendy, p-modules of the form (3.3). As a vector spaEe= C[3]" & V7. We have, for
veVr:

dv="T )+ g,(3), whereg,(d) €C[3]",

(3.6)
BPv= £, 0),  wheref,”®(x,d) € (C[81V)[A], B € Maty C.
Let P(x) =", Q;x". Since
(x"AP(x)xxlBP(x))HMv = A+ 0+ AP+ 94+ )x'BP(x)54puv
m i+k ,.
k , ..
= ZZ(’+ )(x+a)'+’<—fx-/+lAQ,~BP(x)HMu
i—0j=0 \ 7
m i+k ,.
i+k o r_ i W AO:
= ZZ( . )(—m’*k R ORI

i=0 ;=0 J

and
KAP(), (X BP(x)v) = xFAPOL(f (1, 8))
= o+ APOA LT (. A+ )
must be equal byA2),, we have the functional equation
A+ D APOA+3) 7B (1 + 9)
m i+k .
k e _
=> > (lj )(—u)’*k‘-'ffﬁQ'B(Hu,a>. (3.7)
i=0 j=0

If we puty =0in (3.7), we get
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A+ APO+ D PO A+ =) 19 (1 0). (3.8)
i=0

Since the right-hand side of (3.8) is symmetri&iand!, so is the left-hand side, hence, in
particular, we have

A+ D APG A+ f3 PO A+3) = AP+ ) f72(0, 4 +9).

Taking A = I and using that de? # 0, we get

PO A+8) =0+ PP 0,1 +9). (3.9)

Furthermore, by (A1), we have[d, xKAP(x);]v = —Ax¥AP(x),v, which gives us the
next condition:

G4+ A0 0) = T, 0) + 0+ ) AP+ 9) gy (A +9). (3.10)

We shall prove that it is an eigenvalue of andp;(c) #0 for all 1< j < N, then
(after a change of complement) the generalized eigenspaée aufrresponding to the
eigenvalue is a trivial submodule of (hence is a non-zero torsion submodule). Indeed,
let {v1, ..., vs} be vectors corresponding to one Jordan blocK @fssociated teo, that is
T (v1) = cv1 andT (vi4+1) = cvj+1 + v; fori > 1. Then (3.10) withy = v; becomes

49— fI R, 0) = 0+ AP+ 0) gy (L + 9). (3.11)

Observe that the right-hand side of (3.11) depends @nd, so fk”l’A(A, 9) = fkvl’A(O,
A+ d). Then using (3.9), we have
K00 = £210.0+0)
= G+ PO A+ 0) =0+ D I 0). (3.12)

Similarly, considering (3.10) with = v; ;1 (i > 1), we get

G40 =) fI R0 = [0 0) + o+ DFAPG A+ 9)gu,,, O+ )

= O+ DO+ 9) + AP+ D) gy, (L + 9)].
(3.13)

Again, since the right-hand side of (3.13) depends only end, we have that (3.12) also
holds for anyv;.

Using thatp;(c) #0 (j = 1,..., N) (recall thatP is diagonal), and taking = E; ;,
we obtain from (3.11) withk = 0 that

FIA (L 8) = AP 4 9)hy, (A + 9), (3.14a)
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whereg,, (3) = (8 — ¢)hy, (3). Now, (3.13) withk = 0 andi = 1 becomes (by (3.14a))

(A +3—0) 2", 0)

FEAGRL9) + AP+ 0)gu (O + )
AP L+ 9)(hyy (A4 3) + gu,(A + 0)).

As in (3.14a), we get
f2A (1, 8) = AP G+ 8)hyy (A +9),
wheregy, (9) + hu, (39) = (8 — c)hy,(9). Similarly, we obtain for alf > 1,

oA (1, 0) = AP G+ D)y 5 O+ ), (3.140)

wheregy,,; (3) +hy,; (9) = (8 — ¢)hy,,,(3). Changing the basis tg = v; — h,, (), we have
from (3.12) and (3.14) that* AP (x); v, = 0 and

] =T (v1) + vy (3) — Dy, (3)
=cv1+ (3 — ©)hy (3) — dhy, (9) = cvy,

AV 1 =T (Vi+1) + 8u;41 () — Dy, (9) (3.15)
=cVi+1+ Vi + (8 — ¢)hy;,,(3) — 3hy,, 1 (3) — hy, (3)
=V V)

Hence, thel'-invariant subspace spannedfay} is a trivial submodule of. Therefore, if
pj(c) #0forall j and all eigenvaluesof T, thenE is a trivial extension. This proves the
first part of (b).

Now suppose that the extensianof C[3]V by a finite-dimensional vector space have
no non-zero trivial submodule (equivalently,is torsionless). By Remark 3.1(bf, must
be a freeC[d]-module of rankN.

Then, the problem reduces to the study of a Gepdmodule structure orfE =
C[a]", but using Remark 1.1, this is the same as a non-zero homomorphism from
Cendy, p to Cendy. So, the end of this proof also gives us the classification of all these
homomorphisms.

Denote byp : Cendy, p — Cendy the (non-zero) homomorphism associatedtdt is
an embedding (due to irreducibility) of fre®d]-modulesC[3]Y — C[3]", hence it is
given by a non-degenerate matfixd) € Maty C[d]. Hence the action o&' of Cendy p
is given by the formula:

$(a@, x)P()), (S@)v) = S@)a(=r,r+3d+a)P(L+d+a)v forallveCV.
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Furthermore, we have:

(¢(a (@, x)P(x))S(x)),v = ¢(a(@, x)P(x)), (S@)v)
= (5(8 +x)a(d,x +a)P(x —l—a)))\v forallveCV.

Hencep (a(d, x) P(x)) = S(d +x)a(d, x +a) P(x +a)S~1(x), and this is in Cend if and
only if R(x) := P(x + a)S~1(x) e Maty C[x], proving (b).
(c) Consider a short exact sequencekof Cendy, p-modules

0-V—>E-=>V =0, (3.16)

whereV andV’ are irreducible finite. Take € E with v ¢ V, and letu € C be such that
A:=R_3_,v#0. Then we have three possibilities.

