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Classification of irreducible representations over finite simple
Lie conformal superalgebras

Carina Boyallian and José I. Liberati

Abstract. This article is a survey on the classification of irreducible repre-
sentations over finite simple Lie conformal superalgebras.
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1. Introduction

Lie conformal superalgebras encode the singular part of the operator product
expansion of chiral fields in two-dimensional quantum field theory [6].

On the other hand, they are closely connected to the notion of formal distribu-
tion Lie superalgebra (g,F), that is a Lie superalgebra g spanned by the coefficients
of a family F of mutually local formal distributions. Namely, to a Lie conformal
superalgebra R one can associate a formal distribution Lie superalgebra (Lie R,R)
which establishes an equivalence between the category of Lie conformal superalge-
bras and the category of equivalence classes of formal distribution Lie superalgebras
obtained as quotients of Lie R by irregular ideals [8].

Finite simple Lie conformal algebras were classified in [6] and all their finite
irreducible representations were constructed in [4]. According to [6], any finite
simple Lie conformal algebra is isomorphic either to the current Lie conformal
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algebra Cur g, where g is a simple finite-dimensional Lie algebra, or to the Virasoro
conformal algebra V ir.

However, the list of finite simple Lie conformal superalgebras is much richer,
mainly due to existence of several series of super extensions of the Virasoro confor-
mal algebra.

A complete classification of (linear) finite simple Lie conformal superalgebras
was obtained in [7], where they proved that any finite simple Lie conformal super-
algebras is isomorphic to one of the following:

• Current Lie conformal superalgebras Cur g, where g is a simple finite-
dimensional Lie superalgebra,

• Wn(n ≥ 0),
• Sn,b(n ≥ 2 , b ∈ C),

• S̃n(n even , n ≥ 2),
• Kn(n ≥ 0, n �= 4),
• K ′

4,
• CK6.

All finite irreducible representations of the simple conformal superalgebras
Cur g, K0 = Vir and K1 were constructed in [4], and those of S2,0, W1 = K2,
K3, and K4 in [5]. More recently, the problem has been solved for all Lie conformal

superalgebras from the four series Wn, Sn,b, S̃n and Kn (see [2] and [1]).
The construction in all these series relies on the observation that the represen-

tation theory of a Lie conformal superalgebra R is controlled by the representation
theory of the associated (extended) annihilation algebra g = (LieR)+ [4], thereby
reducing the problem to the construction of continuous irreducible modules with
discrete topology over the linearly compact superalgebra g.

The construction of the latter modules consists of two parts. First one con-
structs a collection of continuous g-modules Ind(F ), associated to all finite-dimensional
irreducible g0-modules F , where g0 is a certain subalgebra of g (= gl(1|n) or sl(1|n)
for the W and S series, and = cson for the Kn series, for instance).

The irreducible g-modules Ind(F ) are called non-degenerate, and the second
part of the problem consists of two parts:

(a) Classify the g0-modules F , for which the g-modules Ind(F ) are non-
degenerate, and

(b) construct explicitly the irreducible quotients of Ind(F ), called degenerate
g-modules, for reducible Ind(F ).

Both problems have been solved for types W and S in [2] and for type K in
[1]. For types W and S, it turned out, remarkably, that all degenerate modules
occur as cokernels of the super de Rham complex, or their duals.

For Kn with n ≥ 4 (recall that for 0 ≤ n ≤ 4 the problem has been solved in
[4] and [5], though in [5] the construction for n = 3 and 4 is not very explicit), we
construct a contact complex, which is a certain reduction of the de Rham complex,
and show that the cokernels in the contact complex and their duals produce all
degenerate g-modules. As a result, we obtain an explicit construction of all finite
irreducible Kn-modules for n ≥ 4.

We should mention that the construction of our (super) contact complex mimics
the beautiful Rumin’s construction [13] for ordinary (non-super) contact manifolds.
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The remaining cases, namely, the representation theory of K ′
4 (the derived

algebra of K4) and of the exceptional Lie conformal superalgebra CK6, and the ex-
plicit construction of degenerate modules forK3, will be worked out in a subsequent
publication.

Acknowledgement. The authors are very grateful to the organizers of the
Lie theory session in the XVIII Latin American Algebra Colloquium, V. Futorny
and V. Serganova for the invitation to participate and give a talk in this event.

2. Formal distributions, Lie conformal superalgebras and their modules

In this section we introduce the basic definitions and notations in order to have
a self-contained work, see [8, 6, 2, 5]. Let g be a Lie superalgebra. A g-valued
formal distribution in one indeterminate z is a formal power series

a(z) =
∑

n∈Z

anz
−n−1, an ∈ g.

The vector superspace of all formal distributions, g[[z, z−1]], has a natural structure
of a C[∂z]-module. We define

Resz a(z) = a0.

Let a(z), b(z) be two g-valued formal distributions. They are called local if

(z − w)N [a(z), b(w)] = 0 for N >> 0.

Let g be a Lie superalgebra, a family F of g-valued formal distributions is
called a local family if all pairs of formal distributions from F are local. Then,
the pair (g,F) is called a formal distribution Lie superalgebra if F is a local family
of g-valued formal distributions and g is spanned by the coefficients of all formal
distributions in F . We define the formal δ-function by

δ(z − w) = z−1
∑

n∈Z

(w

z

)n

.

