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Abstract
We consider a matrix-valued version of the bispectral problem, that is, find
differential operators L

(
x, d

dx

)
and B

(
z, d

dz

)
with matrix coefficients such that

there exists a family of matrix-valued common eigenfunctions ψ(x, z):

L

(
x,

d

dx

)
ψ(x, z) = f (z)ψ(x, z), ψ(x, z)B

(
z,

d

dz

)
= �(x)ψ(x, z),

where f and � are matrix-valued functions. Using quasideterminants, we
prove that the operators L obtained by non-degenerated rational matrix Darboux
transformations from g

(
d

dx

)
D are bispectral operators, where g(y) ∈ C[y] and

D is a diagonal matrix. We also give a procedure to find an explicit formula for
the operator B extending previous results in the scalar case.

PACS numbers: 02.30.Ik, 02.30.Tb

1. Introduction

In [1], Duistermaat and Grünbaum started the study of bispectral operators. From the
beginning, this problem showed its connection with the KdV and KP hierarchies, as well
as the Calogero–Moser system (see [2–4]). This problem was expanded in several directions,
for a general discussion of the bispectral problem see [5].

The first few attempts to construct bispectral operators in the matrix-valued case were done
by Zubelli. In [6, 7], he established the bispectral property of certain AKNS–ZS operators,
and in [8] he constructed bispectral operators by using matrix Darboux transformations. For
the discrete–continuous matrix version of this problem see [9] and references therein about
the recent and interesting developments on matrix-valued orthogonal polynomials having the
bispectral property. As was pointed out in [9], the non-commutative version of this problem
is very rich and subtle.

In the present work, we give a general construction of matrix-valued bispectral operators
using matrix Darboux transformations and the theory of quasideterminants developed by
Gelfand and Retakh [10]. In this way, we extend the well-known results in the scalar-valued
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case developed in [2, 4, 11]. The main ingredient in our construction is a matrix-valued
extension of Reach’s lemma [12] by using quasideterminants (cf [4, 11, 12]). Although it
might seem that the results of this work are very particular, since D is a diagonal matrix,
considering differential operators with arbitrary matrix functions coefficients is really a very
tough task. Observe that the AKNS–ZS bispectral operators studied in [6] are examples of
our general results.

This work is organized as follows: in section 2 we recall some results on matrix Darboux
transformations. In section 3, we give the properties of quasideterminants that are needed, the
Reach’s lemma is proved and the main result is presented. In section 4, we explicitly show
the bispectrality of the examples exposed at the end of [13], and some concluding remarks are
presented in section 5.

2. Matrix Darboux transformations

We shall consider matrix differential operators of the form

L = am(x)
d

dx

m

+ am−1(x)
d

dx

m−1

+ · · · + a0(x)

where the coefficients ai(x) are d ×d matrix-valued functions. It is called monic if am(x) = I

is the d × d identity matrix. If am(x) �= 0, then m is called the order of L.

Definition 2.1 (cf [13]). We will say that the monic matrix differential operator L is obtained
from another operator L0 of the same type, by matrix Darboux transformations (MDT) if there
exists a monic matrix differential operator A which intertwines L and L0, that is

LA = AL0.

The order of A is called the order of the MDT.

The classical Darboux transformation (see [1] and references therein) corresponds to
the scalar case d = 1, with order 1. Moreover, in this case it is possible to prove that
A = d

dx
− (log ψ)′, where ψ is some eigenfunction of L0, namely

L0ψ = λψ.

Hence, we have the factorization L0 − λI = BA for some operator B of order m − 1, where
m is the order of L0. The Darboux transformation of L0 (associated with ψ) is

L = AB + λI.

But, in the matrix case, with d > 1, a MDT of order 1 is in general not related to any
factorization of L0 − λI in contrast to the scalar case.

The following result characterizes the operators related by the MDT.

Theorem 2.2 [13]. If the operator L is obtained by a MDT from the operator L0 with
intertwining operator A, i.e. LA = AL0, then

L0(ker A) ⊆ ker A.

Conversely, for any nd-dimensional L0-invariant subspace V of d-vector functions there exist
operators A and L such that ker A = V and LA = AL0.