(1) The image ofd in V' is 0, thenA = V, which is impossible becausez V.

(2) The image ofA in V' is V' andA NV =0, thenA is isomorphic toV’, hence the
exact sequence splits.

(3) Theimage ofd in V' is V' andANV =V, henced = E andE is a cyclic module,
hence corresponds to a left ideal which is contained in a unique maximal ideal (otherwise
the sequence splits). It is easy to see then tha the indecomposable module given in
(3.4), whereJ is the 2x 2 Jordan block. O

Coroallary 3.9. There are no non-trivial extensions 6Gendy-modules of the form
0— VT—>E—>(C[8]N—>O or O—>(C[8]N—>E—> Vr — 0.
Theorem 3.10. Every finiteCendy-module is isomorphic to a direct sum of {tfinite-

dimensiondltrivial torsion submodule and a free fini@d]-moduleC[3]" ® T on which
the A-action is given by

a(o, x)k(c(fi) ® u) =a(-A, 2401+ 1Qa)c(A+3)(1Qu), (3.17)
whereq is an arbitrary operator orf".

Proof. Consider a short exact sequenceRof Cendy-modules

0>V—>E—>V >0,

whereV and V' are irreducible finite. By Theorem 3.8(c), the exact sequence split or
E is the indecomposable module that corresponds taxa22Jordan block/, i.e., E =
C[1Y ® C2, andR acts via (3.17), where = J.

Next, using Corollary 3.9, the short exact sequenceg-ofiodules 0 V — E —
C - 0and 0~ C - E — V — 0, whereC is a trivial 1-dimensionaR-module, andv
is a standardk-module (1.2), split.
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Recall [11] that ankR-module is the same as a module over the associated extended
annihilation algebra(Alg R)~ = Cad x (Alg R)_, where (Alg R)_ is the annihilation
algebra. FoR = Cendy one has:

(Alg R)_ = (Diff ¥ C), (AlgR)™ =Cd x (AlgR)_,

whered acts on(Alg R)_ via —add,. Furthermore, viewed as ai\lg R)_-module, all
modules (1.2) are equivalent to the mod#le= C[r, 1~V /C[¢]", and the modules (1.2)
are obtained by letting act as—9; + «.

Let M be a finite R-module. Then it has finite length and, by Corollary 3.5, all its
irreducible subquotients are either trivial 1-dimensional or are isomorphic to a standard
R-module (1.2). Since the exact sequence splits when restrici@ddga) —, we conclude
that, viewed as anAlg R)_-module,M is a finite direct sum of modules equivalentfio
or trivial 1-dimensional. Thus, viewed as éilg R)_-module, M =S & (F ® T), where
S andT are trivial (Alg R)_-modules. The only way to extend thig to an (Alg R) -
module is to leto act as operator@ andg on T and S, respectively, and asd; on F,
which gives (3.17). O

Remark 3.11. Theorem 3.10 was stated in [12], and another proof of it was given in [17].

4. Automorphisms and anti-automor phisms of Cendy, p

A C[d]-linear mapo : R — S between two associative conformal algebras is called
ahomomorphisnfrespectively anti-homomorphi3ih

o(ayb) = o (a),o(b) (respectivelys (ab) = o (b)_s_s0(a)).

An anti-automorphisna is ananti-involutionif o2 = 1.
An important example of an anti-involution of Cends:

o(a@@,x))=a"@,—x -9, (4.1)
where the superscriptstands for the transpose of a matrix.
By Corollary 3.5 we know that all irreducible finite Cepemodules are of the form
(x € C):
a(d,x)v@) =a(—i, A+ 0 +a)v(r + 9).

Hence, twisting one of these modules by an automorphism of Cgiges again one of
these modules, and we get the following

Theorem 4.1. All automorphisms ofendy are of the form
a(@,x) > C@~+x)a@, x+a)C(x)"L,

wherea € C and C(x) is a matrix with a non-zero constant determinant.
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This result can be generalized as follows.
Theorem 4.2. Let P(x) € Maty C[x] with detP(x) # 0. Then all automorphisms

of Cendy p are those that come fronCendy by restriction. More precisely, any
automorphism is of the form

a(@,x)P(x)— C(O+x)a(d,x +a)B(x)P(x), (4.2)
wherea € C, and B(x) andC(x) are invertible matrices itMaty C[x] such that
P(x +a)=Bx)P(x)C(x). (4.3)
Proof. Let n'(a) = m(s(a)), where = is the standard representation amdis an
automorphism of Cengdp. Since it is equivalent to the standard representation due to
Corollary 3.5, we deduce thata (3, x)) = C(3 +x)a(d, x +«a)C (x) "1 for some invertible
(in Maty C[x]) matrixC(x). ButC(d+x) Cendy, p Cx) 1= Cendy, p ifand onlyif (4.3)
holds. Indeed, we haveZ (8 + x) P(x +a)C(x)~1 = A(9, x) P(x) for someA(d, x) €
Cendy. Taking determinants of both sides of this equality, we see thal@etv) is a
non-zero constant. Hend&(x) := P(x + «)C(x)"1P(x)~1 is invertible in Maty C[x],
finishing the proof. O
Theorem 4.3. Let P(x) € Maty C[x] with detP(x) # 0. Then we have
(a) All non-zero homomorphisms froBendy, p to Cendy are of the form
a(@,x)P(x)— SO0 +x)a(@,x +a)R(x), (4.4)
wherea € C, andR(x) and S(x) are matrices inMaty C[x] such that
P(x +a)=R(x)S(x). (4.5)
(b) All non-trivial anti-homomorphisms froi@endy_ p to Cendy are of the form
a(@,x)P(x)— A +x)a'(d,—9 — x +a) B(x), (4.6)
wherea € C, andA(x) and B(x) are matrices inMaty C[x] such that
P'(—x +a) = B(x)A(x). (4.7)
(c) The conformal algebr&endy p has an anti-automorphisiti.e., it is isomorphic to
its opposite conformal algebyéf and only if the matrice®’ (—x +«) and P(x) have

the same elementary divisors for some C. In this case, all anti-automorphisms of
Cendy, p are of the form

a(d,x)P(x)—~ Y@ +x)a'(d,—0 —x +a) W(x)P(x), (4.8)
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whereY (x) and W (x) are invertible matrices itMaty C[x] such that