Then it is easy to show ([8], Corollary 2.2)), that two local formal distributions are
local if and only if the bracket can be represented as a finite sum of the form

[a(z), b(w)] =
∑

j

[a(z)(j)b(w)] ∂
j
wδ(z − w)/j!,

where [a(z)(j)b(w)] = Resz(z − w)j [a(z), b(w)]. This is called the operator product
expansion. Then we obtain a family of operations (n), n ∈ Z+, on the space of
formal distributions. By taking the generating series of these operations, we define
the λ-bracket:

[aλb] =
∑

n∈Z+

λn

n!
[a(n)b].

The properties of the λ-bracket motivate the following definition:

Definition 2.1. A Lie conformal superalgebra R is a left Z/2Z-graded C[∂]-
module endowed with a C-linear map R⊗R −→ C[λ]⊗R, a⊗ b �→ aλb, called the
λ-bracket, and satisfying the following axioms (a, b, c ∈ R),

Conformal sesquilinearity [∂aλb] = −λ[aλb], [aλ∂b] = (λ+ ∂)[aλb],
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Skew-symmetry [aλb] = −(−1)p(a)p(b)[b−λ−∂ a],

Jacobi identity [aλ[bμc]] = [[aλb]λ+μc] + (−1)p(a)p(b)[bμ[aλc]].

Here and further p(a) ∈ Z/2Z is the parity of a.

A Lie conformal superalgebra is called finite if it has finite rank as a C[∂]-
module. The notions of homomorphism, ideal and subalgebras of a Lie conformal
superalgebra are defined in the usual way. A Lie conformal superalgebra R is simple
if [RλR] �= 0 and contains no ideals except for zero and itself.

Given a formal distribution Lie superalgebra (g,F) denote by F̄ the minimal
subspace of g[[z, z−1]] which contains F and is closed under all j-th products and
invariant under ∂z. Due to Dong’s lemma, we know that F̄ is a local family as well.
Then Conf(g,F) := F̄ is the Lie conformal superalgebra associated to the formal
distribution Lie superalgebra (g,F).

In order to give the (more or less) reverse functorial construction, we need the

following: let R̃ = R[t, t−1] with ∂̃ = ∂ + ∂t and define the bracket [8]:

[atn, btm] =
∑

j∈Z+

(
m
j

)
[ajb]t

m+n−j . (2.1)

Observe that ∂̃R̃ is an ideal of R̃ with respect to this bracket. Now, consider
AlgR = R̃/∂̃R̃ with this bracket and let

R = {
∑

n∈Z

(atn)z−n−1 = aδ(t− z) / a ∈ R}.

Then (AlgR,R) is a formal distribution Lie superalgebra. Note that Alg is a func-
tor from the category of Lie conformal superalgebras to the category of formal
distribution Lie superalgebras. On has [8]:

Conf(AlgR) = R, Alg(Conf(g,F)) = (AlgF̄ , F̄).

Note also that (AlgR,R) is the maximal formal distribution superalgebra associ-
ated to the conformal superalgebra R, in the sense that all formal distribution Lie
superalgebras (g,F) with Conf(g,F) = R are quotients of (AlgR,R) by irregular
ideals (that is, an ideal I in g with no non-zero b(z) ∈ R such that bn ∈ I). Such
formal distribution Lie superalgebras are called equivalent.

We thus have an equivalence of categories of Lie conformal superalgebras and
equivalence classes of formal distribution Lie superalgebras. So the study of formal
distribution Lie superalgebras reduces to the study of Lie conformal superalgebras.

An important tool for the study of Lie conformal superalgebras and their mod-
ules is the (extended) annihilation superalgebra. The annihilation superalgebra of
a Lie conformal superalgebra R is the subalgebra A(R) (also denoted by AlgR+)
of the Lie superalgebra AlgR spanned by all elements atn, where a ∈ R, n ∈ Z+. It
is clear from (2.1) that this is a subalgebra, which is invariant with respect to the
derivation ∂ = −∂t of AlgR. The extended annihilation superalgebra is defined as

A(R)e = (AlgR)+ := C∂ � (AlgR)+.
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Introducing the generating series

aλ =
∑

j∈Z+

λj

j!
(atj), a ∈ R, (2.2)

we obtain from (2.1):

[aλ, bμ] = [aλb]λ+μ, ∂(aλ) = (∂a)λ = −λaλ. (2.3)

Now let g be a Lie superalgebra, and let V be a g-module. Given a g-valued
formal distribution a(z) and a V -valued formal distribution v(z) we may consider
the formal distribution a(z)v(w) and the pair (a(z), v(z)) is called local if (z −
w)N (a(z)v(w)) = 0 for N >> 0. As before, we have an expansion of the form:

a(z)v(w) =
∑

j

(
a(z)(j)v(w)

)
∂j
wδ(z − w)/j!,

where a(w)(j)v(w) = Resz(z − w)ja(z)v(w) and the sum is finite. By taking the
generating series of these operations, we define the λ-action of g on V :

a(w)λv(w) =
∑

n∈Z+

λn

n!

(
a(w)(n)v(w)

)
, (finite sum).

It has the following properties:

∂za(z)λv(z) = −λa(z)λv(z), a(z)λ∂zv(z) = (∂z + λ)(a(z)λv(z)),

and

[a(z)λ, b(z)μ]v(z) = [a(z)λb(z)]λ+μv(z).

This motivate the following definition:

Definition 2.2. A module M over a Lie conformal superalgebra R is a Z/2Z-
graded C[∂]-module endowed with a C-linear map R⊗M −→ C[λ]⊗M , a⊗v �→ aλv,
satisfying the following axioms (a, b ∈ R), v ∈ M ,

(M1)λ (∂a)Mλ v = [∂M , aMλ ]v = −λaMλ v,

(M2)λ [aMλ , bMμ ]v = [aλb]
M
λ+μv.