Proof. See [13] and references therein. Some results of [14] are needed. �

From now on, we shall work in the special case L0 = g
(

d
dx

)
D, where g ∈ C[y] and

D = diag(l1, . . . , ld) is the d × d diagonal matrix with entries li’s.
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In this case, any L0-invariant space V is generated by the columns of a d × nd matrix �

satisfying the condition

g

(
d

dx

)
D� = �C, (2.1)

where C is a constant nd × nd matrix which can be assumed, by a suitable change of base in
V , to be in its Jordan form. Suppose for a while that C is a single Jordan block of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0

0 λ 1
...

...
. . .

. . .
...

0 · · · . . .
. . . 1

0 · · · · · · 0 λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
for some constant λ. Denote by vi the ith column of �. By (2.1), we have that

g

(
d

dx

)
li(v1)i = λ(v1)i,

where (v1)i is the ith coordinate of v1. Thus, we have that each (v1)i is a solution of a
homogeneous constant coefficient differential equation, therefore a quasipolynomial, i.e. it
has the form

∑m
i=1 pi(x) eµix , with pi(x) ∈ C[x] and µi ∈ C.

Now, again by (2.1), we have that g
(

d
dx

)
li(v2)i = (v1)i + λ(v2)i , where (v2)i is the ith

coordinate of v2. Thus each (v2)i , with i = 1, . . . , d, is a solution of a (non-homogeneous)
constant coefficient differential equation, namely,(

g

(
d

dx

)
li − λ

)
(v2)i = (v1)i .

Since we already know that each (v1)i is a quasipolynomial, it is a well-known result, using
the Green functions (see, e.g., [15], p 110–117), that (v2)i , with i = 1, . . . , d, is also a
quasipolynomial.

Recursively, one can show that each (vr)i is a quasipolynomial for r � 1 and i = 1, . . . , d.
Similar arguments apply for C with an arbitrary number of Jordan blocks since they are

independent.
Thus, in our case, V is formed by vectors with quasipolynomial coordinates: v =

(v1, . . . , vd)
t ∈ V and vi = ∑

j pij (x) eλj x , with pij polynomials in x.

Now, for L0 = g
(

d
dx

)
D, consider a basis of an L0-invariant space V , it corresponds to

the columns of a d × nd matrix � satisfying (2.1), and � can be thought as nd × d matrices
f1, . . . , fn, i.e. � = (f1, . . . , fn). These matrices f1, . . . , fn generate the kernel of the
intertwining operator A associated with the MDT obtained from the L0-invariant space V .
Therefore, we have proved that fi = ∑

l Ril(x) eλilx , with λil ∈ C and Ril(x) ∈ Matn×n(C[x]).
We shall consider the following special case (cf [11]):

Definition 2.3. A MDT is called rational if it comes from an L0-invariant space V =
〈f1, . . . , fn〉 where fi = Qi(x) eλix with Qi being a matrix polynomial.

In the scalar case, this notion was defined and studied in [1, 4, 11]. Another motivation
for this name is that the intertwining operator A in this case will have matrix rational
coefficients, this can be proved by using the explicit formula for A in (3.5) and property
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(3.4) for quasideterminants (see section 3). Observe that MDT were previously studied in
[13], where they prove that all matrix Schrödinger operators

L = −D2 + U(z), D = d

dz
,

with a potential U(z) being a d × d rational matrix-valued function, have trivial monodromy
if they are obtained by MDT from L0 = −D2. See [16] for the relation of MDT with the
matrix KdV equation.

3. Quasideterminants and bispectral operators

In the first part of this section, we will review the definition of quasideterminant and some of
its properties. For details, we refer to [10].

Let A = (aij ), 1 � i, j � n, be a matrix with formal non-commuting entries aij . We
denote Aαβ, 1 � α, β � n, as the n − 1 order matrix obtained from A by removing the αth
row and the βth column.

Definition 3.1. For a matrix A over a ring with unit the quasideterminant |A|pq is defined if
the matrix Apq is invertible. In this case,

|A|pq = apq −
∑
i �=p
j �=q

apjbjiaiq , (3.1)

where bji are the entries of the matrix (Apq)−1.

If the entries of the matrix A commute with each other, it is easy to see that

|A|pq = (−1)p+q det A

det Apq
.

Therefore, quasideterminants correspond to a generalization of a fraction of determinants. In
the following theorem, we summarize some of the properties of quasideterminants that will
be used in this work (for a complete study see [10] and references therein).