P'(—x+a) =Wx)Px)Y (x). (4.9)

(d) The conformal algebr&endy p has an anti-involution if and only if there exist an
invertible inMaty C[x] matrix Y (x) such that

Yi(—x+a)P (—x+a) =eP(x)Y (x) (4.10)

for e =1 or —1. In this case all anti-involutions are given by

crp,y,g,a(a(a, x)P(x)) =eY(@+x)a' (3, -0 —x +a)Y (—x + ) 1P (x), (4.12)
whereY (x) is an invertible inMaty C[x] matrix satisfying4.10)

Proof. (a) Follows by the end of proof of Theorem 3.8(b).
(b) Since composition of two anti-homomorphisms is a homomorphism, using the anti-
involution (4.1) we see that any anti-homomorphism must be of the form

a(®,x)P(x) = R' (=9 —x)a’(3, -9 —x + ) S’ (—x) (4.12)

with P(x + o) = R(x)S(x). Then, (4.6) and (4.7) follows by taking(x) = S’(—x) and
B(x) = R'(—=9 — x).

(c) Let ¢ be an anti-automorphism of Ceqpg . In particular, it is an anti-homomor-
phism as in part (b), whose image is Cgngl. Then, for alla(d, x) P(x) € Cendy, p, we
have thatp (a(d, x) P(x)) = A(d + x)a' (0, —3 — x + a)B(x) € Cendy, p. Then taking
a(d, x) to be the identity matrix we have that

A0 +x)B(x) =b(3,x)P(x), forsomeb(d,x)e Cendy p. (4.13)
SinceP!(—x + o) = B(x)A(x), taking determinant of both sides of (4.13), and comparing
its highest degrees im, we deduce that déto, x) is a (non-zero) constant. Therefore
detA(x) is also a (non-zero) constant. Now, from (4.13), we see Aat(d + x)b(d, x)

does notdepend dh Then we have(x) = W (x) P(x), whereW (x) = A~ 18 +x)b(d, x)
is an invertible matrix. Therefore,

$(a(d, x)P(x)) =A@ +x)a" (3, —9 —x + )W (x) P(x), (4.14)
with A, W invertible matrices such that

W(x)P(x)A(x) = P (—x + o). (4.15)
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(d) Now suppose that is an anti-involution. Then it is as in (4.8), and it also satisfies
#2 = 1d. This condition implies that

a(@,x)P(xX) =Y (@ + X)W (=9 — x + 0)a(d, x)Y (=x + ) W(x)P(x)  (4.16)

foralla(d, x) € Cendy p. DenoteZ(x) = Y'(—x +a) W(x). Takinga(d, x) = Id in (4.16)
and using that de (x) # 0, we haveY (3 + x) W' (=9 — x + ) = Z~1(x). Now, (4.16)
becomes (3, x) P(x) = Z 1(x)a(d, x) Z(x) P(x). Hence, we obtaiZ (x) = ¢ Id, wheres
is a constant. Thug,~1(x) = e W' (—x + «). From (4.9) we deduce that

P)Y(x) =¢(P(—x + )Y (—x +a))". (4.17)

This condition is also sufficient. There exists an anti-involution if (4.17) holds for some
invertible matrixY, and it is given by

q)(a(a,x)P(x)) =eY(@+x)a' (@, -9 —x +a)Y' (—x +a)‘1P(x),
withe=1or-1. O

Two anti-involutionso, T of an associative conformal algebRaare calledconjugate
if 0 =¢o1og¢ ! for some automorphism of R. Recall that two matrices andb in
Maty C[x] are calledv-congruentf b = c*a ¢ for some invertible in Mat C[x] matrixc,
wherec(x)* := c(—x + «)’. We shall simply call thengcongruenif « = 0. The following
proposition gives us a characterization of equivalent anti-involuigns.  in Cendy p
(defined in (4.11)) and relates anti-involutions for differént

Proposition 4.4. (a) The anti-involutionsop y;.¢;,.« and op y,,, Of Cendy p are
conjugate if and only i€; = ex and P(x + (y — a)/2)Y2(x + (y — «)/2) is a-congruent

to P(x)Y1(x).
(b) Let oy be the automorphism @endy given by

oy (a(@,x) =Y (@ +x)a@,0)Y (x),

whereY is an invertible matrix ifMaty C[x], and letP andY satisfying(4.10) Then

-1
OP.Y.e.x =@y ©OPY,lea OPY- (4.18)

(c) Let ¢, be the automorphism @endy given byc, (a(d, x)) = a(d, x + «), where
a € C. Suppose thaP!(—x +a) =€P(x), fore =1 or —1, thenQ(x) := P(x + «/2)
satisfiesQ! (—x) =€ Q(x) and

OP.Iea ZL‘J/J'ZOGQ,[,G,ooca/z. (4.19)
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Proof. (a) Let ¢ co be the automorphism of Cerd given by (4.2) and (4.3).
A straightforward computation shows th@tI;’lc’ﬁ 0 0P Yea © PB.CH = Opjcopiar
whereY (x) = C71(x — )Y (x — B)B' (—x + a + B) and P(x + B) = B(x)P(x)C(x).
Hence, ifop v, ;.0 @ndop y,e,, are conjugate, thee; = e; and Y2(x) = Clx -
BY(x — B)B' (—x + a + B), with 8 =y — «/2. Therefore,P(x + B)Y2(x + B) =
B(x)P(x)Y1(x)B' (—x + @), thatisP(x + (y — a)/2)Y2(x + (y — a)/2) is a-congruent
to P(x)Y1(x).

Conversely, suppose th&i(x + (y — a)/2)Y2(x + (y —a)/2) = B(x) P(x)Y1(x) B! x
(—x + a) for some B(x) invertible matrix in Maj C[x]. Recall thatY; and Y> are
invertible. ThenC(x) := Y1(x) B! (—x + a)Y2(x + (y —a)/2)~t is an invertible matrix
in Maty C[x], satisfiesP(x + (y —«)/2) = B(x) P(x)C(x), and it is easy to check that
the anti-involutions are conjugated by the automorphjigig, (, —a)/2, Proving (a).

