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Abstract

The problem of classification of infinite subalgebras of CendN and of gcN that acts irreducibly on
C[∂]N is discussed in this paper.
 2003 Elsevier Science (USA). All rights reserved.

0. Introduction

Since the pioneering papers [2,4], there has been a great deal of work towards
understanding of the algebraic structure underlying the notion of the operator product
expansion (OPE) of chiral fields of a conformal field theory. The singular part of the OPE
encodes the commutation relations of fields, which leads to the notion of a Lie conformal
algebra [11,12].

In the past few years a structure theory [7], representation theory [5,6] and cohomology
theory [1] of finite Lie conformal algebras has been developed.

The associative conformal algebra CendN and the corresponding general Lie conformal
algebra gcN are the most important examples of simple conformal algebras which are not
finite (see [11, Section 2.10]). One of the most urgent open problems of the theory of
conformal algebras is the classification of infinite subalgebras of CendN and of gcN which
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act irreducibly onC[∂]N . (For a classification of such finite algebras, in the associative
case see Theorem 5.2 of the present paper, and in the (more difficult) Lie case see [5] and
[7].)

The classical Burnside theorem states that any subalgebra of the matrix algebra MatN C

that acts irreducibly onCN is the whole algebra MatN C. This is certainly not true for
subalgebras of CendN (which is the “conformal” analogue of MatN C). There is a family
of infinite subalgebras CendN,P of CendN , whereP(x) ∈MatN C[x], detP(x) �= 0, that
still act irreducibly onC[∂]N . One of the conjectures of [12] states that there are no other
infinite irreducible subalgebras of CendN .

One of the results of the present paper is the classification of all subalgebras of Cend1
and determination of the ones that act irreducibly onC[∂] (Theorem 2.1). This result
proves the above-mentioned conjecture in the caseN = 1. For generalN we can prove
this conjecture only under the assumption that the subalgebra in question is unital (see
Theorem 5.3). This result is closely related to a difficult theorem of A. Retakh [16] (but we
avoid using it).

Next, we describe all finite irreducible modules over CendN,P (see Corollary 3.5).
This is done by using the description of left ideals of the algebras CendN,P (see Propo-
sition 1.3(a)). Further, we describe all extensions between non-trivial finite irreducible
CendN,P -modules and between non-trivial finite irreducible and trivial finite-dimensional
modules (Theorem 3.8). This leads us to a complete description of finite CendN -modules
(Theorem 3.10).

Next we describe all automorphisms of CendN,P (Theorems 4.1 and 4.2). We
also classify all homomorphisms and anti-homomorphisms of CendN,P to CendN
(Theorem 4.3). This gives, in particular, a classification of anti-involutions of CendN,P .
One case of such an anti-involution (N = 1, P = x) was studied by S. Bloch [3] on the
level of the Lie algebra of differential operators on the circle to link representations of
the corresponding subalgebra to the values ofζ -function. Representation theory of the
subalgebra corresponding to the anti-involution of Cend1 was developed in [14].

The subspace of anti-fixed points of an anti-involution of CendN,P is a Lie conformal
subalgebra that still acts irreducibly onC[∂]N . This leads us to Conjecture 6.8 on
classification of infinite Lie conformal subalgebras of gcN acting irreducibly onC[∂]N .
This conjecture agrees with the results of the papers [8,18].

1. Left and right ideals of CendN,P

First we introduce the basic definitions and notations, see [11]. Anassociative
conformal algebraR is defined as aC[∂]-module endowed with aC-linear map,

R⊗R→C[λ] ⊗R, a⊗ b 	→ aλb

called theλ-product, and satisfying the following axioms(a, b, c ∈R),

(A1)λ (∂a)λb=−λ(aλb), aλ(∂b)= (λ+ ∂)(aλb),
(A2)λ aλ(bµc)= (aλb)λ+µc.
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An associative conformal algebra is calledfinite if it has finite rank as aC[∂]-module.
The notions of homomorphisms, ideals, and subalgebras of an associative conformal
algebra are defined in the usual way.

A moduleover an associative conformal algebraR is aC[∂]-moduleM endowed with
aC-linear mapR⊗M→C[λ] ⊗M, denoted bya⊗ v 	→ aMλ v, satisfying the properties:

(∂a)Mλ v =
[
∂M,aMλ

]
v =−λ(aMλ v), a ∈ R, v ∈M,

aMλ
(
bMµ v

)= (aλb)Mλ+µv, a, b ∈ R.
An R-moduleM is calledtrivial if aλv = 0 for all a ∈ R, v ∈M (but it may be non-trivial
as aC[∂]-module).

Given twoC[∂]-modulesU andV , aconformal linear mapfrom U to V is aC-linear
map a :U → C[λ] ⊗C V , denoted byaλ :U → V , such that[∂, aλ] = −λaλ, that is
∂V aλ − aλ∂

U = −λaλ. The vector space of all such maps, denoted by Chom(U,V ), is
aC[∂]-module with

(∂a)λ := −λaλ.
Now, we define CendV := Chom(V ,V ) and, provided thatV is a finiteC[∂]-module,

CendV has a canonical structure of an associative conformal algebra defined by

(aλb)µv = aλ(bµ−λv), a, b ∈CendV, v ∈ V.

Remark 1.1. Observe that, by definition, a structure of a conformal module over an
associative conformal algebraR in a finiteC[∂]-moduleV is the same as a homomorphism
of R to the associative conformal algebra CendV .

For a positive integerN , let CendN = CendC[∂]N . It can also be viewed as the
associative conformal algebra associated to the associative algebra DiffN

C× of all N ×N
matrix valued regular differential operators onC×, that is (see [11, Section 2.10] for more
details)

Conf
(
DiffN C

×)= ⊕
n∈Z+

C[∂]J n⊗MatN C

with λ-product given by (J kA = J k ⊗A)

J kA λJ
l
B =

k∑
j=0

(
k

j

)
(λ+ ∂)jJ k+l−jAB .

Given α ∈ C, the natural representation of DiffN
C× on e−αtCN [t, t−1] gives rise

a conformal module structure onC[∂]N over Conf(DiffN C
×), with λ-action

JmA λv = (λ+ ∂ + α)mAv, m ∈ Z+, v ∈C
N .
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Now, using Remark 1.1, we obtain a natural homomorphism of conformal associative
algebras from Conf(DiffN C×) to CendN , which turns out to be an isomorphism (see [7]
and [11, Proposition 2.10]).

In order to simplify the notation, we will introduce the following bijective map, called
thesymbol,

Symb : CendN →MatN C[∂, x],∑
k

Ak(∂)J
k 	→

∑
k

Ak(∂)x
k,

whereAk(∂) ∈MatN(C[∂]). The transferredλ-product is

A(∂, x)λB(∂, x)=A(−λ,x + λ+ ∂)B(λ+ ∂, x). (1.1)

The aboveλ-action of CendN on C[∂]N is given by the following formula:

A(∂, x)λv(∂)=A(−λ,λ+ ∂ + α)v(λ+ ∂), v(∂) ∈C[∂]N. (1.2)

Note also that under the change of basis ofC[∂]N by the matrixC(∂) invertible in
MatN(C[∂]), the symbolA(∂, x) changes by the formula:

A(∂, x) 	→ C(∂ + x)A(∂, x)C(x)−1. (1.3)

Observe that for anyC(x) ∈ MatN(C[x]), with non-zero constant determinant, the
map (1.3) gives us an automorphism of CendN .

It follows immediately from the formula forλ-product that

CendP,N := P(x + ∂)(CendN) and CendN,P := (CendN)P (x),

with P(x) ∈ MatN(C[x]), are right and left ideals, respectively, of CendN . Another
important subalgebra is

CurN :=Cur(MatN C)=C[∂](MatN C). (1.4)

Remark 1.2. If P(x) is non-degenerate, i.e., detP(x) �= 0, then by elementary transfor-
mations over the rows (left multiplications) we can makeP(x) upper triangular with-
out changing CendN,P . After that, applying to CendN,P an automorphism of CendN of
the form (1.3), with detC(x) = 1 (in order to multiplyP on the right, which are el-
ementary transformations over the columns), we get CendN,P � CendN,D , with D =
diag(p1(x), . . . , pN(x)), wherepi(x) are monic polynomials such thatpi(x) divides
pi+1(x). Thepi(x) are called the elementary divisors ofP . So, up to conjugation, all
CendN,P are parameterized by the sequence of elementary divisors ofP .

All left and right ideals of CendN were obtained by B. Bakalov. Now, we extend the
classification to CendN,P .
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Proposition 1.3. (a) All left ideals in CendN,P , with detP(x) �= 0, are of the form
CendN,QP , whereQ(x) ∈ MatN(C[x]).

(b) All right ideals inCendN,P , with detP(x) �= 0, are of the formQ(∂ + x)CendN,P ,
whereQ(x) ∈MatN(C[x]).

Proof. (a) By Remark 1.2, we may suppose thatP is diagonal with detP(x) �= 0. Denote
by p1(x), . . . , pN(x) the diagonal coefficients.

Let J ⊆ CendN be a left ideal. First, let us see thatJ is generated overC[∂] by
I := J ∩MatN(C[x]). If a(∂, x)=∑m

i=0 ∂
iai(x) ∈ J , then

Ek,kP (x)λa(∂, x) = pk(λ+ ∂ + x)Ek,ka(λ+ ∂, x)

= pk(λ+ ∂ + x)Ek,k
(∑

i

(λ+ ∂)iai(x)
)
∈C[λ] ⊗ J, (1.5)

using that detP(x) �= 0 and considering the coefficient of the maximal power ofλ in
(1.5), we getEk,kam(x) ∈ J for all k. Henceam(x) ∈ J . Applying the same argument
to a(∂, x)− ∂mam(x) ∈ J , and so on, we getai(x) ∈ J for all i. Therefore,J is generated
overC[∂] by I := J ∩MatN(C[x]).

If a(x) ∈ I , then

Ei,jP (x)λa(x) = pj (λ+ ∂ + x)Ei,j a(x)
= λmaxEi,j a(x)+ lower terms∈C[λ] ⊗ J. (1.6)

Therefore, MatN(C) · I ⊆ I .
Now, considering the next coefficient inλ in (1.6) if pj is non-constant, or the constant

term inλ of xEi,jP (x)λa(x) if pj is constant, we get thatxa(x) ∈ I . It follows thatI is a
left ideal of MatN(C[x]). But all left ideals of MatN(C[x]) are principal, i.e., of the form
MatN(C[x])R(x), since MatN(C[x]) andC[x] are Morita equivalent. This completes the
proof of (a).

In a similar way, but using the expressiona(∂, x)=∑
i ∂

i ãi(∂ + x), we get (b). ✷
Proposition 1.4. CendN,P � B(∂ + x)(CendN)A(x) if P(x) = A(x)B(x). In particular,
CendN,P �CendP,N .