Theorem 3.2 [10]. Let A = (aij ) be an n × n matrix over a ring R with unit.

(1) For a square matrix A = (aij ) with formal entries

HI (A) = (|A|ij ), (3.2)

where I denotes the involution I (A) = A−1 and H(A) = (
a−1

ji

)
is the Hadamard inverse

of A. Thus, we have

|A|ij · bji = 1, (3.3)

where B = A−1 = (brs).
(2) Multiplications of columns: let C be the matrix obtained from A by multiplying its j -th

column by a scalar µ from the right. Then,

|C|il =
{|A|ijµ, if l = j ;
|A|il , if l �= j and µ is invertible.

(3.4)

(3) Addition of columns: let C be the matrix constructed by adding to some column of A its
l-th column multiplied by a scalar λ from the right. Then,

|A|ij = |C|ij , i = 1, . . . , n, j = 1, . . . , l − 1, l + 1, . . . , n.

(4) If |A|ij is defined, the following statements are equivalent:

4
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(i) |A|ij = 0;
(ii) the i-th row of A is a left linear combination of the other rows of this matrix;

(iii) the j -th column of A is a right linear combination of the other columns of this matrix.

(5) For any k �= p and any l �= q

|A|pq = apq −
∑
j �=q

apj (|Apq |kj )−1|Apj |kq

if all terms in these expressions are defined.

Consider L0 = g
(

d
dx

)
D as in section 2. Let V be an nd-dimensional L0-invariant

subspace of d-vector functions. Let us combine the vectors of V as columns of nd × d

matrices �1, . . . , �n, namely V = 〈�1, . . . , �n〉. The intertwining operator A given in
theorem 2.2 can be written in terms of �1, . . . , �n as follows:

A(�) = |W(�1, . . . , �n,�)|n+1,n+1 (3.5)

where

W(�1, . . . , �n,�) =

⎛⎜⎜⎜⎜⎝
�1 · · · �n �

...
. . .

...
...

�
(n−1)
1 · · · �(n−1)

n �(n−1)

�
(n)
1 · · · �(n)

n �(n)

⎞⎟⎟⎟⎟⎠
is the Wronski matrix of �1, . . . , �n,� (cf theorem 1.1 in [14]).

Now, we can state the analog of Reach’s lemma that will be useful to prove the main
result of this paper (see [12] for the original scalar version and [4, 11] for other applications).

Lemma 3.3. Let f1, . . . , fn+1 and p be arbitrary smooth matrix-valued functions such
that W(f1, . . . , fn), |W(f1, . . . , fn)|nj and W(f1, . . . , f̂j , . . . , fn) are invertible for all
j = 1, . . . , n. Define

F(x) = fn+1(x)

( ∫
p(x) dx

)
−

n∑
j=1

fj (x)

×
∫

(|W(f1, . . . , fn)|nj (x))−1|W(f1, . . . , f̂j , . . . , fn+1)|n,n+1(x)p(x) dx. (3.6)

Then,

|W(f1, . . . , fn, F )|n+1,n+1(x) = |W(f1, . . . , fn+1)|n+1,n+1(x)

( ∫
p(x) dx

)
. (3.7)

Proof. By theorem 3.2.4, the following identity

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x) f2(x) · · · fn+1(x)

f ′
1(x) f ′

2(x) · · · f ′
n+1(x)

...
...

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n+1 (x)

f
(i)
1 (x) f

(i)
2 (x) · · · f

(i)
n+1(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1,n+1
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holds for i = 0, . . . , n − 1, and expanding it with respect to the last row (see
theorem 3.2.5) we obtain

0 = f
(i)
n+1(x) −

n∑
j=1

f
(i)
j (x)(|W(f1, . . . , fn)|nj (x))−1|W(f1, . . . , f̂j , . . . , fn+1)|n,n+1(x) (3.8)

for all i = 0, . . . , n − 1. Observe that, by hypothesis, all quasideterminants used before are
well defined. Now, in order to prove (3.7), we need to compute the derivatives of F defined in
(3.6). We have

F ′(x) = f ′
n+1(x)

( ∫
p(x) dx

)
−

n∑
j=1

f ′
j (x)

∫
(|W(f1, . . . , fn)|nj (x))−1|W(f1, . . . , f̂j , . . . , fn+1)|n,n+1(x)p(x) dx