Parts (b) and (c) are straightforward computations.

Theorem 4.5. Any anti-involution ofCendy is, up to conjugation by an automorphism of
Cendy:

a(d,x)— a*(d, -9 —x),

where* is the adjoint with respect to a non-degenerate symmetric or skew-symmetric
bilinear form overC.

Proof. Using Theorem 4.3(d), we have that any anti-involution of Getds the form
0(a(d,x))=C@+x)a'(d,—9 —x +a)C(x)~L, whereC(x) is an invertible matrix such
that C’ (x) = eC(—x + «), with ¢ = 1 or —1. By Proposition 4.4(c), we may suppose
thatae = 0. Now, the proof follows becaugg(x) is congruent to a constant symmetric or
skew-symmetric matrix, by the following general theorem of Djokovici

Theorem 4.6 (Djokovic [9,10]).If A is invertible inMaty (C[x]) and A* = A (respectively
A* = —A)whereA(x)* = A’ (—x), thenA is congruent to a symmetr{cespectively skew-
symmetri¢ matrix overC.

Proof. The symmetric case follows by Proposition 5 in [9]. The skew-symmetric case was
communicated to us by D. Djokovic and we will give the details here. Suppbse—A.

By [15, Theorem 2.2.1, Chapter 7] it follows thathas to be isotropic, i.e., there exists

a non-zero vectop in C[x]" such thatv*Av = 0. We can assume thatis primitive

(i.e., the greatest common divisor of its coordinates is 1). But tiprjv is a direct
summandC[x]" = C[x]v & M, for someC[x]-submoduleM of C[x]¥. Then we have
Clx]Y = (Clx]v)L ® M+ and M+ is a free rank on€[x]-module, that isW+ = C[x]w

for somew € C[x]¥. SinceC[x]v € (C[x]v)L, the submoduleP = C[x]v + C[x]w

is free of rank two. IfQ = M N (C[x]v)+, then sinceClx]v € (C[x]v)+ we have
(Clxlv)t=Clxlve Q and

ClxlY = (Clxv)” @ Clxlw =P & Q,
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with 9 = P+. Choosew’ € P such thabv*Aw’ = 1. Thenv, w’ must be a free basis d@f
and the corresponding:2 2 block is of the form

0O 1

-1 f
for some skew element = g — ¢* (cf. [9, Proposition 5]). One can now replageby 0,
by taking the basis, w’ — gv, and use induction to finish the proofm

Remark 4.7. We do not know any counter-examples to the following generalization of
Djokovic’s theorem: If A € Maty (C[x]) and A* = A (respectivelyA* = —A) where
A(x)* = Al (—x), thenA is congruent to a direct sum of1 matrices of the fornip(x))
wherep is an even (respectively odd) polynomial ang 2 matrices of the form

( 0 q(x)>
eq(—x) 0o )’

whereg (x) is a polynomial, and = 1 (respectively = —1).1
As a consequence of Theorem 4.3, we have the following result.

Theorem 4.8. Let P(x), Q(x) € Maty C[x] be two non-degenerate matrices. Then
Cendy, p is isomorphic toCendy, ¢ if and only if there existr € C such thatQ(x) and
P(x + @) have the same elementary divisors.

Proof. We may assume that is diagonal. Letp: Cendy,p — Cendy, o be an isomor-
phism. In particular it is a homomorphism from Cgng to Cend; whose image is
Cendy,p. Then, by Theorem 4.3(a), we have tiggt: (9, X) P(X)) = A(@ + x)a(d, x +
a)B(x), with P(x + o) = B(x)A(x). In particular

A3 +x)a(d, x +a)B(x) = O(x) (4.20)

for somea (9, x) P(x) € Cendy_ p.

Taking determinant in both sides of (4.20), and comparing its highest degrees
in 9, we can deduce that détx) is constant. Now, define the isomorphispa =
x4 o ¢:Cendy p — Cendy.pa, where x4(a(d,x)) = A71(d + x)a(d,x)A(x). Hence
¢2(a(d,x)P(x)) =a(d,x + a)B(x)A(x). Sincegpy is an isomorphism, we have that

B(x)A(x)=D(x)Q(x)A(x) and C(x)B(x)A(x)=Q(x)A(x)

1 This conjecture has been proved recently by D. Djokovic and F. Szechtman, “Solution of the congruence
problem for arbitrary hermitian and skew-hermitian matrices over polynomials rings”, and independently by
L. Vaserstein.
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for someC(x) and D(x) (obviously C and D do not depend o). Comparing these
two formulas, we have tha€(x)D(x) = Id. Then both are invertible matrices, and
Q(x)A(x)=C(x)B(x)A(x) = C(x)P(x + «) for some invertible matricega andC. O

5. Onirreducible subalgebras of Cendy

In this section we study the conformal analog of the Burnside Theorem. Recall that a
subalgebra of Cengdis called irreducible if it acts irreducibly 0881V . The following is
the conjecture from [12] on the classification of such subalgebras:

Conjectureb.1. Any irreducible subalgebra @endy is eitherCendy_p with detP(x) #0
or C(x 4+ 9) Cury C(x)~1 (i.e., is a conjugate o€ury), wheredetC(x) = 1. As before,
Cury = Maty (C[2]).

The classification of finite irreducible subalgebras follows from the classification in [7]
at the Lie algebra level:

Theorem 5.2. Any finite irreducible subalgebra @¥endy is a conjugate oCury .