An R-module M is called finite if it is finitely generated over C[∂]. An R-
module M is called irreducible if it contains no non-trivial submodule, where the
notion of submodule is the usual one.

As before, if F ⊂ g[[z, z−1]] is a local family and E ⊂ V [[z, z−1]] is such that
all pairs (a(z), v(z)), where a(z) ∈ F and v(z) ∈ E , are local, let Ē be the minimal
subspace of V [[z, z−1]] which contains E and all a(z)(j)v(z) for a(z) ∈ F and
v(z) ∈ E , and is ∂z-invariant. Then it is easy to show that all pairs (a(z), v(z)),
where a(z) ∈ F̄ and v(z) ∈ Ē , are local and a(z)(j)(Ē) ⊂ Ē for all a(z) ∈ F̄ .

Let F be a local family that spans g and let E ⊂ V [[z, z−1]] be a family that span
V . Then (V, E) is called a formal distribution module over the formal distribution
Lie superalgebra (g,F) if all pairs (a(z), v(z)), where a(z) ∈ F and v(z) ∈ E , are
local. It follows that a formal distribution module (V, E) over a formal distribution
Lie superalgebra (g,F) give rise to a module Conf(V, E) := Ē over the conformal
Lie superalgebra Conf(g,F).
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In the same way as above, we have an equivalence of categories of modules
over a Lie conformal superalgebra R and equivalence classes or formal distribution
modules over the Lie superalgebra AlgR. Namely, given an R-module M , one
defines M̃ = M [t, t−1] as a R̃-module with the action similar to (2.1):

atn · vtm =
∑

j∈Z+

(
m
j

)
(ajv)t

m+n−j . (2.4)

Let ∂̃ = ∂M + ∂t. Observe that ∂̃M̃ is invariant with respect to the action of
R̃ and (∂̃R̃) · M̃ = 0, hence the action of R̃ on M̃ induces a representation of the

Lie superalgebra AlgR = R̃/∂̃R̃ on V (M) := M̃/∂̃M̃ . Let M = {vδ(z− t)|v ∈ M}.
Then (V (M),M) is a formal distribution module over the formal distribution Lie
superalgebra (AlgR,R), which is maximal in the sense that all conformal (AlgR,R)
modules (V, E) such that Ē 
 M as R-modules are quotients of (V (M),M) by
irregular submodules. Such formal distribution modules are called equivalent, and
we get an equivalence of categories of R-modules and equivalence classes of formal
distribution (AlgR,R)-modules.

Formula (2.3) implies the following important proposition relating modules over
a Lie conformal superalgebra R to certain modules over the corresponding extended
annihilation superalgebra (AlgR)+.

Proposition 2.3. [4] A module over a Lie conformal superalgebra R is the
same as a module over the Lie superalgebra (AlgR)+ satisfying the property

aλm ∈ C[λ]⊗M for any a ∈ R,m ∈ M. (2.5)

(One just views the action of the generating series aλ of (AlgR)+ as the λ-action
of a ∈ R).

The problem of classifying modules over a Lie conformal superalgebra R is thus
reduced to the problem of classifying a class of modules over the Lie superalgebra
(AlgR)+.

Let g be a Lie superalgebra satisfying the following three conditions (cf. [5],
p.911):

(L1) g is Z-graded of finite depth d ∈ N, i.e. g = ⊕j≥−dgj and [gi, gj ] ⊂ gi+j .
(L2) There exists a semisimple element z ∈ g0 such that its centralizer in g is

contained in g0.
(L3) There exists an element ∂ ∈ g−d such that [∂, gi] = gi−d, for i ≥ 0.

Some examples of Lie superalgebras satisfying (L1)-(L3) are provided by anni-
hilation superalgebras of Lie conformal superalgebras.

If g is the annihilation superalgebra of a Lie conformal superalgebra, then the
modules V over g that correspond to finite modules over the corresponding Lie
conformal superalgebra satisfy the following conditions:

(1) For all v ∈ V there exists an integer j0 ≥ −d such that gjv = 0, for all
j ≥ j0.

(2) V is finitely generated over C[∂].
Motivated by this, the g-modules satisfying these two properties are called finite
conformal modules.

We have a triangular decomposition

g = g<0 ⊕ g0 ⊕ g>0, with g<0 = ⊕j<0gj , g>0 = ⊕j>0gj . (2.6)
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Let g≥0 = ⊕j≥0gj . Given a g≥0-module F , we may consider the associated induced
g-module

Ind(F ) = Indgg≥0
F = U(g)⊗U(g≥0) F,

called the generalized Verma module associated to F . We shall identify Ind(F ) with
U(g<0)⊗ F via the PBW theorem.

Let V be an g-module. The elements of the subspace

Sing(V ) := {v ∈ V |g>0v = 0}
are called singular vectors. For us the most important case is when V = Ind(F ).
The g≥0-module F is canonically an g≥0-submodule of Ind(F ), and Sing(F ) is a
subspace of Sing(Ind(F )), called the subspace of trivial singular vectors. Observe
that Ind(F ) = F ⊕F+, where F+ = U+(g<0)⊗F and U+(g<0) is the augmentation
ideal of the algebra U(g<0). Then non-zero elements of the space

Sing+(Ind(F )) := Sing(Ind(F )) ∩ F+

are called non-trivial singular vectors. The following key result will be used in the
classification of irreducible modules.

Theorem 2.4. [10, 12, 5, 2] Let g be a Lie superalgebra that satisfies (L1)-
(L3).

(a) If F is an irreducible finite-dimensional g≥0-module, then the subalgebra
g>0 acts trivially on F and Ind(F ) has a unique maximal submodule.