Proof. It is easy to see that the mapa(∂, x)P (x) → B(∂ + x)a(∂, x)A(x) is an
isomorphism provided thatP(x)=A(x)B(x). ✷

2. Classification of subalgebras of Cend1

We can identify Cend1 with C[∂, x], then theλ-product is

r(∂, x)λs(∂, x)= r(−λ,λ+ ∂ + x)s(λ+ ∂, x), (2.1)
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wherer(∂, x), s(∂, x) ∈C[∂, x].
The main result of this section is

Theorem 2.1. (a)Any subalgebra ofCend1 is one of the following:

(1) C[∂];
(2) C[∂, x] p(x), with p(x) ∈C[x];
(3) C[∂, x]q(∂ + x), with q(x) ∈C[x];
(4) C[∂, x]p(x)q(∂ + x)=C[∂, x]p(x)∩C[∂, x]q(∂ + x), withp(x), q(x) ∈C[x].

(b) The subalgebrasC[∂, x] p(x) with p(x) �= 0, andC[∂] are all the subalgebras of
Cend1 that act irreducibly onC[∂].

In order to prove Theorem 2.1, we first need some lemmas and the following important
notation. Givenr(∂, x) ∈ C[∂, x], we denote byri and r̃j the coefficients uniquely
determined by

r(∂, x)=
n∑
i=0

ri(x)∂
i =

m∑
j=0

r̃j (∂ + x)∂j (2.2)

with rn(x) �= 0 andr̃m(∂ + x) �= 0.

Lemma 2.2. LetS be a subalgebra ofCend1 and lett (∂) ∈C[∂] be a non-zero polynomial.

(a) If t (∂) ∈ S, thenC[∂] ⊆ S.
(b) If t (∂), r(∂, x) ∈ S and r(∂, x) depends non-trivially onx, then S = Cend1. In

particular, if 1∈ S, then eitherS =C[∂] or S = Cend1.

Proof. (a) If t (∂) ∈ S, we deduce from the maximal coefficient inλ of t (∂)λt (∂) =
t (−λ)t (λ+ ∂) that 1∈ S, proving (a).

(b) From (a), we have that 1∈ S. Then the coefficients ofλ in r(∂, x)λ1= r(−λ,λ+
∂ + x) are inS. Therefore, using notation (2.2), we obtain thatr̃j (∂ + x) ∈ S for all j .
Sincer(∂, x) depends non-trivially onx, there existj0 such that̃rj0 is non-constant, that
is r̃j0(z)=

∑l
i=0 aiz

i with al �= 0 andl > 0. Now, using thatC[∂] ⊆ S and

1λr̃j0(∂ + x)= r̃j0(λ+ ∂ + x)= λl +
(
lal(∂ + x)+ al−1

)
λl−1+ lower powers inλ

we obtain thatx ∈ S. Then by induction and takingλ-products of typexλxk we see that
xk+1 ∈ S for all k � 1, proving (b). ✷
Lemma 2.3. Let S be a subalgebra ofCend1, let p(x) and q(x) be two non-constant
polynomials.

(a) If p(x) ∈ S, thenC[∂, x]p(x)⊆ S.
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(b) If q(∂ + x) ∈ S, thenC[∂, x]q(∂ + x)⊆ S.
(c) If p(x)q(∂ + x) ∈ S, thenC[∂, x]p(x)q(∂ + x)⊆ S.

Proof. Part (a) and (b) follows from the proof of (c).
(c) Assume thatq(x + ∂)p(x) ∈ S. Then, we computeq(x + ∂)p(x)λq(x + ∂)p(x)=

q(x + ∂)p(λ+ ∂ + x)q(λ+ x + ∂)p(x), and looking at the monomial of highest degree
minus one, we get that(x + ∂)q(x + ∂)p(x) ∈ S, and since by definitionS is a C[∂]-
module, we deduce thatq(x + ∂)p̃(x) := xq(x + ∂)p(x) ∈ S. Applying this argument
to q(x + ∂)p̃(x) we deduce thatxkq(x + ∂)p(x) ∈ S for any k ∈ Z+, and therefore
q(x + ∂)p(x)C[∂, x] ⊆ S. ✷
Lemma 2.4. LetS be a subalgebra ofCend1 which does not contain1.

(a) Letp(x) be of minimal degree such thatp(x) ∈ S. ThenC[∂, x]p(x)= S.
(b) Letq(∂ + x) be of minimal degree such thatq(∂ + x) ∈ S. ThenS =C[∂, x]q(∂+ x).
(c) Let q(∂ + x)p(x) be of minimal degree(in x) such thatq(∂ + x)p(x) ∈ S. Then

S = p(x)q(∂ + x)C[∂, x].

Proof. (a) From Lemma 2.3(a), we have thatp(x)C[∂, x] ⊆ S (by our assumption,p(x)
is non-constant). Now, suppose that there existsq(∂, x) ∈ S with q(∂, x) /∈ p(x)C[∂, x]
and p as above. Then, by applying the division algorithm to each coefficient of
q(∂, x) =∑l

k=0qk(x)∂
k, we may writeq(∂, x) = t (∂, x)p(x) + r(∂, x) with r(∂, x) =∑n

k=0 rk(x)∂
k =∑m

j=0 r̃j (∂ + x)∂k and degrk < degp (cf. notation (2.2)). Using that
p(x)C[∂, x] ⊆ S, we obtain thatr(∂, x) ∈ S. Now, since

r(∂, x)λr(∂, x)= r(−λ,λ+ ∂ + x)r(λ+ ∂, x), (2.3)

looking at the coefficient of maximum degree inλ in (2.3), we get:rn(x)r̃m(x + ∂) ∈ S.
By our assumption, one of the polynomials in this product is non-constant. Ifr̃m(x + ∂) is
constant, thenrn(x) ∈ S, but degrn < degp which is a contradiction. Ifrn(x) is constant,
then r̃m(x + ∂) ∈ S. Then, looking at the leading coefficient of the following polynomial
in λ: p(x)λr̃m(x + ∂)= p(λ+ ∂ + x)r̃m(x + λ+ ∂) we have that 1∈ S, which contradicts
our assumption.

If neither r̃m(x + ∂) nor rn(x) are constants, we look atp(x)λr̃m(x + ∂)rn(x) =
p(λ + ∂ + x)r̃m(λ+ x + ∂)rn(x) ∈ S and looking at the coefficient of maximum degree
in λ we get thatrn(x) ∈ S, which contradicts the minimality ofp(x).

(b) The proof is the same as that of (a).
(c) We may assume thatp andq are non-constant polynomials, otherwise we are in the

cases (a) or (b). By Lemma 2.3(c), we havep(x)q(x + ∂)C[∂, x] ⊆ S. Let t (∂, x) ∈ S, but
t (∂, x) /∈C[∂, x]p(x)q(x+ ∂). Then we may have three cases:

(1) t (∂, x) ∈ p(x)C[∂, x] or
(2) t (∂, x) ∈ q(∂ + x)C[∂, x] or
(3) t (∂, x) /∈ p(x)C[∂, x] andt (∂, x) /∈ q(∂ + x)C[∂, x].
Note that these cases are mutually exclusive. Suppose we are in Case (1), so that

t (∂, x) = p(x)r(∂, x) with r(∂, x) /∈ q(∂ + x)C[∂, x]. Then we getr(∂, x) = q(∂ +
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x)r̃(∂, x) + s(∂, x), with s(∂, x) �= 0, and (using notation (2.2)) deg̃sk < degq for all
k = 0, . . . ,m. Therefore, we have thatt (∂, x) = p(x)r(∂, x) = p(x)q(∂ + x)r̃(∂, x) +
p(x)s(∂, x) and thenp(x)s(∂, x) ∈ S. Now, we can compute:

p(x)s(∂, x)λp(x)q(∂ + x)= p(λ+ ∂ + x)s(−λ,λ+ ∂ + x)p(x)q(λ+ ∂ + x)
and looking at the coefficient of maximum degree inλ, we have (using notation (2.2)) that
p(x)s̃m(∂ + x) ∈ S which is a contradiction.

Similarly, Case (2) also leads to a contradiction.
In the remaining Case (3) we may assume that degp � degq since the case of the

opposite inequality is completely analogous. We havet (∂, x) ∈ S, but /∈C[∂, x]p(x). Then

t (∂, x)= p(x)h(∂, x)+ r(∂, x) (2.4)

with 0 �= r(∂, x)=∑n
k=0 rk(x)∂

k =∑m
j=0 r̃j (∂ + x)∂k where degrk < degp and deg̃rj <

degp.
If h(∂, x) ∈C[∂, x]q(∂ + x), thenr(∂, x) ∈ S, but the leading coefficient of

p(x)q(∂ + x)λr(∂, x)= p(λ+ ∂ + x)q(∂ + x)r(λ+ ∂, x)
is in S which is q(∂ + x)rn(x), and this contradicts the assumption of minimality of
p(x)q(∂ + x).

So, suppose thath(∂, x) /∈C[∂, x]q(∂ + x). Thenh(∂, x)= h̃(∂, x)q(∂ + x)+ s(∂, x)
with 0 �= s(∂, x) =∑l

k=0 sk(x)∂
k =∑m

j=0 s̃j (∂ + x)∂k and deg̃sj < degq . By (2.4) we
havep(x)s(∂, x)+ r(∂, x) ∈ S. Now, we compute:

(
p(x)s(∂, x)+ r(∂, x))

λ
p(x)q(∂ + x)

= (
p(λ+ ∂ + x)s(−λ,λ+ ∂ + x)+ r(−λ,λ+ ∂ + x))p(x)q(λ+ ∂ + x).

Then the leading coefficient inλ is eitherp(x)s̃m(∂ + x) ∈ S, which is impossible since
degs̃m < degq , or p(x)r̃m(∂ + x) ∈ S. But in the latter case, degr̃m � degq , but by
construction deg̃rm < degp, and this contradicts the assumption degp � degq . ✷
Proof of Theorem 2.1. (a) LetS be a non-zero subalgebra of Cend1. If S ⊆ C[∂] then by
Lemma 2.2(a) we have thatS = C[∂]. Therefore we may assume that there isr(∂, x) ∈ S
which depends non-trivially onx. Recall that we can writer(∂, x) =∑m

i=0pi(x)∂
i =∑n

j=0qj (∂ + x)∂j . We have

r(∂, x)λr(∂, x) = r(−λ,λ+ ∂ + x)r(λ+ ∂, x)

=
m∑
i=0

n∑
j=0

qj (∂ + x)pi(x)(−λ)j (λ+ ∂)i .