Proof. Let R be afinite irreducible subalgebra of Cgndrhen the Lie conformal algebra
R_ (with the bracketa; b] = a,b — b_y_,a), of course, still acts irreducibly o8[3]V. By
the conformal analogue of the Cartan—Jacobson theorem [7] applied, @ conjugatery
of R either contains the elemenf, or is contained in Mat C[d]. The first case is ruled
out since therr1 is infinite. In the second case, by the same theo®ngontains Cug,
whereg  Maty C is a simple Lie algebra acting irreducibly 61", provided thatv > 1.
By the classical Burnside theorem, we conclude that Maty C[d] in the caseV > 1.
Itis immediate to see that the same is tru&/if= 1 (or we may apply Theorem 2.1).0

Theorem 5.3. If S € Cendy is an irreducible subalgebra such th&tcontains the identity
matrix Id, thenS = Cury or S = Cendy.

Proof. Since Ide §, and using the idea of (1.5), we have tifat C[0]A, whereA =
S N Maty C[x]. Observe tha#i is a subalgebra of MatC[x]. Indeed,

P(x)0(x) = P(x),Q(x)|re_p € S forall P, Qe A.

In order to finish the proof, we should show that= Maty C or A = Maty C[x].
Observe tha#i is invariant with respect to fx, using thatP (x), (Id) = P(L + 0 + x) €
C[A] ® S and Taylor’s expansion.

Let Ag C Maty C be the set of leading coefficients of matrices franT his is obviously
a subalgebra of MatC that acts irreducibly o£” . Otherwise we would have a non-trivial
Ag-invariant subspace c CV. Let U denote the space of vectors@id]" whose leading
coefficients lie inu; this is aC[d]-submodule. But we have:
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j .
a(u@® =a (L +u(+9) =Y %(a(k +ut+ )|,
>0/’

where(j) stands forjth derivative with respect ta. Since bothA andU are invariant
with respect to the derivative by the indeterminate, we concludelthiatinvariant with
respect ta4, hence with respect t8 = C[9]A.

Thus,Ag = Maty C. ThereforeA is a subalgebra of MatC[x] that contains Mat C
and is ddx-invariant. If A is larger than Ma} C, applying ¢dx a suitable number of
times, we get tha#d contains a matrix of the formva, wherea is a non-zero constant
matrix (we can always subtract the constant term). Hetice x (Maty C)a(Maty C) =
x Maty C, henceA containsc* Maty (C) forallk € Z,. O

6. Lieconformal algebrasgcy, ocy,p and spcy, p

A Lie conformal algebraR is aC[d]-module endowed with &-linear mapR ® R —
C[A] ® R, a ® b — [ayb], called ther-bracket, satisfying the following axionia, b, ¢ €
R)1

(CDy [(Ba)nb] = —Alarb], [ar(0b)] = (A + 9)[axb],
(C2); lanb]l = —la—y-:b],
(CIs larlbpcll = [larblrypc] + [bulascl].

A module M over a Lie conformal algebra is a C[d]-module endowed with
a C-linear mapR ® M — C[A] ® M, a ® v — a,v, satisfying the following axioms
(a,be R,ve M),

(M1), (80))]t/lv =[oM, a){w]v = —)\a){wv,
(M2);. [a}f, b} v = [a;b]), 0.

Let U and V be modules over a Lie conformal algebRa Then, theC[d]-module
N :=ChomU, V) has ankR-module structure defined by

(@) 1 = a3 (@u—s10) — pu—s(a; ), (6.1)

wherea € R, ¢ € N andu € U. Therefore, one can define the contragradiemhodule
U* = ChomU, C), whereC is viewed as the triviak-module andC[d]-module. We also
define the tensor produét ® V of R-modules as the ordinary tensor product witf9]-
module structuréu € U, v € V):

U@V)=uRv+u@aiv

andx-action defined byr € R):

nUv)=ru®v+u@r,v.
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Proposition 6.1. LetU andV be twoR-modules. Suppose théthas finite rank as &[0]-
module. Thew* ® V ~ Chom(U, V) as R-modules, with the identificatiotf ® v), () =
figogv v, feU*ueUandveV.

Proof. Defineg:U* ® V. — ChomU, V) by o(f ® v)x(u) = f; 5v () v. Observe that
@ is C[d]-linear, since

P(3(f ®v)), )

pOf ®v+ f ®Iv)a(u) = (3f);4av v+ f4av (W)
—()\. + 8V)fk+av(u)v + f)\_;’_BV(u)aU = _)\.f)t_;,_av(u)v
—2(f @)1 (u) =3(p(f ®v)), (1)

andg is a homomorphism, since

e(r(f @), @) = @i f @v+ f ®rv)u(u)
= () gy v + flppv () (rav)

= — fu—rsov (v + f v (W) ()

and

(r(e(f ® v)))u(u) r(o(f @ V) u—r(w)) — o(f ® v) s (rau)

N (fM_H.aV (M)U) - fM_H—aV (rau)v

= f,u+av (M)(V)LU) - f},{,f}\.‘l*av (V)LM)’U.
The homomorphisnp is always injective. Indeed, if(f ® v) =0, thenf, v (u)v =0
forall u € U. Suppose that # 0, thenf, , ;v =0, thatisf = 0.

It remains to prove thag is surjective provided thdt has finite rank as &[d]-module.
Letg e ChomU, V), andU = C[0){uy, ..., u,}. Then, there exist;; € V such that

en(ui) = Z()» + 3V)kvik = Z(P(fik ® vik)a(u;),

k=0 k=0

where fix € U* is defined (on generators) byi(u;) = 8,-,]-)J‘. Therefore, g =
oo S0 fik ® vir), finishing the proof. T

In general, given any associative conformal algebwith A-producta, b, ther-bracket
defined by

[akb] = axb—b_g_xa (6.2)

makesR a Lie conformal algebra.
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LetV be afiniteC[d]-module. The\-bracket (6.2) on Cend, makes it a Lie conformal
algebra denoted by d¢ and called thegeneral conformal algebrésee [7,11] and [12]).
For any positive integeN, we define gg := gcC[3]" = Maty C[d, x], and ther-bracket
(6.2) is by (1.1):

[A@,x),B®,x)] = A(—A, x + A+ 3)B(.+,x) — B+, —A 4+ x)A(—1, x).