(b) Denote by Ir(F ) the quotient by the unique maximal submodule of Ind(F ).
Then the map F �→ Ir(F ) defines a bijective correspondence between irreducible
finite-dimensional g0-modules and irreducible finite conformal g-modules.

(c) A g-module Ind(F ) is irreducible if and only if the g0-module F is irreducible
and Ind(F ) has no non-trivial singular vectors.

This Theorem together with the following results will provide a characterization
of all finite irreducible modules over a finite Lie conformal superalgebra in terms of
certain (quotients of) induced modules over the extended annihilation algebra.

Denote by V (M)+ the span of elements {vtn|v ∈ M,n ∈ Z+} in V (M). It is
clear from (2.4) that V (M)+ is an (AlgR)+ submodule, hence an R -module by
Proposition 2.3. We denote by V (M)∗+ the restricted dual of V (M)+, i.e. the space
of all linear functions on V (M)+ which vanish on all but finite number of subspaces
Mtn, with n ∈ Z+. This is an (AlgR)+-module and hence an R-module as well.
The conformal dual M∗ to an R-module M is defined as

M∗ = {fλ : M → C[λ] | fλ(∂m) = λfλ(m)},
with the structure of C[∂]-module (∂f)λ(m) = −λfλ(m), with the following λ-
action of R:

(aλf)μ(m) = −(−1)p(a)(p(f)+1)fμ−λ(aλm), a ∈ R,m ∈ M.

Given a homomorphism of conformal R-modules T : M → N , we define the
transpose homomorphism T ∗ : N∗ → M∗ by

[T ∗(f)]λ(m) = −fλ(T (m))

Proposition 2.5. Let T : M → N be an injective homomorphism of R-modules
such that N/Im T is finitely generated torsion-free C[∂]-module. Then T ∗ is sur-
jective.
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Proof. Since N/Im T is finitely generated torsion-free, then it is free and
therefore a proyective C[∂]-module. Hence, the short exact sequence 0 → Im T →
N → N/Im T → 0 is split and N = Im T ⊕L as C[∂]-module. Now, given α ∈ M∗,
we define β ∈ N∗ as follows

βλ(T (m)) = αλ(m), m ∈ M, βλ(l) = 0, l ∈ L.

Then β is well-defined since T is injective and β belong to N∗ since L is a comple-
mentary C[∂]-submodule, finishing the proof. �

Remark 2.6. Observe that the injectivity is not enough (cf. Remark 4.10).
Namely, let R = V ir = C[∂]L the Virasoro conformal algebra with λ-bracket
[LλL] = (2λ+ ∂)L. Consider the following V ir-modules:

Ω0 = C[∂]m, with Lλm = (λ+ ∂)m; Ω1 = C[∂]n, with Lλn = ∂n.

Then it is easy to see that the map d : Ω0 → Ω1 given by d(m) = ∂n is an
injective homomorphism of R-modules, but the dual map d∗ : Ω∗

1 → Ω∗
0 given by

d∗(m∗) = ∂n∗ is not surjective.

The nest result follows by standard arguments using Proposition 2.5.

Proposition 2.7. Let T : M → N be a homomorphism of R-modules such
that N/Im T is finitely generated torsion-free C[∂]-module. Then the standard map
ψ : N∗/Ker T ∗ → (M/Ker T )∗, given by [ψ(f̄)]λ(m̄) = fλ(T (m)) (where by the bar
we denote the corresponding class in the quotient) is an isomorphism of R-modules.

Proposition 2.8. If M is an R-module finitely generated (over C[∂]), then
M∗∗ 
 M .

Proof. Let M = ⊕ C[∂]mi (finite sum), with aλmj =
∑

k Pjk(λ, ∂)mk. Then
M∗ = ⊕ C[∂]m∗

i , with (m∗
i )λ(mk) = δi,k and

(aλm
∗
i )μ(mj) = −(m∗

i )μ−λ(aλmj) = −
∑

k

(m∗
i )μ−λ(Pjk(λ, ∂)mk) = Pji(λ, μ− λ).

Therefore,

(aλm
∗
i ) = −

∑

j

Pji(λ,−∂ − λ)m∗
j ,

and the last formula shows that by taking the dual again we obtain

(aλm
∗∗
i ) =

∑

j

Pij(λ, ∂)m
∗∗
j .

Hence the map mi �→ m∗∗
i gives us the isomorphism between M and M∗∗. �

Proposition 2.9. (a) The map M −→ V (M)/V (M)+ given by
v �→ vt−1 mod V (M)+ is an isomorphism of (AlgR)+- (and R-)modules.
(b)The map V (M)∗+ → M∗ defined by f �→ fλ, where

fλ(m) =
∑

j∈Z+

(−λ)j

j!
f(mtj),

is an isomorphism of (AlgR)+- (and R-)modules.
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3. Lie conformal superalgebra K0, K1 and Cur g and its finite
irreducible representations.

For the general definition of the family of conformal Lie superalgebras Kn, see
Section 7. In this section we present the conformal Lie superalgebra K0, that is the
Virasoro conformal algebra V ir associated to the (centerless) Virasoro Lie algebra,
we define K1 that corresponds to the (centerless) Neveu-Schwarz algebra and we
define the current conformal superalgebras. In all cases, we give the classification
of its finite irreducible modules. We will follow the presentation in [4], where all
the results of this section were obtained.

Consider the (centerless) Virasoro algebra, that is the Lie algebra Vect C× of

regular vector fields on C, with basis Ln = −tn+1 d

dt
(n ∈ Z) and commutation

relations
[Lm, Ln] = (m− n)Lm+n.