Then, considering the leading coefficient of thisλ-polynomial, we havepm(x)qn(∂ + x)
∈ S. Therefore, we may have one of the following situations:
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(1) pm(x) andqn(∂ + x) are constant,
(2) qn(∂ + x) is constant andpm(x) is non-constant,
(3) pm(x) is constant andqn(∂ + x) is non-constant, or
(4) both polynomials non-constant.

Let us see what happens in each case.
(1) By Lemma 2.2(b), we have thatS =Cend1.
(2) In this case, we may takep(x) ∈ S of minimal degree, then using Lemma 2.4(a) we

haveS =C[∂, x]p(x).
(3) It is completely analogous to (2).
(4) Here, we have thatp(x)q(x+ ∂) ∈ S and, again we may assume that it has minimal

degree. Now, by Lemma 2.4(c), we finish the proof of (a).
The proof of (b) is straightforward.✷

3. Finite modules over CendN,P

Given an associative conformal algebraR (not necessarily finite), we will establish
a correspondence between the set of maximal left ideals ofR and the set of irreducible
R-modules. Then we will apply it to the subalgebras CendN,P .

First recall that the following property holds in anR-moduleM (cf. [7, Remark 3.3]):

aλ(b−∂−µv)= (aλb)−∂−µv, a, b ∈ R, v ∈M. (3.1)

Remark 3.1. (a) Letv ∈M and fixµ ∈ C, then due to (3.1) we have thatR−∂−µv is an
R-submodule ofM.

(b) TorM is a trivialR-submodule ofM [7, Lemma 8.2].
(c) If M is irreducible andM = TorM, thenM �C.
(d) If M is a non-trivial finite irreducibleR-module, thenM is free as aC[∂]-module.

Lemma 3.2. LetM be a non-trivial irreducibleR-module. Then there existsv ∈M and
µ ∈C such thatR−∂−µv �= 0. In particular,R−∂−µv =M if M is irreducible.

Proof. Suppose thatR−∂−µv = 0 for all v ∈M andµ ∈C, then we have thatr−∂−µv = 0
in C[µ] ⊗M for all r ∈ R andv ∈M. Thus writing downr−∂−µv as a polynomial inµ
and looking at then-products that are going to appear in this expansion, we conclude that
rλv = 0 for all v ∈M andr ∈R. HenceM is a trivialR-module, a contradiction.✷

By Lemma 3.2, given a non-trivial irreducibleR-moduleM we can fixv ∈M andµ ∈C

such thatR−∂−µv =M and consider the following map:

φ :R→M, r 	→ r−∂−µv.

Observe thatφ(∂r) = (∂ + µ)φ(r) and using (3.1) we also haveφ(rλs) = rλφ(s).
Therefore, the mapφ is a homomorphism ofR-modules intoM−µ, whereMµ is the
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µ-twisted module ofM obtained by replacing∂ by ∂ +µ in the formulas for the action of
R onM, and Ker(φ) is a maximal left ideal ofR. Clearly this map is ontoM−µ.

Therefore we have thatM−µ � (R/Kerφ) asR-modules, or equivalently,

M � (R/Kerφ)µ. (3.2)

On the other hand, it is immediate that given any maximal left idealI of R, we have that
(R/I)µ is an irreducibleR-module. Therefore we have proved the following

Theorem 3.3. Formula(3.2)defines a surjective map from the set of maximal left ideals of
R to the set of equivalence classes of non-trivial irreducibleR-modules.

Remark 3.4. (a) Observe that given anR-moduleM andv ∈ M, the setI = {a ∈ R |
aλv = 0} is a left ideal, but not necessarilyM � R/I . For example, considerC[∂] as a
Cend1-module, then the kernel ofa 	→ aλv is {0}.

(b) If we fix µ ∈ C, there are examples of irreducible modules whereR−∂−µv = 0 for
all v ∈M (cf. Lemma 3.2). Indeed, considerC[∂] as a Cend1,(x+µ)-module.

Using Remark 3.1, Proposition 1.3 and Theorem 3.3, we have

Corollary 3.5. TheCendN,P -moduleC[∂]N defined by(1.2) is irreducible if and only if
detP(x) �= 0. These are all non-trivial irreducibleCendN,P -modules up to equivalence,
provided thatdetP(x) �= 0.

Note that Corollary 3.5 in the caseP(x)= I , have been established earlier in [12], by
a completely different method (developed in [13]). Another proof of this was also given in
[17].

A subalgebraS of CendN is calledirreducible if S acts irreducibly inC[∂]N .

Corollary 3.6. The following subalgebras ofCendN are irreducible: CendN,P with
detP(x) �= 0, andCurN :=MatN(C[∂]) or conjugates of it by automorphisms(1.3).

Remark 3.7. It is easy to show that every non-trivial irreducible representation of CurN

is equivalent to the standard moduleC[∂]N , and that every finite module over CurN is
completely reducible.

We will finish this section with the classification of all extensions of CendN,P -modules
involving the standard moduleC[∂]N and finite-dimensional trivial modules, and the
classification of all finite modules over CendN .

We shall work with the standard irreducible CendN,P -moduleC[∂]N with λ-action (see
(1.2))

a(∂, x)P (x)λv(∂)= a(−λ,λ+ ∂ + α)P (λ+ ∂)v(λ+ ∂).
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Consider the trivial CendN,P -module over the finite-dimensional vector spaceVT ,
whoseC[∂]-module structure is given by the linear operatorT , that is: ∂ · v = T (v),
v ∈ VT . As usual, we may assume thatP(x)= diag{p1(x), . . . , pN(x)}. We shall assume
that detP �= 0.

Theorem 3.8. (a)There are no non-trivial extensions ofCendN,P -modules of the form:

0→ VT →E→C[∂]N→ 0.

Here and further, all the maps in these sequences are maps ofCendN,P -modules.
(b) If there exists a non-trivial extension ofCendN,P -modules of the form

0→C[∂]N→E→ VT → 0, (3.3)

thendetP(α + c)= 0 for some eigenvaluec of T . In this case, all torsionless extensions
of C[∂]N by finite-dimensional vector spaces, are parameterized by decompositions
P(x+α)=R(x)S(x) and can be realized as follows. Consider the following isomorphism
of conformal algebras:

CendN,P → S(∂ + x)CendN R(x), a(∂, x)P (x) 	→ S(∂ + x)a(∂, x)R(x),

whereP(x + α) = R(x)S(x) (this is the isomorphism betweenCendN,S and CendS,N
(Proposition1.4), restricted toCendN,R S(x)). Using this isomorphism, we get an action
of CendN,P on C[∂]N :

a(∂, x)P (x)λv(∂)= S(∂)a(−λ,λ+ ∂ + α)R(λ+ ∂)v(λ+ ∂).

ThenS(∂)C[∂]N is a submodule isomorphic to the standard module, of finite codimension
in C[∂]N .

(c) If E is a non-trivial extension ofCendN,P -modules of the form:

0→C[∂]N→E→C[∂]N→ 0,

thenE =C[∂]N ⊗C2 as aC[∂]-module(with trivial action of∂ onC2) andCendN,P acts
by

a(∂, x)λ
(
c(∂)⊗ u)= a(−λ,λ+ ∂ ⊗ 1+ 1⊗ J )c(λ+ ∂)(1⊗ u), (3.4)

whereJ is a 2× 2 Jordan block matrix.

Proof. (a) Consider a short exact sequence ofR =CendN,P -modules

0→ T →E→ V → 0, (3.5)
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whereV is irreducible finite, andT is trivial (finite-dimensional vector space). Takev ∈E
with v /∈ T , and letµ ∈C be such thatA :=R−∂−µv �= 0. Then we have three possibilities.

(1) The image ofA in V is 0, thenA= T , which is impossible sinceA corresponds to
a left ideal of CendN,P .

(2) The image ofA in V is V andA ∩ T = 0, thenA is isomorphic toV , hence the
exact sequence splits.

(3) The image ofA in V isV andT ′ =A∩T �= 0. Now, if T ′ = T thenA=E andE is
a cyclic module, which is impossible since it has torsion. IfT ′ �= T , we consider the exact
sequence 0→ T ′ →A→ V → 0, by an inductive argument on the dimension of the trivial
module, the last sequence splits, i.e.,A= T ′ ⊕ V ′ ⊂ E with V ′ � V , henceE = T ⊕ V ′
as CendN,P -modules, proving (a).

(b) We may assume without loss of generality thatα = 0. Consider an extension of
CendN,P -modules of the form (3.3). As a vector spaceE = C[∂]N ⊕ VT . We have, for
v ∈ VT :

∂v = T (v)+ gv(∂), wheregv(∂) ∈C[∂]N,
xlBP(x)λv = f v,Bl (λ, ∂), wheref v,Bl (λ, ∂) ∈ (

C[∂]N)[λ], B ∈MatN C.
(3.6)

Let P(x)=∑m
i=0Qix

i . Since

(
xkAP(x)λx

lBP(x)
)
λ+µv = (λ+ ∂ + x)kAP(λ+ ∂ + x)xlBP(x)λ+µv

=
m∑
i=0

i+k∑
j=0

(
i + k
j

)
(λ+ ∂)i+k−j xj+lAQiBP(x)λ+µv

=
m∑
i=0

i+k∑
j=0

(
i + k
j

)
(−µ)i+k−j f v,AQiB

j+l (λ+µ,∂)

and

xkAP(x)λ
(
xlBP(x)µv

) = xkAP(x)λ
(
f
v,B
l (µ, ∂)

)
= (λ+ ∂)kAP(λ+ ∂)f v,Bl (µ,λ+ ∂)

must be equal by(A2)λ, we have the functional equation

(λ+ ∂)kAP(λ+ ∂)f v,Bl (µ,λ+ ∂)

=
m∑
i=0

i+k∑
j=0

(
i + k
j

)
(−µ)i+k−j f v,AQiB

j+l (λ+µ,∂). (3.7)

If we putµ= 0 in (3.7), we get
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(λ+ ∂)kAP(λ+ ∂)f v,Bl (0, λ+ ∂)=
m∑
i=0

f
v,AQiB
i+k+l (λ, ∂). (3.8)

Since the right-hand side of (3.8) is symmetric ink andl, so is the left-hand side, hence, in
particular, we have

(λ+ ∂)kAP(λ+ ∂)f v,B0 (0, λ+ ∂)=AP(λ+ ∂)f v,Bk (0, λ+ ∂).
TakingA= I and using that detP �= 0, we get

f
v,B
k (0, λ+ ∂)= (λ+ ∂)kf v,B0 (0, λ+ ∂). (3.9)

Furthermore, by (A1)λ, we have[∂, xkAP(x)λ]v = −λxkAP(x)λv, which gives us the
next condition:

(λ+ ∂)f v,Ak (λ, ∂)= f T (v),Ak (λ, ∂)+ (λ+ ∂)kAP(λ+ ∂)gv(λ+ ∂). (3.10)

We shall prove that ifc is an eigenvalue ofT andpj (c) �= 0 for all 1� j � N , then
(after a change of complement) the generalized eigenspace ofT corresponding to the
eigenvaluec is a trivial submodule ofE (hence is a non-zero torsion submodule). Indeed,
let {v1, . . . , vs} be vectors corresponding to one Jordan block ofT associated toc, that is
T (v1)= cv1 andT (vi+1)= cvi+1+ vi for i � 1. Then (3.10) withv = v1 becomes

(λ+ ∂ − c)f v1,A
k (λ, ∂)= (λ+ ∂)kAP(λ+ ∂)gv1(λ+ ∂). (3.11)

Observe that the right-hand side of (3.11) depends onλ + ∂ , sof v1,A
k (λ, ∂) = f

v1,A
k (0,

λ+ ∂). Then using (3.9), we have

f
v1,A
k (λ, ∂) = f

v1,A
k (0, λ+ ∂)

= (λ+ ∂)kf v1,A
0 (0, λ+ ∂)= (λ+ ∂)kf v1,A

0 (λ, ∂). (3.12)

Similarly, considering (3.10) withv = vi+1 (i � 1), we get

(λ+ ∂ − c)f vi+1,A

k (λ, ∂) = f
vi,A
k (λ, ∂)+ (λ+ ∂)kAP(λ+ ∂)gvi+1(λ+ ∂)

= (λ+ ∂)k[f vi,A0 (0, λ+ ∂)+AP(λ+ ∂)gvi+1(λ+ ∂)
]
.