Recall that, by Theorem 4.5, any anti-involution in Cgrid, up to conjugation
0x(A(0,x)) = A*(3, -0 — x), (6.3)

where % stands for the adjoint with respect to a non-degenerate symmetric or skew-
symmetric bilinear form ove€. These anti-involutions give us two important subalgebras
of gcy: the set of—o, fixed points is therthogonal conformal algebracy (respectively

the symplectic conformal algebrspgy ), in the symmetric (respectively skew-symmetric)
case.

Proposition 6.2. The subalgebrascy andspg, are simple.

Proof. We will prove that og is simple. The proof for spg is similar. Let! be a non-
zeroideal of og . Let0# A(9,x) € I,thenA(d, x) =Y " o9 a;(x) = Z,’}:o d/a;(d+x),
with a; (x), a(x) € Maty C[x]. Now, using that (3, x) = —A’ (3, —d — x), we obtain that
n =m anda; (x) = —a;(—x). Computing the.-bracket

[xEij — (=0 — ) Eji A@, )] = A" (Ejjam (x) — al, (=9 — x)Eji) + A" -

we deduce thak;ja, (x) — al,(—8 — x)Ej; € I, with a,, # 0. By taking appropriate
and j, we have that there exist polynomialg(x) such thatz,ivzl(bk(x)Eik — br(—0 —
x)Ex;) € I, with by # 0 for somek # i. Now by computing(2x +9) Ey» 1 Y (b (x) Ei
— br(—9 — x) Ey;)] and looking at its leading coefficient iy we show that,; — E;, € I,
with r # i. Taking brackets with elementsdn;, we haveE ;; — E;; € I forall j # 1. Now,
we can see from the-bracketdxE,; — (=9 — x)E;; 3 Eir — Eril= (2x +3)(E;; — E;r)
and[(2x +3)E;; ,(2x +03)(E;; — E;r)] = A(2x + 0) E;;, that(2x + 0) E;; € I foralli. The
other generators are obtained &y i, j)

[(_x)kEik — @+ ) Ep 2 Eji — Exj] |A:0 =xFEij — (=0 — ) Ej;.
Similarly, we can see thak* — (-8 — x)*)E;; € I, finishing the proof. O

The conformal subalgebraspand spg;, as well as the anti-involutions given by (6.3),
and their generalizations can be described in terms of conformal bilinear formg. lhet
aC[a]-module. Aconformal bilinear forron V is aC-bilinear mapy(, ), : V x V — C[A]
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such that

(0v, w)) = —A{v, w) = —(v,dw);, forallv,weV.

The conformal bilinear form inon-degeneratié (v, w), =0 forallw € V, impliesv = 0.
The conformal bilinear form isymmetric (respectivelyskew-symmetrjcif (v, w), =
e(w,v)_, forall v, w € V, with e = 1 (respectively = —1).

Given a conformal bilinear form on @[d]-moduleV, we have a homomorphism of
C[d]-modulesL:V — V* v Ly, given as usual by

(Ly)w={v,w), vevV. (6.4)

Let V be a free finite rankC[9]-module and fix8 = {e1, ..., ey} aC[d]-basis ofV. Then
the matrix of(, ), with respect tQ8 is defined as; ; (1) = (e;, ¢j)1. Hence, identifying/
with C[3]V, we have

(v(3), w(@)), =v" (=2 PR)WQ). (6.5)

Observe thaP!’ (—x) = e P(x) with e = 1 (respectively = —1) if the conformal bilinear
form is symmetric (respectively skew-symmetric). We also have thdt #mP(—9)V*,
where L is defined in (6.4). Indeed, given(d) € V, considerg, € V* defined by
gy (w(9)) = v (=A)w(Xr), then by (6.5)

(Lo@)w(@) = v (=) PMw() = g (P@)w(?)) = (P(=d)g), (w(®),

where in the last equality we are identifyirig® with C[3]" in the natural way, that is
f € V* corresponds tdf_sez, ..., f_gen) € C[3]". Therefore, if the conformal bilinear
form is non-degenerate, thdn gives an isomorphism betweén and P(—d)V*, with
detP #0.

Suppose that we have a non-degenerate conformal bilinear forvh=e[3]Y which
is also symmetric or skew-symmetric. Denote Byx) the matrix of this bilinear form
with respect to the standard basis ©f3]". Then for eachu € Cendy and w € V,
the map /4%, (v) := (w, a,v)r—, is in C[u]l @ V*, that is f¢*, is a C-linear map,
fe%, 0v) = Af4", (v) and depends polynomially op, because dqlgf“’wk(v) <
max{degl fe%,. (ep): i =1,...,N}. Observe that if we restrict to Cerdc, then
fabw, = (P(=d) f*"), e ImL. Therefore, sincd, ), is non-degenerate, there exists
a unique(aP);jw e C[u] ® V such thatfef v, (v) = (w,aPyv)r—p = ((aP)jw, v).
Thus, we have attached to eaal? € Cendy p a map@P)*:V — Clul® V, w
(aP)jw, where the vectofa P);,w is determined by the identity

(aPyv,w);, = (U, (aP)Zw>A,M'

Observe tha(aP);’;(aw) =0+ u)(aP);’;w, thatis(a P)* € CendV. Indeed,
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(v, (aP)Z(&w))FM = (aPyv, dw)y = AaP,v, w);
= —(0(aPyv), w), = (uaPyv, w), — (@Pydv, w),
= v, (aP)Zw))L_M — (0w, (aP)Zw))L_

= (v. (u+)@P)jw), _

"
-
Moreover we have the following result:

Proposition 6.3. (a)Let(, ), be a non-degenerate symmetric or skew-symmetric conformal
bilinear form onC[3]", and denote by (1) the matrix of{, ), with respect to the standard
basis ofC[8]" overC[d]. Then the map P — (aP)* from Cendy, p to Cendy defined by

(apv, wh = (v, aZw)A_M (6.6)
is the anti-involution ofCendy p given by
(a(d,x)P(x))" =ea'(d,—d —x)P(x), (6.7)

where P! (—x) = € P(x) with e = 1 or —1, depending on whether the conformal bilinear
form is symmetric or skew-symmetric.
(b) Consider the Lie conformal subalgebragydy, defined by

g« = {aeCendy p: a* = —a}

= {a e Cendy,p: (auv, w). + (v, a,w)r—, =0, forall v, w e C[3]"},

where* is defined by6.7). Then under the pairin(f.4)we haveC[3]N ~ P(—3)(C[3]V)*
as g,-modules.