+

(
fn+1(x) −

n∑
j=1

fj (x)(|W(f1, . . . , fn)|nj (x))−1

× |W(f1, . . . , f̂j , . . . , fn+1)|n,n+1(x)

)
p(x)

and the last term is zero by (3.8) with i = 0. Similarly, and using (3.8) with different values
of i, it is easy to see that

F (i)(x) = f
(i)
n+1(x)

( ∫
p(x) dx

)
−

n∑
j=1

f
(i)
j (x)

∫
(|W(f1, . . . , fn)|nj (x))−1

× |W(f1, . . . , f̂j , . . . , fn+1)|n,n+1(x)p(x) dx (3.9)

for all i = 0, . . . , n.
Inserting (3.9) into |W(f1, . . . , fn, F )|n+1,n+1, most of the terms in the last column

disappear by subtracting multiples of the first n columns by scalars from the right (see column
elimination for quasideterminants in theorem 3.2.3), and all that remains is

|W(f1, . . . , fn, F )|n+1,n+1(x) =

∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎝
f1(x) f2(x) · · · fn+1(x)

( ∫
p(x) dx

)
f ′

1(x) f ′
2(x) · · · f ′

n+1(x)
( ∫

p(x) dx
)

...
...

...

f
(n)
1 (x) f

(n)
2 (x) · · · f

(n)
n+1(x)

( ∫
p(x) dx

)

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
n+1,n+1

from which the lemma follows by theorem 3.2.2. �

Remark 3.4. Observe that L0 = g
(

d
dx

)
D, with D being a constant diagonal matrix, is trivially

a bispectral operator since ψ0(x, z) = exzQ, with Q being a constant non-singular matrix,
satisfies

L0ψ0(x, z) = ψ0(x, z)f (z),

where f (z) = g(z)Q−1DQ, and ψ0(x, z)B0 = h(x)ψ0(x, z), where B0 = h̃
(

d
dz

)
D̃, h(x) =

h̃(x)QD̃Q−1 and h̃(y) ∈ C[y]. Observe that if LA = AL0, then ψ(x, z) = Aψ0(x, z)

satisfies

Lψ(x, z) = ψ(x, z)f (z). (3.10)

Motivated by the previous lemma, we consider the following definition.
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Definition 3.5. A MDT is called non-degenerated if it comes from an L0-invariant space
V = 〈f1, . . . , fn〉 such that K = W(f1, . . . , fn),W(f1, . . . , f̂j , . . . , fn) and the elements
(K−1)jn are invertible for all j = 1, . . . , n.

Now we will prove the main result of this paper.

Theorem 3.6. Let L0 = g
(

d
dx

)
D, with D being a constant diagonal matrix and g ∈ C[y]. Then

any matrix differential operator L obtained by a non-degenerated rational matrix Darboux
transformation from the operator L0 is bispectral.

Proof. Suppose L is obtained by a non-degenerated rational matrix Darboux transformation of
L0 = g

(
d

dx

)
D. Then, the rational MDT comes from an L0-invariant space V = 〈f1, . . . , fn〉

where fi(x) = Pi(x) eλix and Pi(x) is a matrix polynomial for i = 1, . . . , n.
Set fn+1(x) = exzQ with Q being a constant non-singular matrix. Recall that fi’s,

i = 1, . . . , n, span the kernel of the intertwining operator

A(f ) = |W(f1, . . . , fn, f )|n+1,n+1

in (3.5). Take ψ(x, z) = A(fn+1(x)), by remark 3.4, it is enough to show that

ψ(x, z)B

(
z,

d

dz

)
= ψ(x, z)�(x)

for some matrix differential operator B in z and �(x) ∈ C[x]. We write �(x) = ∫
f0(x) dx

for some polynomial f0(x).
Since fi(x) = Pi(x) eλix for i = 1, . . . , n, the exponentials eλix appear in each column

of W(f1, . . . , fn). Hence, using property (2) of quasideterminats in theorem 3.2, we obtain

|W(f1, . . . , fn)|nj = |R(x)|nj · eλj x,

with R(x) being a matrix polynomial. Observe that for i �= j , the (invertible) factor eλix can
be removed because the quasideterminant of type |·|nj does not change by (3.4).