(3.13)

Again, since the right-hand side of (3.13) depends only onλ+ ∂ , we have that (3.12) also
holds for anyvi .

Using thatpj (c) �= 0 (j = 1, . . . ,N ) (recall thatP is diagonal), and takingA = Ei,j ,
we obtain from (3.11) withk = 0 that

f
v1,A
0 (λ, ∂)=AP(λ+ ∂)hv1(λ+ ∂), (3.14a)
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wheregv1(∂)= (∂ − c)hv1(∂). Now, (3.13) withk = 0 andi = 1 becomes (by (3.14a))

(λ+ ∂ − c)f v2,A
0 (λ, ∂) = f

v1,A
0 (λ, ∂)+AP(λ+ ∂)gv2(λ+ ∂)

= AP(λ+ ∂)(hv1(λ+ ∂)+ gv2(λ+ ∂)
)
.

As in (3.14a), we get

f
v2,A
0 (λ, ∂)=AP(λ+ ∂)hv2(λ+ ∂),

wheregv2(∂)+ hv1(∂)= (∂ − c)hv2(∂). Similarly, we obtain for alli � 1,

f
vi+1,A

0 (λ, ∂)=AP(λ+ ∂)hvi+1(λ+ ∂), (3.14b)

wheregvi+1(∂)+hvi (∂)= (∂−c)hvi+1(∂). Changing the basis tov′i = vi−hvi (∂), we have
from (3.12) and (3.14) thatxkAP(x)λv′i = 0 and

∂v′1= T (v1)+ gv1(∂)− ∂hv1(∂)

= cv1+ (∂ − c)hv1(∂)− ∂hv1(∂)= cv′1,
∂v′i+1= T (vi+1)+ gvi+1(∂)− ∂hvi+1(∂)

= cvi+1+ vi + (∂ − c)hvi+1(∂)− ∂hvi+1(∂)− hvi (∂)
= cv′i+1+ v′i .

(3.15)

Hence, theT -invariant subspace spanned by{v′i} is a trivial submodule ofE. Therefore, if
pj (c) �= 0 for all j and all eigenvaluesc of T , thenE is a trivial extension. This proves the
first part of (b).

Now suppose that the extensionE of C[∂]N by a finite-dimensional vector space have
no non-zero trivial submodule (equivalently,E is torsionless). By Remark 3.1(b),E must
be a freeC[∂]-module of rankN .

Then, the problem reduces to the study of a CendN,P -module structure onE =
C[∂]N , but using Remark 1.1, this is the same as a non-zero homomorphism from
CendN,P to CendN . So, the end of this proof also gives us the classification of all these
homomorphisms.

Denote byφ : CendN,P →CendN the (non-zero) homomorphism associated toE. It is
an embedding (due to irreducibility) of freeC[∂]-modulesC[∂]N → C[∂]N , hence it is
given by a non-degenerate matrixS(∂) ∈MatN C[∂]. Hence the action onE of CendN,P
is given by the formula:

φ
(
a(∂, x)P (x)

)
λ

(
S(∂)v

)= S(∂)a(−λ,λ+ ∂ + α)P (λ+ ∂ + α)v for all v ∈C
N .
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Furthermore, we have:

(
φ
(
a(∂, x)P (x)

)
S(x)

)
λ
v = φ

(
a(∂, x)P (x)

)
λ

(
S(∂)v

)
= (

S(∂ + x)a(∂, x + α)P (x + α))
λ
v for all v ∈C

N .

Henceφ(a(∂, x)P (x))= S(∂+x)a(∂, x+α)P (x+α)S−1(x), and this is in CendN if and
only if R(x) := P(x + α)S−1(x) ∈MatN C[x], proving (b).

(c) Consider a short exact sequence ofR =CendN,P -modules

0→ V →E→ V ′ → 0, (3.16)

whereV andV ′ are irreducible finite. Takev ∈E with v /∈ V , and letµ ∈ C be such that
A :=R−∂−µv �= 0. Then we have three possibilities.

(1) The image ofA in V ′ is 0, thenA= V , which is impossible becausev /∈ V .
(2) The image ofA in V ′ is V ′ andA ∩ V = 0, thenA is isomorphic toV ′, hence the

exact sequence splits.
(3) The image ofA in V ′ isV ′ andA∩V = V , henceA=E andE is a cyclic module,

hence corresponds to a left ideal which is contained in a unique maximal ideal (otherwise
the sequence splits). It is easy to see then thatE is the indecomposable module given in
(3.4), whereJ is the 2× 2 Jordan block. ✷
Corollary 3.9. There are no non-trivial extensions ofCendN -modules of the form:

0→ VT →E→C[∂]N→ 0 or 0→C[∂]N→E→ VT → 0.

Theorem 3.10. Every finiteCendN -module is isomorphic to a direct sum of its( finite-
dimensional) trivial torsion submodule and a free finiteC[∂]-moduleC[∂]N ⊗ T on which
theλ-action is given by

a(∂, x)λ
(
c(∂)⊗ u)= a(−λ,λ+ ∂ ⊗ 1+ 1⊗ α)c(λ+ ∂)(1⊗ u), (3.17)

whereα is an arbitrary operator onT .

Proof. Consider a short exact sequence ofR =CendN -modules

0→ V →E→ V ′ → 0,

whereV andV ′ are irreducible finite. By Theorem 3.8(c), the exact sequence split or
E is the indecomposable module that corresponds to a 2× 2 Jordan blockJ , i.e.,E =
C[∂]N ⊗C2, andR acts via (3.17), whereα = J .

Next, using Corollary 3.9, the short exact sequences ofR-modules 0→ V → E→
C→ 0 and 0→ C→ E→ V → 0, whereC is a trivial 1-dimensionalR-module, andV
is a standardR-module (1.2), split.
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Recall [11] that anR-module is the same as a module over the associated extended
annihilation algebra(AlgR)− = C∂ � (AlgR)−, where (AlgR)− is the annihilation
algebra. ForR =CendN one has:

(AlgR)− =
(
DiffNC

)
, (AlgR)− =C∂ � (AlgR)−,

where∂ acts on(AlgR)− via −ad∂t . Furthermore, viewed as an(AlgR)−-module, all
modules (1.2) are equivalent to the moduleF = C[t, t−1]N/C[t]N , and the modules (1.2)
are obtained by letting∂ act as−∂t + α.

Let M be a finiteR-module. Then it has finite length and, by Corollary 3.5, all its
irreducible subquotients are either trivial 1-dimensional or are isomorphic to a standard
R-module (1.2). Since the exact sequence splits when restricted to(AlgR)−, we conclude
that, viewed as an(AlgR)−-module,M is a finite direct sum of modules equivalent toF
or trivial 1-dimensional. Thus, viewed as an(AlgR)−-module,M = S ⊕ (F ⊗ T ), where
S andT are trivial (AlgR)−-modules. The only way to extend thisM to an (AlgR)−-
module is to let∂ act as operatorsα andβ on T andS, respectively, and as−∂t on F ,
which gives (3.17). ✷
Remark 3.11. Theorem 3.10 was stated in [12], and another proof of it was given in [17].

4. Automorphisms and anti-automorphisms of CendN,P

A C[∂]-linear mapσ :R→ S between two associative conformal algebras is called
a homomorphism(respectively anti-homomorphism) if

σ(aλb)= σ(a)λσ (b) (respectivelyσ(aλb)= σ(b)−λ−∂σ (a)).
An anti-automorphismσ is ananti-involutionif σ 2= 1.

An important example of an anti-involution of CendN is:

σ
(
a(∂, x)

)= at (∂,−x − ∂), (4.1)

where the superscriptt stands for the transpose of a matrix.
By Corollary 3.5 we know that all irreducible finite CendN -modules are of the form

(α ∈C):

a(∂, x)λv(∂)= a(−λ,λ+ ∂ + α)v(λ+ ∂).
Hence, twisting one of these modules by an automorphism of CendN gives again one of
these modules, and we get the following

Theorem 4.1. All automorphisms ofCendN are of the form:

a(∂, x) 	→C(∂ + x)a(∂, x + α)C(x)−1,

whereα ∈C andC(x) is a matrix with a non-zero constant determinant.
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This result can be generalized as follows.