It is a formal distribution Lie algebra spanned by the local formal distribution

L(z) =
∑

n∈Z

Ln z
−n−2 = −δ(t− z)

d

dt
, since one has:

[L(z), L(w)] = ∂wL(w)δ(z − w) + 2L(w)∂wδ(z − w).

The corresponding conformal algebra is the Virasoro conformal algebra V ir =
C[∂]⊗C CL = C[∂]L with λ-bracket (on generator):

[LλL] = (2λ+ ∂)L.

This conformal algebra is also called K0. In this case the annihilation algebra
is A(V ir) =

∑
n≥−1 CLn, and the extended annihilation algebra is A(V ir)e =

C∂�A(V ir) = C(∂−L−1)⊕A(V ir) a direct sum of ideals, since ∂ acts as adL−1.
Hence, in this case the study of conformal modules reduces to the study of conformal
modules over A(V ir). The following result gives the classification of the irreducible
modules.

Proposition 3.1. [4] Let A(V ir)≥0 =
∑

n≥0 CLn. Then any non-trivial irre-

ducible conformal module of A(V ir) is of the form Ind
A(V ir)
A(V ir)≥0

CΔ, where CΔ is a

non-trivial one-dimensional irreducible module over A(V ir)≥0 on which L0 acts as
Δ ∈ C× and Lj acts as 0 for all j > 0.

Extending these induced modules to the extended annihilation algebra and
translating them into the language of conformal modules over V ir, we obtain a
2-parameter family of non-trivial conformal modules given by M(Δ, α) = C[∂]m,
with λ-action defined (on generators) as

Lλm = (Δλ+ ∂ + α)m,

where Δ ∈ C× and α ∈ C. Using the previous Proposition, we obtain the complete
classification:

Theorem 3.2. [4] The modules M(Δ, α) with Δ ∈ C× and α ∈ C are all the
finite non-trivial irreducible modules over V ir.

Translating back to the language of Lie algebras of formal distributions, con-
sider the representations of the Lie algebra Vect C

× on the following space of
densities:

F (Δ, α) = C[t, t−1]e−αt(dt)1−Δ,
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with action defined as follows (f(t) ∈ C[t, t−1], g(t) ∈ C[t, t−1]e−αt):

(f(t)
d

dt
) · (g(t)(dt)1−Δ) =

(
f(t)

d

dt
g(t) + (1−Δ)g(t)

d

dt
f(t)

)
(dt)1−Δ.

Taking the F (Δ, α)-valued formal distribution

m(z) :=
∑

n∈Z

(tne−αt(dt)1−Δ)z−n−1 = δ(t− z)e−αt(dt)1−Δ,

and recalling that L(z) = −δ(t− z)
d

dt
we have that

L(z)m(w) = ((∂w + α)m(w))δ(z − w) + Δm(w)∂wδ(z − w).

Hence (F (Δ, α), {m(z)}) is the formal distribution module over the formal distri-
bution Lie algebra (Vect C×, {L(z)}), that corresponds to the conformal module
M(Δ, α) over V ir.

The simplest superextension of the Virasoro algebra is the well-known (center-
less) Neveu-Schwarz algebra N which, apart from even basis elements Ln, has odd
basis elements Gr, r ∈ 1

2 + Z, with commutation relations:

[Gr, Ln] =

(
r − n

2

)
Gr+n, [Gr, Gs] = 2Lr+s.

The Lie conformal superalgebra, associated to N, is the Neveu-Schwarz (or N=1)
conformal superalgebra

K1 = R(N) := C[∂]L+ C[∂]G

where the generator L is even, the generator G is odd and the λ-bracket on gener-
ators is given by:

[LλL] = (∂+2λ)L, [LλG] = (∂+
3

2
λ)G, [GλL] =

1

2
(∂+3λ)G, [GλG] = 2L.

The corresponding annihilation algebra in this case is

N+ := A(K1) =
∑

n≥−1

CLn +
∑

r≥− 1
2

CGr.

and the extended annihilation algebra A(K1)
e = C∂ �A(K1) = C(∂ − L−1)⊕N+

is a direct sum of ideals, since ∂ acts as adL−1. Hence, in this case the study
of conformal modules reduces to the study of conformal modules over N+. The
following result gives the classification of the irreducible modules.

Proposition 3.3. [4] Let N≥0 =
∑

n≥0 CLn +
∑

r≥ 1
2
CGr. Then any non-

trivial irreducible conformal module of N+ is of the form Ind
N+

N≥0
CΔ, where CΔ

is a non-trivial one-dimensional irreducible module over N≥0 on which L0 acts as
Δ ∈ C

× and Lj and Gk acts trivially for all j, k > 0.

Extending these induced modules to the extended annihilation algebra and
translating them into the language of conformal modules over K1, we obtain a 2-
parameter family of non-trivial conformal modules given by N(Δ, α) = C[∂]m ⊕
C[∂]m̃, with λ-action defined (on generators) as

Lλm = (Δλ+ ∂ + α)m, Lλm̃ =

(
(Δ +

1

2
)λ+ ∂ + α

)
m̃,
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Gλm = m̃, Gλm̃ = (2Δλ+ ∂ + α)m,

where Δ ∈ C
× and α ∈ C. Using the previous proposition, we obtain the complete

classification:

Theorem 3.4. [4] The modules N(Δ, α) with Δ ∈ C× and α ∈ C are all the
finite non-trivial irreducible modules over K1.