Observe that the non-degeneracy of the Darboux transformation and property (3.3) allows
us to apply the previous lemma and quarantines the existence of all quasideterminants involved
in the following computations. By (3.3), we have that

|R(x)|nj ((R(x))−1)jn = 1.

Similarly,

|W(f1, . . . , f̂j , . . . , fn+1)|n,n+1 = |Sj (x, z)|n,n · exzQ,

where Sj (x, z) is a matrix whose entries depend polynomially on x and z; in fact, the
variable z only appears in the last column. Moreover, using (3.1), it is easy to see that
the quasideterminant |Sj (x, z)|n,n depends polynomially on z, and as a rational function in x.
Take r(x) the monic scalar polynomial of minimal degree such that the following expression
depend polynomially on z and x for all j = 1, . . . , n:

e(λj −z)x · |W(f1, . . . , fn)|−1
nj · |W(f1, . . . , f̂j , . . . , fn+1)|n,n+1 · r(x)

= (|R(x)|nj )−1 · |Sj (x, z)|n,n · Q · r(x). (3.11)

Fix p(x) = r(x)q(x), for some arbitrary polynomial q. Observe that in this case we apply
the previous lemma to a scalar-valued function p, even though in the previous lemma p is a

7
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matrix-valued function. Then, we have that

F(x) = fn+1(x)

( ∫
p(x) dx

)
−

n∑
j=1

fj (x)

×
∫

(|W(f1, . . . , fn)|nj (x))−1|W(f1, . . . , f̂j , . . . , fn+1)|n,n+1(x)p(x) dx

= fn+1(x)

( ∫
p(x) dx

)
−

n∑
j=1

Pj (x) eλj x

×
∫

(|W(f1, . . . , fn)|nj (x))−1|W(f1, . . . , f̂j , . . . , fn+1)|n,n+1(x)p(x) dx

= fn+1(x)

( ∫
p(x) dx

)
−

n∑
j=1

Pj (x) eλj x

×
∫

(|R(x)|nj )−1|S(x, z))|n,n+1 ex(z−λj )Qp(x) dx.

After integrating by parts in the second term of the RHS in the last equation and using (3.11),
we have

F(x) =
⎛⎝Pn+1(x)

( ∫
p(x) dx

)
−

n∑
j=1

Pj (x)T (z, x)

⎞⎠ exz, (3.12)

where T (z, x) is a matrix polynomial in x whose coefficients are rational funcions in z. Hence,
F(x) depends polynomially on x and we have that

F(x) = exzQB

(
z,

d

dz

)
, (3.13)

for some differential operator B
(
z, d

dz

)
with matrix coefficients whose entries are rational

functions in z.
Thus, using lemma (3.3) and (3.4), we conclude that

ψ(x, z)B

(
z,

d

dz

)
= |W(f1, . . . , fn, exzQ)|n+1,n+1B

(
z,

d

dz

)
=

∣∣∣∣W(
f1, . . . , fn, exzQ · B

(
z,

d

dz

))∣∣∣∣
n+1,n+1

= |W(f1, . . . , fn, F )|n+1,n+1 = |W(f1, . . . , exzQ)|n+1,n+1

(∫
p(x) dx

)
= ψ(x, z)

( ∫
p(x) dx

)
,

finishing the proof. �

Remark 3.7. (a) From the proof we can deduce that given L as in theorem 3.6, for any
�(x) such that �′(x) is divisible by r(x) where r(x) is as in (3.11), there exists a differential
operator B in z such that �(x) is its eigenvalue.

(b) Observe that the proof of theorem 3.6 gives a procedure to obtain the explicit formula
for the operator B for each �(x) as in the previous remark. Namely, let f1, . . . , fn be a
basis of the L0-invariant space that describes the non-degenerated rational matrix Darboux
transformation that produces the new operator L. Then, by using quasideterminants, one can
compute explicitly F(x) as in (3.12), and then, using (3.13), we obtain the explicit formula
for the operator B.
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4. Examples

In this section, we shall explicitly show the bispectrality of the examples of Schroedinger
operators given at the end of [13]. The computation of the explicit formula for the operator B
was done by using the construction explained in remark 3.7(b), for just one particular choice
of � in each example.

Example 4.1. Consider L0 = − d2

dx2 I . Let V be the L0-invariant vector space spanned by the
columns of

f1 =
(

x 1
0 x

)
.