Theorem 4.2. Let P(x) ∈ MatN C[x] with detP(x) �= 0. Then all automorphisms
of CendN,P are those that come fromCendN by restriction. More precisely, any
automorphism is of the form:

a(∂, x)P (x) 	→ C(∂ + x)a(∂, x + α)B(x)P (x), (4.2)

whereα ∈C, andB(x) andC(x) are invertible matrices inMatN C[x] such that

P(x + α)= B(x)P (x)C(x). (4.3)

Proof. Let π ′(a) = π(s(a)), where π is the standard representation ands is an
automorphism of CendN,P . Since it is equivalent to the standard representation due to
Corollary 3.5, we deduce thats(a(∂, x))= C(∂+x)a(∂, x+α)C(x)−1 for some invertible
(in MatN C[x]) matrixC(x). ButC(∂+x)CendN,P C(x)−1= CendN,P if and only if (4.3)
holds. Indeed, we have:C(∂ + x) P (x + α)C(x)−1 = A(∂, x)P (x) for someA(∂, x) ∈
CendN . Taking determinants of both sides of this equality, we see that detA(∂, x) is a
non-zero constant. HenceB(x) := P(x + α)C(x)−1P(x)−1 is invertible in MatN C[x],
finishing the proof. ✷
Theorem 4.3. LetP(x) ∈MatN C[x] with detP(x) �= 0. Then we have:

(a) All non-zero homomorphisms fromCendN,P to CendN are of the form

a(∂, x)P (x) 	→ S(∂ + x)a(∂, x + α)R(x), (4.4)

whereα ∈C, andR(x) andS(x) are matrices inMatN C[x] such that

P(x + α)= R(x)S(x). (4.5)

(b) All non-trivial anti-homomorphisms fromCendN,P to CendN are of the form

a(∂, x)P (x) 	→A(∂ + x)at(∂,−∂ − x + α)B(x), (4.6)

whereα ∈C, andA(x) andB(x) are matrices inMatN C[x] such that

P t (−x + α)= B(x)A(x). (4.7)

(c) The conformal algebraCendN,P has an anti-automorphism(i.e., it is isomorphic to
its opposite conformal algebra) if and only if the matricesP t (−x+α) andP(x) have
the same elementary divisors for someα ∈ C. In this case, all anti-automorphisms of
CendN,P are of the form

a(∂, x)P (x) 	→ Y (∂ + x)at (∂,−∂ − x + α)W(x)P (x), (4.8)
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whereY (x) andW(x) are invertible matrices inMatN C[x] such that

P t (−x + α)=W(x)P (x)Y (x). (4.9)

(d) The conformal algebraCendN,P has an anti-involution if and only if there exist an
invertible inMatN C[x]matrixY (x) such that

Y t (−x + α)P t (−x + α)= εP (x)Y (x) (4.10)

for ε = 1 or −1. In this case all anti-involutions are given by

σP,Y,ε,α
(
a(∂, x)P (x)

)= εY (∂ + x)at(∂,−∂ − x + α)Y t (−x + α)−1P(x), (4.11)

whereY (x) is an invertible inMatN C[x] matrix satisfying(4.10).

Proof. (a) Follows by the end of proof of Theorem 3.8(b).
(b) Since composition of two anti-homomorphisms is a homomorphism, using the anti-

involution (4.1) we see that any anti-homomorphism must be of the form

a(∂, x)P (x)→ Rt (−∂ − x)at(∂,−∂ − x + α)St (−x) (4.12)

with P(x + α) = R(x)S(x). Then, (4.6) and (4.7) follows by takingA(x)= St (−x) and
B(x)=Rt (−∂ − x).

(c) Let φ be an anti-automorphism of CendN,P . In particular, it is an anti-homomor-
phism as in part (b), whose image is CendN,P . Then, for alla(∂, x)P (x) ∈ CendN,P , we
have thatφ(a(∂, x)P (x)) = A(∂ + x)at(∂,−∂ − x + α)B(x) ∈ CendN,P . Then taking
a(∂, x) to be the identity matrix we have that

A(∂ + x)B(x)= b(∂, x)P (x), for someb(∂, x) ∈CendN,P . (4.13)

SinceP t (−x+α)= B(x)A(x), taking determinant of both sides of (4.13), and comparing
its highest degrees inx, we deduce that detb(∂, x) is a (non-zero) constant. Therefore
detA(x) is also a (non-zero) constant. Now, from (4.13), we see thatA−1(∂ + x)b(∂, x)
does not depend on∂ . Then we haveB(x)=W(x)P (x), whereW(x)=A−1(∂+x)b(∂, x)
is an invertible matrix. Therefore,

φ
(
a(∂, x)P (x)

)=A(∂ + x)at (∂,−∂ − x + α)W(x)P (x), (4.14)

with A,W invertible matrices such that

W(x)P (x)A(x)= P t (−x + α). (4.15)
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(d) Now suppose thatφ is an anti-involution. Then it is as in (4.8), and it also satisfies
φ2= Id. This condition implies that

a(∂, x)P (x)= Y (∂ + x)Wt (−∂ − x + α)a(∂, x)Y t(−x + α)W(x)P (x) (4.16)

for all a(∂, x) ∈CendN,P . DenoteZ(x)= Y t (−x+α)W(x). Takinga(∂, x)= Id in (4.16)
and using that detP(x) �= 0, we haveY (∂ + x)Wt (−∂ − x + α) = Z−1(x). Now, (4.16)
becomesa(∂, x)P (x)=Z−1(x)a(∂, x)Z(x)P (x). Hence, we obtainZ(x)= ε Id, whereε
is a constant. Thus,Y−1(x)= εWt (−x + α). From (4.9) we deduce that

P(x)Y (x)= ε(P(−x + α)Y (−x + α))t . (4.17)

This condition is also sufficient. There exists an anti-involution if (4.17) holds for some
invertible matrixY , and it is given by

φ
(
a(∂, x)P (x)

)= εY (∂ + x)at(∂,−∂ − x + α)Y t (−x + α)−1P(x),

with ε = 1 or−1. ✷
Two anti-involutionsσ, τ of an associative conformal algebraR are calledconjugate

if σ = ϕ ◦ τ ◦ ϕ−1 for some automorphismϕ of R. Recall that two matricesa andb in
MatN C[x] are calledα-congruentif b= c∗a c for some invertible in MatN C[x]matrix c,
wherec(x)∗ := c(−x + α)t . We shall simply call themcongruentif α = 0. The following
proposition gives us a characterization of equivalent anti-involutionsσP,Y,ε,α in CendN,P
(defined in (4.11)) and relates anti-involutions for differentP .

Proposition 4.4. (a) The anti-involutionsσP,Y1,ε1,α and σP,Y2,ε2,γ of CendN,P are
conjugate if and only ifε1 = ε2 andP(x + (γ − α)/2)Y2(x + (γ − α)/2) is α-congruent
to P(x)Y1(x).

(b) LetϕY be the automorphism ofCendN given by

ϕY
(
a(∂, x)

)= Y (∂ + x)−1a(∂, x)Y (x),

whereY is an invertible matrix inMatN C[x], and letP andY satisfying(4.10). Then

σP,Y,ε,α = ϕ−1
Y ◦ σPY,I,ε,α ◦ ϕY . (4.18)

(c) Let cα be the automorphism ofCendN given bycα(a(∂, x))= a(∂, x + α), where
α ∈ C. Suppose thatP t (−x + α) = εP (x), for ε = 1 or −1, thenQ(x) := P(x + α/2)
satisfiesQt(−x)= εQ(x) and

σP,I,ε,α = c−1
α/2 ◦ σQ,I,ε,0 ◦ cα/2. (4.19)
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Proof. (a) Let ϕB,C,α be the automorphism of CendN,P given by (4.2) and (4.3).
A straightforward computation shows thatϕ−1

B,C,β ◦ σP,Y,ε,α ◦ ϕB,C,β = σP,Ȳ ,ε,2β+α,

whereȲ (x) = C−1(x − β)Y (x − β)Bt(−x + α + β) andP(x + β) = B(x)P (x)C(x).
Hence, if σP,Y1,ε1,α and σP,Y2,ε2,γ are conjugate, thenε1 = ε2 and Y2(x) = C−1(x −
β)Y (x − β)Bt (−x + α + β), with β = γ − α/2. Therefore,P(x + β)Y2(x + β) =
B(x)P (x)Y1(x)B

t (−x + α), that isP(x + (γ − α)/2)Y2(x + (γ − α)/2) is α-congruent
to P(x)Y1(x).

Conversely, suppose thatP(x + (γ − α)/2)Y2(x + (γ − α)/2)= B(x)P (x)Y1(x)B
t ×

(−x + α) for someB(x) invertible matrix in MatN C[x]. Recall thatY1 and Y2 are
invertible. ThenC(x) := Y1(x)B

t (−x + α)Y2(x + (γ − α)/2)−1 is an invertible matrix
in MatN C[x], satisfiesP(x + (γ − α)/2)= B(x)P (x)C(x), and it is easy to check that
the anti-involutions are conjugated by the automorphismϕB,C,(γ−α)/2, proving (a).

Parts (b) and (c) are straightforward computations.✷
Theorem 4.5. Any anti-involution ofCendN is, up to conjugation by an automorphism of
CendN :

a(∂, x) 	→ a∗(∂,−∂ − x),

where ∗ is the adjoint with respect to a non-degenerate symmetric or skew-symmetric
bilinear form overC.

Proof. Using Theorem 4.3(d), we have that any anti-involution of CendN has the form
σ(a(∂, x))= C(∂ + x)at(∂,−∂ − x + α)C(x)−1, whereC(x) is an invertible matrix such
that Ct (x) = εC(−x + α), with ε = 1 or −1. By Proposition 4.4(c), we may suppose
thatα = 0. Now, the proof follows becauseC(x) is congruent to a constant symmetric or
skew-symmetric matrix, by the following general theorem of Djokovic.✷
Theorem 4.6 (Djokovic [9,10]).If A is invertible inMatN(C[x]) andA∗ =A (respectively
A∗ = −A) whereA(x)∗ = At(−x), thenA is congruent to a symmetric(respectively skew-
symmetric) matrix overC.

Proof. The symmetric case follows by Proposition 5 in [9]. The skew-symmetric case was
communicated to us by D. Djokovic and we will give the details here. SupposeA∗ = −A.
By [15, Theorem 2.2.1, Chapter 7] it follows thatA has to be isotropic, i.e., there exists
a non-zero vectorv in C[x]N such thatv∗Av = 0. We can assume thatv is primitive
(i.e., the greatest common divisor of its coordinates is 1). But thenC[x]v is a direct
summand:C[x]N = C[x]v ⊕M, for someC[x]-submoduleM of C[x]N . Then we have
C[x]N = (C[x]v)⊥ ⊕M⊥ andM⊥ is a free rank oneC[x]-module, that isM⊥ = C[x]w
for somew ∈ C[x]N . Since C[x]v ⊆ (C[x]v)⊥, the submoduleP = C[x]v + C[x]w
is free of rank two. IfQ = M ∩ (C[x]v)⊥, then sinceC[x]v ⊆ (C[x]v)⊥ we have
(C[x]v)⊥ =C[x]v⊕Q and

C[x]N = (
C[x]v)⊥ ⊕C[x]w= P ⊕Q,
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with Q= P⊥. Choosew′ ∈ P such thatv∗Aw′ = 1. Thenv,w′ must be a free basis ofP
and the corresponding 2× 2 block is of the form

(
0 1
−1 f

)

for some skew elementf = g − g∗ (cf. [9, Proposition 5]). One can now replacef by 0,
by taking the basisv,w′ − gv, and use induction to finish the proof.✷
Remark 4.7. We do not know any counter-examples to the following generalization of
Djokovic’s theorem: IfA ∈ MatN(C[x]) and A∗ = A (respectivelyA∗ = −A) where
A(x)∗ =At(−x), thenA is congruent to a direct sum of 1× 1 matrices of the form(p(x))
wherep is an even (respectively odd) polynomial and 2× 2 matrices of the form

(
0 q(x)

εq(−x) 0

)
,

whereq(x) is a polynomial, andε = 1 (respectivelyε =−1).1

As a consequence of Theorem 4.3, we have the following result.