Proof. (a) First let us check thap(a P) = (aP)* defines an anti-homomorphism from
Cendy, p to Cendy. Since(a, b € Cendy, p)

v, (aub)iwh,y = ((@ub)yv. w), = {au(by—pv), w),
= (by,ﬂv,a;w”iﬂ :(Uvb;’;f,u(a;iw)))\f)/
= (’U, (b;_ﬂa*)yw%\,y’

we have thatp(a,b), = (p(b)y—.p(a)), = (p(b)_s—.p(a)), (the last equality is an
obvious identity in Cengl).
Now, using Theorem 4.3(b), we have that

(p(a(a,x)P(x)) =A@ +x)a’ (@, -0 —x +a)B(x),
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with « € C and P! (—x + a) = B(x)A(x). Replacingp(a P) in (6.6) and using (6.5), we
obtain
P(h—pwa' (—p, o — N PR) =P — WA — pa' (—p, w — A + ) B(h),
forall a(o, x). (6.8)
Takinga(d, x) = I and using that de? = 0, we haveP (1) = A(A — u)B(X). Since the

left-hand side does not depend pnwe getA = A(x) € Maty C, with detA # 0. Using
thate P(x — o) = P'(—x + o) = B(x)A, then (6.8) become

a'(—u, u —A)eBO +a)A =Aa' (—pu, p — A +a)B(), foralla(d,x).

In particular, we have B(A + o)A = AB()). Hencea’ (—u, . — M)A = Aa’ (—u, u —
A+ a) forall a(d, x), gettinge = 0 andA = cI. Therefore,

@(a(d, x)P(x)) =ea'(d,—0 — x)P(x),

with P’(—x) = e P(x) with e = 1 or —1, depending on whether the conformal bilinear
form is symmetric or skew-symmetric, getting (a).
(b) Using (6.4), we obtain for alt € g, andv, w € C[3]" that

(Lauv)k(w) = (auvs w); =—(v, a,uw))»fu = _(Lv))w,u(a,uw) = (a,u(Lv)))\(w)
finishing the proof. O

Observe that o¢ (respectively spg), can be described as the subalgefraf gcy in
Proposition 6.3(b), with respect to the conformal bilinear form

(p(@v,g(@w), = p(—1)g(W) (v, w) forallv,weC,

where (-, -) is a non-degenerate symmetric (respectively skew-symmetric) bilinear form
onCV. For generaP, see (6.12) below.

Then, og, (respectively spg) is theC[d]-span of{y’} :=x"A — (-9 — x)"A*: A€
Maty C}, where* stands for the adjoint with respect to a non-degenerate symmetric
(respectively skew-symmetric) bilinear form ovér Therefore we have that gc=
ocy @ My (respectively gg = spcy @ My ), whereMy is the set ob,-fixed points, i.e.

My =C[d]-span of{w’} :=x"A + (-9 — x)"A*: A € Maty C}. (6.9)

We are using the same notatidfyy in the symmetric and skew-symmetric case. Observe
that My is an ogy-module (respectively sgemodule) with the action given by

y: )Lwlg =A+0+ wAB)”wa —(—0 — wA*B)anX*B

+ (=D"(—=2 =0 —wap)"T" — (=2 +wpa)"why. (6.10)



60 C. Boyallian et al. / Journal of Algebra 260 (2003) 32—63

Let us give a more conceptual understanding of the modiile Let V = C[d]".
By definition, V* = Chom(V, C) = {«: C[3]Y — C[A]: ;0 = Ay} and givena € V*
it is completely determined by the values in the canonical basis of CV, this is
pa(X) 1= (aner, ..., anen) € C[A]N. Thus, we may identifyV* ~ C[A]¥ and C[d]-
module structure is given b@p)(A) = —Ap(1).

We have that g¢ acts onV by thei-action

A@D,x)0(0) = A(=2, A+ DA +9), v(d) e C[a]",
and onV* by the contragradient action, given by
A0, x)30(8) = —TA(=A, —)v(A +9), v(d) € C[a]V.

It is easy to check thatV*)* >~ V as gg,-modules. Observe that by Proposition 6.3(b),
V >~ V* as ogy-modules and spg-modules.

We define the 8d exterior powerA?(V) and the Bd symmetric powes?(V) in the
usual way with the induce@[d]-module and gg-module structures.

Proposition 6.4. (a) V ® V = S2(V) & A%(V) is the decomposition df ® V into a direct
sum of irreduciblegc, -modules.V* ® V is isomorphic to the adjoint representation of
gcy -

(b) gcy =V ® V = S2(V) @ A?(V) is the decomposition acy into a direct sum of
irreducibleocy-modules, wheret?(V) is isomorphic to the adjoint representationaxy,
and My ~ $2(V) asocy-modules.

(c) goy = V ® V = S%(V) @ A%(V) is the decomposition ajcy into a direct sum
of irreduciblespg,-modules, where?(V) is isomorphic to the adjoint representation of
SpGy, and My ~ A?(V) asspg,-modules.

Proof. (a) Follows from Proposition 6.1 and part (b).
(b) Definep:V ® V — gcy by

9(p@ei ® q(d)ej) = p(—x)q(x + ) Eji.