Let be g a finite-dimensional Lie superalgebra. The current superalgebra g̃

associated to g is :

g̃ = g⊗ C[t, t−1]

with bracket given by [a ⊗ tn, b ⊗ tm] = [a, b] ⊗ tn+m. It is a Lie superalgebra
of formal distributions spanned by the following family of pairwise local formal
distributions (a ∈ g):

a(z) =
∑

n∈Z

(a⊗ tn)z−n−1.

Indeed, it is immediate to check that

[a(z), b(w)] = [a, b](w)δ(z − w).

The corresponding conformal superalgebra is the current conformal superalgebra
associated to a finite-dimensional Lie superalgebra g:

Cur g := R(g̃) = C[∂]⊗C g,

with the λ-bracket defined on generators by:

[aλb] = [a, b], for a, b ∈ g.

In this case the annihilation algebra is

g[t] := A(Cur g) = g⊗C C[t],

and the extended annihilation algebra is

g̃+ := A(Cur g)e = C
d

dt
� g[t].

Let π be a representation of g[t] in a finite-dimensional vector space U , such that
(tn ⊗ g)U = 0 for n >> 0. This defines on the space U ⊗ C[t, t−1] the structure of
a conformal module over g̃ by the formula:

(a⊗ tm)(u⊗ tn) =
∑

j∈Z

(
m

j

)
(π(a⊗ tj)u)⊗ tm+n−j .

A special case of this construction is to take a finite-dimensional representation
π of the Lie superalgebra g in a finite-dimensional vector space U and extend
it to g[t] by letting g ⊗ tC[t] act trivially. Then we have (a ⊗ tm)(u ⊗ tn) =
(π(a)u)⊗ tm+n. In other words, U ⊗ C[t, t−1] is a formal distribution module over
the formal distribution Lie algebra g̃, since

a(z)u(w) = (π(a)u)(w)δ(z − w),
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where u(z) =
∑

n∈Z
(a⊗tn)z−n−1 for all u ∈ U . Translating back to the language of

modules over the conformal algebra Cur g we obtain the free C[∂]-module M(U) :=
C[∂]⊗C U with

aλu = π(a)u,

where a ∈ g and u ∈ U .

Proposition 3.5. [4] Let g be a simple finite dimensional Lie superalgebra
different from the series A(m|n), for m �= n, C(n) and W (n) (see [9]). Let g[t] =
g⊗ C[t] and g̃+ = C

d
dt � g[t]. Then every non-trivial irreducible conformal module

over g̃+ is of the form Indg̃
+

g[t] U , where U is finite dimensional non-trivial irreducible

g-module or else it is the trivial g[t]-module on which
d

dt
acts as a non-zero scalar.

Using Proposition 3.5, we obtain the classification:

Theorem 3.6. [4] Let g be a simple finite dimensional Lie superalgebra different
from the series A(m|n), for m �= n, C(n) and W (n). The modules M(U) where
U is finite dimensional non-trivial irreducible g-module are all the finite non-trivial
irreducible modules over Cur g.

For the rest of this section, we assume that the simple finite dimensional Lie
superalgebra g is a member of one of the series A(m|n), for m �= n, C(n) and W (n).
In this case, in order to classify irreducible conformal modules over their current
algebras, it suffices to consider finite-dimensional irreducible representations of the
Lie superalgebra g⊗ C[t]/tn+1, where n ≥ 1 (see [4] for details).

Note that it follows from the descriptions of these three series of simple Lie
superalgebras in [9] that they satisfy the following properties:

(a) g = g0̄ ⊕ g1̄ = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gl is Z-graded such that gi ⊆ gī.
(b) g0 = a⊕Cc is a reductive Lie algebra such that a is a semisimple subalgebra

and c is a central element.
(c) gi as an a-module has no trivial summand for i �= 0, and there exists an

a-submodule g∗−1 ⊆ g1 contragradient to g−1 and g1 = g∗−1 ⊕ g′1 as a-modules with
[g′1, g−1] ⊆ a.

(d) For any non-zero a ∈ g−1 and b ∈ g∗−1, we have [a, g∗−1] ∩ Cc �= 0 and
[b, g−1] ∩ Cc �= 0.

Let L = g ⊗ C[t]/tn+1. We want to classify finite-dimensional irreducible L-
modules on which g⊗ tn acts non-trivially. We take G0 = g0 + g′1 +

∑
i≥2 gi, and

consider the subalgebra L ⊆ L defined as follows: If n = 2k (k ∈ N), we take

L = G0+G0⊗Ct+ · · ·+G0⊗Ctk−1+(G0+g1)⊗Ctk +g⊗Ctk+1+ · · ·+g⊗Ct2k.

If n = 2k + 1 (k ∈ N), we take

L = G0 +G0 ⊗ Ct+ · · ·+G0 ⊗ Ctk + g⊗ Ctk+1 + · · ·+ g⊗ Ct2k+1.

Now, the following result characterizes finite-dimensional irreducible L-modules,
and it turns out that every irreducible L-module on which g⊗ tn acts non-trivially
are obtained by inducing from a suitable irreducible L-module.
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Proposition 3.7. [4] Every irreducible L-module is an irreducible g0 ⊕ (Cc⊗
C[t]t)-module, on which g′1 +

∑
i≥2 g + (gc ⊗ C[t]t) ∩ L acts trivially, where g =

g−1 + a+
∑

i≥1 gi.

Theorem 3.8. [4] All finite-dimensional irreducible representations of L, on

which g⊗ tn acts non-trivially, are of the form IndLLVL, where VL is an irreducible
representation of L on which c⊗tn acts as a non-zero scalar. Furthermore, all such
representations are irreducible.