Theorem 4.8. Let P(x),Q(x) ∈ MatN C[x] be two non-degenerate matrices. Then
CendN,P is isomorphic toCendN,Q if and only if there existα ∈ C such thatQ(x) and
P(x + α) have the same elementary divisors.

Proof. We may assume thatP is diagonal. Letφ : CendN,P → CendN,Q be an isomor-
phism. In particular it is a homomorphism from CendN,P to CendN whose image is
CendN,Q. Then, by Theorem 4.3(a), we have thatφ(a(∂,X)P (X)) = A(∂ + x)a(∂, x +
α)B(x), with P(x + α)= B(x)A(x). In particular

A(∂ + x)a(∂, x + α)B(x)=Q(x) (4.20)

for somea(∂, x)P (x) ∈ CendN,P .
Taking determinant in both sides of (4.20), and comparing its highest degrees

in ∂ , we can deduce that detA(x) is constant. Now, define the isomorphismφ2 =
χA ◦ φ : CendN,P → CendN,QA, whereχA(a(∂, x)) = A−1(∂ + x)a(∂, x)A(x). Hence
φ2(a(∂, x)P (x))= a(∂, x + α)B(x)A(x). Sinceφ2 is an isomorphism, we have that

B(x)A(x)=D(x)Q(x)A(x) and C(x)B(x)A(x)=Q(x)A(x)

1 This conjecture has been proved recently by D. Djokovic and F. Szechtman, “Solution of the congruence
problem for arbitrary hermitian and skew-hermitian matrices over polynomials rings”, and independently by
L. Vaserstein.
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for someC(x) andD(x) (obviouslyC andD do not depend on∂). Comparing these
two formulas, we have thatC(x)D(x) = Id. Then both are invertible matrices, and
Q(x)A(x)= C(x)B(x)A(x)= C(x)P (x + α) for some invertible matricesA andC. ✷

5. On irreducible subalgebras of CendN

In this section we study the conformal analog of the Burnside Theorem. Recall that a
subalgebra of CendN is called irreducible if it acts irreducibly onC[∂]N . The following is
the conjecture from [12] on the classification of such subalgebras:

Conjecture 5.1. Any irreducible subalgebra ofCendN is eitherCendN,P with detP(x) �= 0
or C(x + ∂)CurN C(x)−1 (i.e., is a conjugate ofCurN), wheredetC(x) = 1. As before,
CurN =MatN(C[∂]).

The classification of finite irreducible subalgebras follows from the classification in [7]
at the Lie algebra level:

Theorem 5.2. Any finite irreducible subalgebra ofCendN is a conjugate ofCurN .

Proof. LetR be a finite irreducible subalgebra of CendN . Then the Lie conformal algebra
R− (with the bracket[aλb] = aλb−b−∂−λa), of course, still acts irreducibly onC[∂]N . By
the conformal analogue of the Cartan–Jacobson theorem [7] applied toR−, a conjugateR1
of R either contains the elementxI , or is contained in MatN C[∂]. The first case is ruled
out since thenR1 is infinite. In the second case, by the same theorem,R1 contains Curg,
whereg⊂MatN C is a simple Lie algebra acting irreducibly onCN , provided thatN > 1.

By the classical Burnside theorem, we conclude thatR1=MatN C[∂] in the caseN > 1.
It is immediate to see that the same is true ifN = 1 (or we may apply Theorem 2.1).✷
Theorem 5.3. If S ⊆CendN is an irreducible subalgebra such thatS contains the identity
matrix Id, thenS =CurN or S =CendN .

Proof. Since Id∈ S, and using the idea of (1.5), we have thatS = C[∂]A, whereA =
S ∩MatN C[x]. Observe thatA is a subalgebra of MatN C[x]. Indeed,

P(x)Q(x)= P(x)λQ(x)|λ=−∂ ∈ S for all P,Q ∈A.

In order to finish the proof, we should show thatA = MatN C or A = MatN C[x].
Observe thatA is invariant with respect to d/dx, using thatP(x)λ(Id)= P(λ+ ∂ + x) ∈
C[λ] ⊗ S and Taylor’s expansion.

LetA0⊂MatN C be the set of leading coefficients of matrices fromA. This is obviously
a subalgebra of MatN C that acts irreducibly onCN . Otherwise we would have a non-trivial
A0-invariant subspaceu⊂CN . LetU denote the space of vectors inC[∂]N whose leading
coefficients lie inu; this is aC[∂]-submodule. But we have:
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a(x)λu(∂)= a (λ+ ∂)u(λ+ ∂)=
∑
j�0

λj

j !
(
a(λ+ ∂)u(λ+ ∂))(j)∣∣

λ=0,

where(j) stands forj th derivative with respect toλ. Since bothA andU are invariant
with respect to the derivative by the indeterminate, we conclude thatU is invariant with
respect toA, hence with respect toS = C[∂]A.

Thus,A0 =MatN C. ThereforeA is a subalgebra of MatN C[x] that contains MatN C

and is d/dx-invariant. If A is larger than MatN C, applying d/dx a suitable number of
times, we get thatA contains a matrix of the formxa, wherea is a non-zero constant
matrix (we can always subtract the constant term). HenceA ⊃ x(MatN C)a(MatN C) =
xMatN C, henceA containsxk MatN(C) for all k ∈ Z+. ✷

6. Lie conformal algebras gcN , ocN,P and spcN,P

A Lie conformal algebraR is aC[∂]-module endowed with aC-linear mapR ⊗ R→
C[λ] ⊗ R, a ⊗ b 	→ [aλb], called theλ-bracket, satisfying the following axioms(a, b, c ∈
R),

(C1)λ [(∂a)λb] = −λ[aλb], [aλ(∂b)] = (λ+ ∂)[aλb],
(C2)λ [aλb] = −[a−∂−λb],
(C3)λ [aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]].

A moduleM over a Lie conformal algebraR is a C[∂]-module endowed with
a C-linear mapR ⊗ M → C[λ] ⊗ M, a ⊗ v 	→ aλv, satisfying the following axioms
(a, b ∈ R, v ∈M),

(M1)λ (∂a)Mλ v = [∂M,aMλ ]v =−λaMλ v,
(M2)λ [aMλ , bMµ ]v = [aλb]Mλ+µv.

Let U andV be modules over a Lie conformal algebraR. Then, theC[∂]-module
N :=Chom(U,V ) has anR-module structure defined by

(
aNλ ϕ

)
µ
u= aVλ (ϕµ−λu)− ϕµ−λ

(
aUλ u

)
, (6.1)

wherea ∈ R, ϕ ∈ N andu ∈ U . Therefore, one can define the contragradientR-module
U∗ =Chom(U,C), whereC is viewed as the trivialR-module andC[∂]-module. We also
define the tensor productU ⊗ V of R-modules as the ordinary tensor product withC[∂]-
module structure(u ∈ U,v ∈ V ):

∂(u⊗ v)= ∂u⊗ v + u⊗ ∂v
andλ-action defined by(r ∈R):

rλ(u⊗ v)= rλu⊗ v + u⊗ rλv.
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Proposition 6.1. LetU andV be twoR-modules. Suppose thatU has finite rank as aC[∂]-
module. ThenU∗⊗V �Chom(U,V ) asR-modules, with the identification(f ⊗v)λ(u)=
fλ+∂V (u)v, f ∈ U∗, u ∈ U andv ∈ V .

Proof. Defineϕ :U∗ ⊗ V → Chom(U,V ) by ϕ(f ⊗ v)λ(u) = fλ+∂V (u) v. Observe that
ϕ is C[∂]-linear, since

ϕ
(
∂(f ⊗ v))

λ
(u) = ϕ(∂f ⊗ v + f ⊗ ∂v)λ(u)= (∂f )λ+∂V (u)v+ fλ+∂V (u)∂v
= −(

λ+ ∂V )
fλ+∂V (u)v + fλ+∂V (u)∂v =−λfλ+∂V (u)v

= −λϕ(f ⊗ v)λ(u)= ∂
(
ϕ(f ⊗ v))

λ
(u)

andϕ is a homomorphism, since

ϕ
(
rλ(f ⊗ v)

)
µ
(u) = ϕ(rλf ⊗ v+ f ⊗ rλv)µ(u)
= (rλf )µ+∂V (u)v + fµ+∂V (u)(rλv)
= −fµ−λ+∂V (rλu)v+ fµ+∂V (u)(rλv)

and

(
rλ

(
ϕ(f ⊗ v)))

µ
(u) = rλ

(
ϕ(f ⊗ v)µ−λ(u)

)− ϕ(f ⊗ v)µ−λ(rλu)
= rλ

(
fµ−λ+∂V (u)v

)− fµ−λ+∂V (rλu)v
= fµ+∂V (u)(rλv)− fµ−λ+∂V (rλu)v.

The homomorphismϕ is always injective. Indeed, ifϕ(f ⊗ v) = 0, thenfµ+∂V (u)v = 0
for all u ∈ U . Suppose thatv �= 0, thenfλ+∂V = 0, that isf = 0.

It remains to prove thatϕ is surjective provided thatU has finite rank as aC[∂]-module.
Let g ∈Chom(U,V ), andU =C[∂]{u1, . . . , un}. Then, there existvik ∈ V such that

gλ(ui)=
mi∑
k=0

(
λ+ ∂V )k

vik =
mi∑
k=0

ϕ(fik ⊗ vik)λ(ui),

where fik ∈ U∗ is defined (on generators) byfik(uj ) = δi,j λ
k . Therefore, g =

ϕ(
∑n

i=0
∑mi

k=0fik ⊗ vik), finishing the proof. ✷
In general, given any associative conformal algebraR with λ-productaλb, theλ-bracket

defined by

[aλb] := aλb− b−∂−λa (6.2)

makesR a Lie conformal algebra.
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LetV be a finiteC[∂]-module. Theλ-bracket (6.2) on CendV , makes it a Lie conformal
algebra denoted by gcV and called thegeneral conformal algebra(see [7,11] and [12]).
For any positive integerN , we define gcN := gcC[∂]N =MatN C[∂, x], and theλ-bracket
(6.2) is by (1.1):

[
A(∂, x)λB(∂, x)

]=A(−λ,x + λ+ ∂)B(λ+ ∂, x)−B(λ+ ∂,−λ+ x)A(−λ,x).
Recall that, by Theorem 4.5, any anti-involution in CendN is, up to conjugation

σ∗
(
A(∂, x)

)=A∗(∂,−∂ − x), (6.3)

where ∗ stands for the adjoint with respect to a non-degenerate symmetric or skew-
symmetric bilinear form overC. These anti-involutions give us two important subalgebras
of gcN : the set of−σ∗ fixed points is theorthogonal conformal algebraocN (respectively
thesymplectic conformal algebraspcN ), in the symmetric (respectively skew-symmetric)
case.