It is easy to check that this is an penodule isomorphism. Note that defined in (6.3)
corresponds vig to o (p(d)e; ®q(d)e;) = q(d)e; @ p(d)e;. Therefore it is immediate that
My ~ §2(V) andA%(V) ~ ocy. It remains to see thal is an irreducible og-module.
Let W # 0 be a og-submodule oM and 04 w(d, x) = Zi,j gij(0,x)E;j € W.We may
suppose thafy1 # 0. Computing{y}E aw(@,1)] and looking at the highest degreeiahat
appears in the componeft 1, we deduce that there exists Wi an element of the form
w' =) (pi(d,x)E1; +qi (3, x)E;1), with p1 = g1 = 1. Now, computing[y}glzkw’(a, x)]
we have thatw” =r(3, x)E11 + w}gu + terms out of the first column and rovW. And
from [y}gmw”(a, x)] and looking at the highest degreeiinwe have that if- (3, x) is non-
constantw® € W, and ifr(d, x) is constantw, +w} € W. In both cases, by (6.10)
we have thatv? € W. Now, looking at & > 0 andA arbitrary)
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n
yhwd =21"2wl + 2" 20 (8wl + wl) + A"22(2> (0%w + 20w} +wd) +- -

we getW = My, finishing part (b).
(c) The proofis similar to (b), witp: V ® V — gcy, defined byp(p(d)e; ® g(d)e;)
T T T T
p(—=x)q(x + NE;;, where E;; = —Ejn2vis Eyjpyinorj = ENjevjin Ejyjoy; =
—EN/2+j,N/2+i andEI,/ZHJ =—Ej;, forall1<i,j < N/2. O

Observe that g¢ p :=gcy P(x) is a Lie conformal subalgebra of gefor any P(x) €
Maty C[x].
A matrix Q(x) € Maty C[x] will be calledhermitian(respectivelyskew-hermitiahif

0'(—x)=¢eQ(x) with e =1 (respectively = —1).

Denote byop y.qo the subalgebra of gcp of —op y.q-fixed points. By Proposi-
tion 4.4(b), (c), we have the following isomorphisms, obtained by conjugating by auto-
morphisms of Ceng

OPYea =O0PY Iea=0Q,1,:0 (6.11)

where Q(x) = (PY)(x 4+ «/2) is hermitian or skew-hermitian, depending on whether
¢ =1 or —1. Therefore, up to conjugacy, we may restrict our attention to the family of
subalgebras (6.11), that is it suffices to consider the anti-involutions

op,1.60(a(d,x)P(x)) = ea' (3, —3 — x) P(x),

where P is non-degenerate hermitian or skew-hermitian, depending on whethdr or
—1. From now on we shall use the following notation

oCcy p :=op10 If Pishermitian,

SPGy p :=o0p,1,—10 If P isskew-hermitian (6.12)

These subalgebras are those obtained in Proposition 6.3(b) in a more invariant form. In the
special cas&/ = 1 andP(x) = x, the involutiono, ;1,0 iS the conformal version of the
involution given by Bloch in [3].

Note that g¢ p >~ 0cCy - P(x) ® My - P(x). If P is hermitian, then og¢ p = oCy - P(x)
and My - P(x) is an ogy p-module. If P is skew-hermitian, then spc, = My - P(x),
and ogy - P(x) is a spg, p-module.

Remark 6.5. (a) The subalgebras g¢ gcy ,,, ocy and spg ., contain the conformal
Virasoro subalgebr&[d](x + «d)1, for « arbitrary,e =0, = % anda = 0, respectively.
(b) LetJ = ( °, }), then by (6.11) we obtain

SPGy = 01,7,-1,0 = 0J,1,-1,0 = SPGy ; -
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(c) The proof of Proposition 6.2 still works for gcp and spg p with detP (x) # O if
P(x) satisfies the property that for eackhere existsi such that 'deg’ij (x) > degPir(x)
forall k # j. Hence, by Remark 4.7 and the footnote to it, all Lie conformal algebragoc
and spg p with detP (x) # 0 are simple.

Proposition 6.6. The subalgebrascy p andspcy p, with detP(x) # 0, act irreducibly
onC[av.

Proof. Let M be a non-zero og p-submodule ofC[3]V and take 0% v(d) € M. Since
detP(x) # 0, there exist$ such thatP(y)v(y) has non-zeréth coordinate that we shall
denote byb(y). Recall that{(x*A — (-9 — x)kA") P(x) | A € Maty C} generates og p.
Now, looking at the highest degreeirin

(2x + ) Eii P(x)5v(0) = (A +20)b(3 + A)e;

we deduce that; € M. Now, since theth column of P = (P, ;) is non-zero, we can take
k such thatPy ; (x) # 0 has maximal degree in, in theith column. Then, considering the
) action of(xE jy — (—9 —x)Ey;) P(x) one;, for j =1,..., N, and looking at the highest
degree im,, we have that; € M forall j =1,..., N. ThereforeM = C[9]". A similar
argument also works for spc,. O

Proposition 6.7. (a) The subalgebrascy, p andocy, o (respectivelyspgy » andspcy ()
are conjugated by an automorphism Géndy if and only if P and Q are congruent
hermitian(respectively skew-hermitizmatrices.

(b) The subalgebrascy, » and spgy , are not conjugated by any automorphism of
Cendy.

Proof. By Theorem 4.1, any automorphism of Cgnldas the formp4 (a (9, x)) = A +
x)a(d,x + a)A(x)~L, with A(x) an invertible matrix in Ma{ C[x]. Suppose that the
restriction of g4 to ocy p gives us an isomorphism betweenyog and ogy o. Then
0a(a(@,x)P(x))=A00 + x)a(d,x + a)D(x)Q(x) for all a(d, x) € ocy, whereD is an
invertible matrix in Magy C[x]andP (x +«) = D(x) Q(x)A(x). Butthe imageisin a¢ ¢

if and only if (applyingog,;,1,0)

a(@,x—a)R(x)=R' (-3 —x)a(@,x+«a) foralla(d,x)ecocy,
whereR(x) = A’ (—x)D(x) L. Therefore, we must have= 0 andR = cld (c € C), that
is D(x) = cA'(—x). HenceP(x) = cA'(—x) Q(x)A(x), proving (a). Part (b) follows by

similar arguments. O

A classification of finite irreducible subalgebras ofygeas given in [7]. In view of the
discussion of this section, it is natural to propose the following conjecture.

Conjecture6.8. Any infinite Lie conformal subalgebra g€, acting irreducibly onC[3]"
is conjugate by an automorphism@éndy to one of the following subalgebras
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(@) gcy p, WheredetP # 0,
(b) ocy, p, wheredetP #0and P(—x) = P'(x),
(c) spgy p, wheredetP # 0and P(—x) = —P'(x).
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