The corresponding conformal modules produce the classification of all irre-
ducible finite conformal modules over Cur g, where g is in one of the three families.

In the following sections we shall describe most of the remaining Lie confor-
mal superalgebras and their corresponding annihilation superalgebras, and we shall
study the induced modules over the corresponding anihilation algebra and its sin-
gular vectors in order to apply Theorem 2.4 to get the classification of irreducible
finite modules over the Lie conformal superalgebras.

4. Lie conformal superalgebra Wn and finite irreducible
representations.

4.1. Definition of Wn. According to [6], any finite simple Lie conformal
algebra is isomorphic either to the current conformal algebra of a simple finite-
dimensional Lie algebra, or to the Virasoro conformal algebra. However, the list of
finite simple Lie conformal superalgebras is much richer, mainly due to existence
of several series of super extensions of the Virasoro conformal algebra, see [7]. The
results of this section where obtained in [2].

The first series is associated to the Lie superalgebra W (1, n) (n ≥ 1). More
precisely, let Λ(n) be the Grassmann superalgebra in the n odd indeterminates
ξ1, ξ2, . . . , ξn. Set Λ(1, n) = C[t, t−1]⊗ Λ(n), then

W (1, n) = {a∂t +
n∑

i=1

ai∂i|a, ai ∈ Λ(1, n)}, (4.1)

where ∂i = ∂
∂ξi

and ∂t = ∂
∂t are odd and even derivations respectively. Then

W (1, n) is a formal distribution Lie superalgebra with spanning family of (pairwise
local) formal distributions:

F = {δ(t− z)a | a ∈ W (n)} ∪ {δ(t− z)f∂t | f ∈ Λ(n)}.
where W (n) = {

∑n
i=1 ai∂i|ai ∈ Λ(n)} is the (finite-dimensional) Lie superalgebra

of all derivations of Λ(n). The associated Lie conformal superalgebra Wn is defined
as

Wn = C[∂]⊗ (W (n)⊕ Λ(n)) . (4.2)

The λ-bracket is defined as follows (a, b ∈ W (n); f, g ∈ Λ(n)):

[aλb] = [a, b], [aλf ] = a(f)− (−1)p(a)p(f)λfa, [fλg] = −(∂ + 2λ)fg. (4.3)

The Lie conformal algebra Wn is simple for n ≥ 0 and has rank (n+ 1)2n.
The annihilation subalgebra is
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A(Wn) = W (1, n)+ = {a∂t +
n∑

i=1

ai∂i|a, ai ∈ Λ(1, n)+}, (4.4)

where Λ(1, n)+ = C[t]⊗ Λ(n). The extended annihilation subalgebra is

A(Wn)
e = W (1, n)+ = C∂t �W (1, n)+,

and therefore it is isomorphic to the direct sum of W (1, n)+ and a commutative
1-dimensional Lie algebra.

The Z-gradation is obtained by letting

deg t = deg ξi = 1 = − deg ∂t = − deg ∂i.

If g = W (1, n)+, then g−1 =< ∂t, ∂1, . . . , ∂n >, where ∂t is an even element and
∂1, . . . , ∂n are odd elements of a basis in g−1. Note also that g0 
 gl(1|n).

From now on, we shall use the notation ∂0 = ∂t. Explicitly, we have

g0 =< {t∂i, ξi∂j : 0 ≤ i, j ≤ n} > .

In order to write explicitly weights for vectors in W (1, n)+-modules, we would
consider the basis

t∂0; t∂0 + ξ1∂1, . . . , t∂0 + ξn∂n

for the Cartan subalgebra H in W (1, n)+, and we write the weight of an eigenvector
for the Cartan subalgebra H as a tuple

μ̄ = (μ;λ1, . . . , λn)

for the corresponding eigenvalues of the basis.

4.2. Modules of Laurent differential forms. 4.2.1 Restricted dual. Our al-
gebra g = W (1, n)+, and in the next section S(1, n)+, are Z-graded (super)algebras
and the modules we intend to study are graded modules, i.e. an g-module V is a
direct sum V = ⊕m∈ZVm of finite-dimensional subspaces Vm, and gk · Vm ⊂ Vk+m.
For a graded module V we define the restricted dual module V # as

V # = ⊕m∈Z(Vm)∗.

hence V # is a subspace of V ∗ and it is invariant with respect to the contragradient
action, so it defines an g-module structure. Observe that (V #)# = V .

In our situation, we have g−1 = 〈∂0, ∂1, . . . , ∂n〉, then any g-module become a
C[∂0, ∂1, . . . , ∂n]-module. Hence, a module V is a free C[∂0, ∂1, . . . , ∂n]-module if
and only if V # is a cofree module, i.e. it is isomorphic to a direct sum of copies of
the standard module C[z, ρ1, . . . , ρn], with ∂0 · f = ∂

∂z f , and ∂i · f = ∂
∂ρi

f .

An induced module Indgg≥0
F is by definition a free C[∂0, ∂1, . . . , ∂n]-module, so

the co-induced (or produced) module

CndF# = (IndF )#

will be cofree.

4.2.2 Modules of differential forms . In order to define the differential forms one
considers an odd variable dt and even variables dξ1, . . . , dξn and defines the differen-
tial forms to be the (super)commutative algebra freely generated by these variables
over Λ(1, n)+ = C[t]⊗ Λ(n), or

Ω+ = Ωn,+ = Λ(1, n)+[dξ1, . . . , dξn]⊗ Λ[dt].
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Generally speaking Ω+ is just a polynomial (super)algebra over a big set of variables

t, ξ1, . . . , ξn, dt, dξ1, . . . , dξn,

where the parity is

p(t) = 0, p(ξi) = 1, p(dt) = 1, p(dξi) = 0.