Proposition 6.2. The subalgebrasocN andspcN are simple.

Proof. We will prove that ocN is simple. The proof for spcN is similar. LetI be a non-
zero ideal of ocN . Let 0 �=A(∂, x) ∈ I , thenA(∂, x)=∑m

i=0 ∂
iai(x)=∑n

j=0 ∂
j ãj (∂+x),

with ai(x), ãj (x) ∈MatN C[x]. Now, using thatA(∂, x)=−At(∂,−∂−x), we obtain that
n=m andai(x)=−ãti (−x). Computing theλ-bracket

[
xEij − (−∂ − x)EjiλA(∂, x)

]= λm+1(Eij am(x)− atm(−∂ − x)Eji)+ λm · · ·
we deduce thatEijam(x) − atm(−∂ − x)Eji ∈ I , with am �= 0. By taking appropriatei
andj , we have that there exist polynomialsbk(x) such that

∑N
k=1(bk(x)Eik − bk(−∂ −

x)Eki) ∈ I , with bk �= 0 for somek �= i. Now by computing[(2x+∂)Err λ∑N
k=1(bk(x)Eik− bk(−∂ − x)Eki)] and looking at its leading coefficient inλ, we show thatEri −Eir ∈ I ,

with r �= i. Taking brackets with elements inoN , we haveEjl −Elj ∈ I for all j �= l. Now,
we can see from theλ-brackets[xEri − (−∂ − x)Eir λEir −Eri] = (2x + ∂)(Eii −Err)
and[(2x+ ∂)Eii λ(2x+ ∂)(Eii−Err)] = λ(2x+ ∂)Eii , that(2x+ ∂)Eii ∈ I for all i. The
other generators are obtained by(k �= i, j)

[
(−x)kEik − (∂ + x)kEki λEjk −Ekj

]∣∣
λ=0= xkEij − (−∂ − x)kEji.

Similarly, we can see that(xk − (−∂ − x)k)Eii ∈ I , finishing the proof. ✷
The conformal subalgebras ocN and spcN , as well as the anti-involutions given by (6.3),

and their generalizations can be described in terms of conformal bilinear forms. LetV be
aC[∂]-module. Aconformal bilinear formonV is aC-bilinear map〈 , 〉λ :V ×V →C[λ]
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such that

〈∂v,w〉λ =−λ〈v,w〉λ =−〈v, ∂w〉λ, for all v,w ∈ V.

The conformal bilinear form isnon-degenerateif 〈v,w〉λ = 0 for allw ∈ V , impliesv = 0.
The conformal bilinear form issymmetric (respectivelyskew-symmetric) if 〈v,w〉λ =
ε〈w,v〉−λ for all v,w ∈ V , with ε = 1 (respectivelyε =−1).

Given a conformal bilinear form on aC[∂]-moduleV , we have a homomorphism of
C[∂]-modules,L :V → V ∗, v 	→Lv , given as usual by

(Lv)λw = 〈v,w〉λ, v ∈ V. (6.4)

Let V be a free finite rankC[∂]-module and fixβ = {e1, . . . , eN } a C[∂]-basis ofV . Then
the matrix of〈 , 〉λ with respect toβ is defined asPi,j (λ)= 〈ei , ej 〉λ. Hence, identifyingV
with C[∂]N , we have

〈
v(∂),w(∂)

〉
λ
= vt (−λ)P (λ)w(λ). (6.5)

Observe thatP t (−x)= εP (x) with ε = 1 (respectivelyε =−1) if the conformal bilinear
form is symmetric (respectively skew-symmetric). We also have that ImL = P(−∂)V ∗,
where L is defined in (6.4). Indeed, givenv(∂) ∈ V , considergλ ∈ V ∗ defined by
gλ(w(∂))= vt (−λ)w(λ), then by (6.5)

(Lv(∂))λw(∂)= vt (−λ)P (λ)w(λ) = gλ
(
P(∂)w(∂)

)= (
P(−∂)g)

λ

(
w(∂)

)
,

where in the last equality we are identifyingV ∗ with C[∂]N in the natural way, that is
f ∈ V ∗ corresponds to(f−∂e1, . . . , f−∂ eN) ∈ C[∂]N . Therefore, if the conformal bilinear
form is non-degenerate, thenL gives an isomorphism betweenV andP(−∂)V ∗, with
detP �= 0.

Suppose that we have a non-degenerate conformal bilinear form onV = C[∂]N which
is also symmetric or skew-symmetric. Denote byP(λ) the matrix of this bilinear form
with respect to the standard basis ofC[∂]N . Then for eacha ∈ CendN and w ∈ V ,
the mapf a,wλ(v) := 〈w,aµv〉λ−µ is in C[µ] ⊗ V ∗, that is f a,wλ is a C-linear map,
f a,wλ(∂v) = λf a,wλ(v) and depends polynomially onµ, because degµ f

a,w
λ(v) �

max{degµ f
a,w

λ(ei): i = 1, . . . ,N}. Observe that if we restrict to CendN,P , then
f aP,wλ = (P (−∂)f a,w)λ ∈ ImL. Therefore, since〈 , 〉λ is non-degenerate, there exists
a unique(aP )∗µw ∈ C[µ] ⊗ V such thatf aP,wλ(v) = 〈w,aPµv〉λ−µ = 〈(aP )∗µw,v〉λ.
Thus, we have attached to eachaP ∈ CendN,P a map(aP )∗ :V → C[µ] ⊗ V , w 	→
(aP )∗µw, where the vector(aP )∗µw is determined by the identity

〈aPµv,w〉λ =
〈
v, (aP )∗µw

〉
λ−µ.

Observe that(aP )∗µ(∂w)= (∂ +µ)(aP )∗µw, that is(aP )∗ ∈CendV . Indeed,
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〈
v, (aP )∗µ(∂w)

〉
λ−µ = 〈aPµv, ∂w〉λ = λ〈aPµv,w〉λ

= −〈
∂(aPµv),w

〉
λ
= 〈µaPµv,w〉λ − 〈aPµ∂v,w〉λ

= µ
〈
v, (aP )∗µw

〉
λ−µ −

〈
∂v, (aP )∗µw

〉
λ−µ

= 〈
v, (µ+ ∂)(aP )∗µw

〉
λ−µ.

Moreover we have the following result:

Proposition 6.3. (a)Let〈 , 〉λ be a non-degenerate symmetric or skew-symmetric conformal
bilinear form onC[∂]N , and denote byP(λ) the matrix of〈 , 〉λ with respect to the standard
basis ofC[∂]N overC[∂]. Then the mapaP 	→ (aP )∗ from CendN,P to CendN defined by

〈aµv,w〉λ =
〈
v, a∗µw

〉
λ−µ (6.6)

is the anti-involution ofCendN,P given by

(
a(∂, x)P (x)

)∗ = εat(∂,−∂ − x)P (x), (6.7)

whereP t (−x)= εP (x) with ε = 1 or −1, depending on whether the conformal bilinear
form is symmetric or skew-symmetric.

(b) Consider the Lie conformal subalgebra ofgcN defined by

g∗ = {a ∈CendN,P : a∗ = −a}
= {

a ∈CendN,P : 〈aµv,w〉λ + 〈v, aµw〉λ−µ = 0, for all v,w ∈C[∂]N}
,

where∗ is defined by(6.7). Then under the pairing(6.4)we haveC[∂]N � P(−∂)(C[∂]N)∗
asg∗-modules.

Proof. (a) First let us check thatϕ(aP ) = (aP )∗ defines an anti-homomorphism from
CendN,P to CendN . Since(a, b ∈CendN,P )

〈
v, (aµb)

∗
γw

〉
λ−γ =

〈
(aµb)γ v,w

〉
λ
= 〈

aµ(bγ−µv),w
〉
λ

= 〈
bγ−µv, a∗µw

〉
λ−µ =

〈
v, b∗γ−µ

(
a∗µw

)〉
λ−γ

= 〈
v,

(
b∗γ−µa∗

)
γ
w

〉
λ−γ ,

we have thatϕ(aµb)γ = (ϕ(b)γ−µϕ(a))γ = (ϕ(b)−∂−µϕ(a))γ (the last equality is an
obvious identity in CendN ).

Now, using Theorem 4.3(b), we have that

ϕ
(
a(∂, x)P (x)

)=A(∂ + x)at (∂,−∂ − x + α)B(x),
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with α ∈ C andP t (−x + α) = B(x)A(x). Replacingϕ(aP ) in (6.6) and using (6.5), we
obtain

P(λ−µ)at(−µ,µ− λ)P (λ)= P(λ−µ)A(λ−µ)at (−µ,µ− λ+ α)B(λ),
for all a(∂, x). (6.8)

Taking a(∂, x)= I and using that detP �= 0, we haveP(λ) = A(λ − µ)B(λ). Since the
left-hand side does not depend onµ, we getA= A(x) ∈MatN C, with detA �= 0. Using
thatεP (x − α)= P t (−x + α)= B(x)A, then (6.8) become

at(−µ,µ− λ)εB(λ+ α)A=Aat(−µ,µ− λ+ α)B(λ), for all a(∂, x).

In particular, we haveεB(λ + α)A = AB(λ). Henceat (−µ,µ − λ)A = Aat(−µ,µ −
λ+ α) for all a(∂, x), gettingα = 0 andA= cI . Therefore,

ϕ
(
a(∂, x)P (x)

)= εat(∂,−∂ − x)P (x),
with P t (−x) = εP (x) with ε = 1 or −1, depending on whether the conformal bilinear
form is symmetric or skew-symmetric, getting (a).

(b) Using (6.4), we obtain for alla ∈ g∗ andv,w ∈C[∂]N that

(Laµv)λ(w)= 〈aµv,w〉λ =−〈v, aµw〉λ−µ =−(Lv)λ−µ(aµw)=
(
aµ(Lv)

)
λ
(w)

finishing the proof. ✷
Observe that ocN (respectively spcN ), can be described as the subalgebrag∗ of gcN in

Proposition 6.3(b), with respect to the conformal bilinear form

〈
p(∂)v, q(∂)w

〉
λ
= p(−λ)q(λ)(v,w) for all v,w ∈C

N,

where(·, ·) is a non-degenerate symmetric (respectively skew-symmetric) bilinear form
on CN . For generalP , see (6.12) below.