The intertwining operator whose kernel is V is given by

A = d

dx
I −

(
1
x

− 1
x2

0 1
x

)
.

In this case,

L = d2

dx2
I −

(
− 1

x2
2
x3

0 − 1
x2

)
,

and ψ(x, z) = A(exz). The operator

B = d3

dz3

(
I

3

)
− d2

dz2

(
I

z

)
+

d

dz

(
I

z2

)
+

(
0 1

z2

0 0

)
satisfies ψ(x, z)B = �(x)ψ(x, z), with �(x) = x3

3 . And in general, for any � such that
�′ = x2q(x) with q(x) = C[x], it is possible to find the corresponding B.

Example 4.2. Let L = −I d2

dx2 + U(x) be the matrix Schroedinger operator whose potential
U(x) with three second-order poles is given by

U(x) = Pu

(x − u)2
+

Pv

(x − v)2
+

Pw

(x − w)2

where the projectors Pu, Pv, Pw are defined as follows:

Pu = 2

(u − v)(u − w)

(
vw − u2 u(−vw + u2)

w − 2u + v u(−w + 2u − v)

)

Pv = 2

(v − u)(v − w)

(
uw − v2 −v(uw − v2)

w − 2v + u −v(w − 2v + u)

)
and

Pw = 2

(w − u)(w − v)

(
uv − w2 −w(uv − w2)

u − 2w + v −w(u − 2w + v)

)
.

In this case, L is obtained by MDT from L0 = −I d2

dx2 with respect to the L0-invariant vector
space V generated by the column vectors of the following matrices:

f1 =
(

1 0
0 1

)
, f2 =

(
x x2

0 −2x

)
, f2 =

(
0 a(x)

x2 b(x)

)
where

a(x) = 1
3x4(u + v + w) − 4

3 (uv + uw + vw)x3 + 4uvwx2

b(x) = x4 − 4
3 (u + v + w)x3.

9
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The intertwining operator is given by

A = I
d3

dx3
− 1

2

(
Pu

(x − u)
+

Pv

(x − v)
+

Pw

(x − w)

) (
I

d2

dx2
+

(
0 1
0 0

)
d

dx

)
and ψ(x, z) = A(exz) satisfies Lψ(x, z) = −z2ψ(x, z). After some computations, it is
possible to see that r(x) = (x − u)(x − v)(x − w) satisfies (3.11). Hence, for any � such
that �′(x) = r(x)q(x), with q(x) ∈ C[x], there exists a matrix differential operator B in z

satisfying ψ(x, z)B = �(x)ψ(x, z). In the special case �′ = r , the operator B is given by

B = d4

dz4
b4 +

d3

dz3
b3 +

d2

dz2
b2 +

d1

dz1
b1 + b0

where b4 = 1
4I, b3 = −(

1
3 (v + u + w) + 3

x

)
I and

b2 =
(

1
2 (uv + uw + vw) + 3(w+v+u)

x
+ 18

x2 − (v+u+w)

x2

0 1
2 (uv + uw + vw) + 3(w+v+u)

x
+ 15

x2

)

b1 =
(

−uvw − 3(uw+vw+uv)

x
− 11(v+u+w)

x2 − 60
x3

8(w+v+u)

x3 + uv+uw+vw
x2

3
x2 −uvw − 3(uw+vw+uv)

x
− 11(v+u+w)

x2 − 36
x3

)

b0 =
(

3uvw
x

+ 5(uv+uw+vw)

x2 + 17(w+v+u)

x3 + 90
x4 − 18(u+w+v)

x4 − 5(uv+uw+vw)

x3

− v+u+w
x2 − 9

x3
3(uvw)

x
+ 6(uw+vw+uv)

x2 + 15(v+u+w)

x3 + 36
x4

)

5. Concluding remarks

There is no doubt that the theory of quasideterminants will play an important role in the study of
matrix bispectral operators and matrix orthogonal polynomials (a discrete–continuous instance
of it). For example, orthogonal polynomials as quasideterminants of moments matrices
were introduced in [17]. This general definition suggests that quasideterminant language is
obviously the right language to understand [18].

An interesting open problem is the possible relation between matrix bispectral operators
and the matrix version of the Calogero–Moser system, as well as the matrix KdV (or KP)
equation (cf [3, 4]).
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