Then, ocN (respectively spcN ) is theC[∂]-span of{ynA := xnA− (−∂ − x)nA∗: A ∈
MatN C}, where ∗ stands for the adjoint with respect to a non-degenerate symmetric
(respectively skew-symmetric) bilinear form overC. Therefore we have that gcN =
ocN ⊕MN (respectively gcN = spcN ⊕MN ), whereMN is the set ofσ∗-fixed points, i.e.

MN =C[∂]-span of
{
wn
A := xnA+ (−∂ − x)nA∗: A ∈MatN C

}
. (6.9)

We are using the same notationMN in the symmetric and skew-symmetric case. Observe
thatMN is an ocN -module (respectively spcN -module) with the action given by

ynA λw
m
B = (λ+ ∂ +wAB)nwm

AB − (−∂ −wA∗B)nwm
A∗B

+ (−1)n(−λ− ∂ −wAB∗)m+n − (−λ+wBA)mwn
BA. (6.10)
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Let us give a more conceptual understanding of the moduleMN . Let V = C[∂]N .
By definition,V ∗ = Chom(V ,C) = {α :C[∂]N → C[λ]: αλ∂ = λαλ} and givenα ∈ V ∗
it is completely determined by the values in the canonical basis{ei} of CN , this is
pα(λ) := (αλe1, . . . , αλeN) ∈ C[λ]N . Thus, we may identifyV ∗ � C[λ]N and C[∂]-
module structure is given by(∂p)(λ)=−λp(λ).

We have that gcN acts onV by theλ-action

A(∂, x)λv(∂)=A(−λ,λ+ ∂)v(λ+ ∂), v(∂) ∈C[∂]N,
and onV ∗ by the contragradient action, given by

A(∂, x)λv(∂)=−tA(−λ,−∂)v(λ+ ∂), v(∂) ∈C[∂]N.
It is easy to check that(V ∗)∗ � V as gcN -modules. Observe that by Proposition 6.3(b),
V � V ∗ as ocN -modules and spcN -modules.

We define the 2nd exterior powerΛ2(V ) and the 2nd symmetric powerS2(V ) in the
usual way with the inducedC[∂]-module and gcN -module structures.

Proposition 6.4. (a)V ⊗V = S2(V )⊕Λ2(V ) is the decomposition ofV ⊗V into a direct
sum of irreduciblegcN -modules.V ∗ ⊗ V is isomorphic to the adjoint representation of
gcN .

(b) gcN � V ⊗ V = S2(V )⊕Λ2(V ) is the decomposition ofgcN into a direct sum of
irreducibleocN -modules, whereΛ2(V ) is isomorphic to the adjoint representation ofocN ,
andMN � S2(V ) asocN -modules.

(c) gcN � V ⊗ V = S2(V ) ⊕ Λ2(V ) is the decomposition ofgcN into a direct sum
of irreduciblespcN -modules, whereS2(V ) is isomorphic to the adjoint representation of
spcN , andMN �Λ2(V ) asspcN -modules.

Proof. (a) Follows from Proposition 6.1 and part (b).
(b) Defineϕ :V ⊗ V → gcN by

ϕ
(
p(∂)ei ⊗ q(∂)ej

)= p(−x)q(x + ∂)Eji.
It is easy to check that this is an ocN -module isomorphism. Note thatσ∗ defined in (6.3)
corresponds viaϕ to σ(p(∂)ei⊗q(∂)ej )= q(∂)ej⊗p(∂)ei . Therefore it is immediate that
MN � S2(V ) andΛ2(V )� ocN . It remains to see thatMN is an irreducible ocN -module.
LetW �= 0 be a ocN -submodule ofMN and 0�=w(∂, x)=∑

i,j qij (∂, x)Eij ∈W . We may

suppose thatq11 �= 0. Computing[y1
E11λ

w(∂, x)] and looking at the highest degree ofλ that
appears in the componentE11, we deduce that there exists inW an element of the form
w′ =∑

i (pi(∂, x)E1i + qi(∂, x)Ei1), with p1= q1= 1. Now, computing[y1
E12λ

w′(∂, x)]
we have thatw′′ = r(∂, x)E11+ w1

E12
+ terms out of the first column and row∈W . And

from [y1
E11λ

w′′(∂, x)] and looking at the highest degree inλ, we have that ifr(∂, x) is non-

constant,w0
E11
∈W , and if r(∂, x) is constant,w0

E11
+w1

E12
∈W . In both cases, by (6.10)

we have thatw0
I ∈W . Now, looking at (n 0 andA arbitrary)
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ynAλw
0
I = λn2w0

A + λn−12n
(
∂w0

A +w1
A

)+ λn−22

(
n

2

)(
∂2w0

A + 2∂w1
A+w2

A

)+ · · ·
we getW =MN , finishing part (b).

(c) The proof is similar to (b), withϕ :V ⊗V → gcN defined byϕ(p(∂)ei ⊗ q(∂)ej )=
p(−x)q(x + ∂)E

†
ij , whereE†

ij = −Ej,N/2+i , E†
N/2+i,N/2+j = EN/2+j,i , E†

i,N/2+j =
−EN/2+j,N/2+i andE†

N/2+i,j =−Ej,i , for all 1� i, j �N/2. ✷
Observe that gcN,P := gcN P(x) is a Lie conformal subalgebra of gcN , for anyP(x) ∈

MatN C[x].
A matrixQ(x) ∈MatN C[x] will be calledhermitian(respectivelyskew-hermitian) if

Qt(−x)= εQ(x) with ε = 1 (respectivelyε =−1).

Denote byoP,Y,ε,α the subalgebra of gcN,P of −σP,Y,ε,α-fixed points. By Proposi-
tion 4.4(b), (c), we have the following isomorphisms, obtained by conjugating by auto-
morphisms of CendN

oP,Y,ε,α � oPY,I,ε,α � oQ,I,ε,0, (6.11)

whereQ(x) = (PY )(x + α/2) is hermitian or skew-hermitian, depending on whether
ε = 1 or−1. Therefore, up to conjugacy, we may restrict our attention to the family of
subalgebras (6.11), that is it suffices to consider the anti-involutions

σP,I,ε,0
(
a(∂, x)P (x)

)= εat (∂,−∂ − x)P (x),
whereP is non-degenerate hermitian or skew-hermitian, depending on whetherε = 1 or
−1. From now on we shall use the following notation

ocN,P := oP,I,1,0 if P is hermitian,

spcN,P := oP,I,−1,0 if P is skew-hermitian. (6.12)

These subalgebras are those obtained in Proposition 6.3(b) in a more invariant form. In the
special caseN = 1 andP(x)= x, the involutionσx,I,−1,0 is the conformal version of the
involution given by Bloch in [3].

Note that gcN,P � ocN ·P(x)⊕MN · P(x). If P is hermitian, then ocN,P = ocN ·P(x)
andMN · P(x) is an ocN,P -module. IfP is skew-hermitian, then spcN,P =MN · P(x),
and ocN ·P(x) is a spcN,P -module.

Remark 6.5. (a) The subalgebras gcN , gcN,xI , ocN and spcN,xI contain the conformal
Virasoro subalgebraC[∂](x+ α∂)I , for α arbitrary,α = 0,α = 1

2 andα = 0, respectively.

(b) LetJ = ( 0 I
−I 0

)
, then by (6.11) we obtain

spcN = oI,J,−1,0� oJ,I,−1,0= spcN,J .
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(c) The proof of Proposition 6.2 still works for ocN,P and spcN,P with detP(x) �= 0 if
P(x) satisfies the property that for eachi there existsj such that degPij (x) > degPik(x)
for all k �= j . Hence, by Remark 4.7 and the footnote to it, all Lie conformal algebras ocN,P

and spcN,P with detP(x) �= 0 are simple.

Proposition 6.6. The subalgebrasocN,P and spcN,P , with detP(x) �= 0, act irreducibly
on C[∂]N .

Proof. Let M be a non-zero ocN,P -submodule ofC[∂]N and take 0�= v(∂) ∈M. Since
detP(x) �= 0, there existsi such thatP(y)v(y) has non-zeroith coordinate that we shall
denote byb(y). Recall that{(xkA− (−∂ − x)kAt)P (x) | A ∈MatN C} generates ocN,P .
Now, looking at the highest degree inλ in

(2x + ∂)EiiP (x)λv(∂)= (λ+ 2∂)b(∂ + λ)ei
we deduce thatei ∈M. Now, since theith column ofP = (Pr,j ) is non-zero, we can take
k such thatPk,i(x) �= 0 has maximal degree inx, in theith column. Then, considering the
λ action of(xEjk − (−∂ − x)Ekj )P (x) onei , for j = 1, . . . ,N , and looking at the highest
degree inλ, we have thatej ∈M for all j = 1, . . . ,N . ThereforeM = C[∂]N . A similar
argument also works for spcN,P . ✷
Proposition 6.7. (a)The subalgebrasocN,P andocN,Q (respectivelyspcN,P andspcN,Q)
are conjugated by an automorphism ofCendN if and only if P and Q are congruent
hermitian(respectively skew-hermitian) matrices.

(b) The subalgebrasocN,P and spcN,Q are not conjugated by any automorphism of
CendN .

Proof. By Theorem 4.1, any automorphism of CendN has the formϕA(a(∂, x))= A(∂ +
x)a(∂, x + α)A(x)−1, with A(x) an invertible matrix in MatN C[x]. Suppose that the
restriction ofϕA to ocN,P gives us an isomorphism between ocN,P and ocN,Q. Then
ϕA(a(∂, x)P (x))= A(∂ + x)a(∂, x + α)D(x)Q(x) for all a(∂, x) ∈ ocN , whereD is an
invertible matrix in MatN C[x] andP(x+α)=D(x)Q(x)A(x). But the image is in ocN,Q
if and only if (applyingσQ,I,1,0)

a(∂, x − α)R(x)=Rt (−∂ − x)a(∂, x + α) for all a(∂, x) ∈ ocN,

whereR(x)= At(−x)D(x)−1. Therefore, we must haveα = 0 andR = c Id (c ∈C), that
is D(x) = cAt(−x). HenceP(x) = cAt(−x)Q(x)A(x), proving (a). Part (b) follows by
similar arguments. ✷

A classification of finite irreducible subalgebras of gcN was given in [7]. In view of the
discussion of this section, it is natural to propose the following conjecture.

Conjecture 6.8. Any infinite Lie conformal subalgebra ofgcN acting irreducibly onC[∂]N
is conjugate by an automorphism ofCendN to one of the following subalgebras:
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(a) gcN,P , wheredetP �= 0,
(b) ocN,P , wheredetP �= 0 andP(−x)= P t (x),
(c) spcN,P , wheredetP �= 0 andP(−x)=−P t (x).
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