These are called (polynomial) differential forms, and we define the Laurent differ-
ential forms to be the same algebra over Λ(1, n) = C[t, t−1]⊗ Λ(n):

Ω = Λ(1, n)[dξ1, . . . , dξn]⊗ Λ[dt].

We would like to consider a fixed complementary subspace Ω− to Ω+ in Ω chosen
as follows

Ω− = t−1
C[t−1]⊗ Λ(n)⊗ C[dξ1, . . . , dξn]⊗ Λ[dt].

For the differential forms we need the usual differential degree that measure
only the involvement of the differential variables dt, dξ1, . . . , dξn, that is

deg t = 0, deg ξi = 0, deg dt = 1, deg dξi = 1.

As a result, the degree of a function is zero an it gives us the standard Z-gradation
both on Ω and Ω±. As usual, we denote by Ωk,Ωk

± the corresponding graded
components.

We denote by Ωk
c the special subspace of differential forms with constant coef-

ficients in Ωk.
The operator d is defined on Ω as usual by the rules d·t = dt, d·ξi = dξi, d·dξi =

0, and the identity

d(fg) = (df)g + (−1)p(f)fdg,

Observe that d maps both Ω+ and Ω− into themselves.
As usual, we extend the natural action of W (1, n)+ on Λ(1, n) to the whole Ω

by imposing the property

D · d = (−1)p(D)d ·D, D ∈ W (1, n)+,

that is, D (super)commutes with d. It is clear that Ω+ and all the subspaces Ωk are
invariant. Hence Ωk

+ and Ωk are W (1, n)+-modules, which are called the natural
representations of W (1, n)+ in differential forms.

We define the action of W (1, n)+ on Ω− via the isomorphism of Ω− with the
factor of Ω by Ω+. Practically this means that in order to compute D · f , where
f ∈ Ω−, we apply D to f and ”disregard terms with non-negative powers of t”.

The operator d restricted to Ωk
± defines an odd morphism between the corre-

sponding representations. Clearly the image and the kernel of such a morphism are
submodules in Ωk

±.

Let Θk
c = (Ωk

c )
# and Θk

+ = (Ωk
+)

#. In the rest of this subsection, we consider
g = W (1, n)+.

Proposition 4.1. For g = W (1, n)+ we have:
(1) The g0-module Θk

c , k ≥ 0 is irreducible with highest weight

(0; 0, . . . , 0,−k), k ≥ 0.
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(2) The g-module Θk
+, k ≥ 0 contains Θk

c and this inclusion induces the iso-
morphism

Θk
+ = Ind Θk

c .

(3) The dual maps d# : Θk+1
+ → Θk

+ are morphisms of g-modules. The kernel
of one of them is equal to the image of the next one and it is a non-trivial proper
submodule in Θk

+.

Proof. (1) It is well known that Ωk
c are irreducible and thus Θk

+ are also

irreducible. Observe that the lowest vector in Ωk
c is (dξn)

k and it has the weight
(0; 0, . . . , 0, k). Now the sign changes as we go to the dual module and so we get
the highest weight of Θk

c .
(2) By the definition of the restricted dual, it is the sum of the dual of all the

graded components of the initial module. In our case Ωk
c is the component of the

minimal degree in Ωk
+, so Θk

c becomes the component of the maximal degree in

Θk
+. This implies that g>0 acts trivially on Θk

c , so the morphism Ind Θk
c → Θk

+ is

defined. Clearly Ωk
+ is isomorphic to

Ωk
c ⊗ C[t, ξ1, . . . , ξn],

so it is a cofree module. Then the module Θk
+ is a free C[∂0, ∂1, . . . , ∂n]-module and

the morphism

Ind Θk
c → Θk

+

is therefore an isomorphism.
(3) Consider the homotopy operator K : Ωn,+ → Ωn,+ given by

K(dξn ν) = ξnν, K(ν) = 0 if ν does not involve dξn.

Let ε : Ωn,+ → Ωn,+ be defined by

ε(dξn ν) = ε(ξnν) = 0, ε(ν) = ν if ν does not involve both dξn and ξn.

One can check that Kd+ dK = Id− ε. Considering the dual maps K : (Ωn,+)
# →

(Ωn,+)
# and ε : (Ωn,+)

# → (Ωn,+)
#, we obtain K#d# + d#K# = Id− ε#.

Therefore, if α ∈ (Ωn,+)
# is a closed form, we get α = d#(K#α) + ε#(α), and

ε#(α) is also a closed form. Observe that (ε#α)(ν) = α(ε(ν)) = 0 if ν involve dξn
or ξn. Hence ε#α is essentially an element in (Ωn−1,+)

#, namely it is equal to an
element in (Ωn−1,+)

# trivially extended in ν’s that involve dξn or ξn. It follows by
induction on n that

α = d#α1 + α0, (4.5)

for some α0, α1 ∈ (Ωn,+)
# and α0 is a closed form that is a trivial extension of

an element α̃0 ∈ (Ω0,+)
#. But Ω0,+ = C[t] ⊗ ∧(dt) = {p(t) + q(t) dt | p, q ∈ C[t]}

and α̃0 ∈ (Ω0,+)
# is closed iff α̃0(q(t)dt) = 0 for all q ∈ C[t]. In general, it is easy

to see that γ ∈ (Ω0,+)
# is exact iff γ is closed (i.e. γ(q(t)dt) = 0) and γ(1) = 0.

Therefore, using (4.5), we have α = d#β + α0(1)1
∗, where 1∗(c 1) = c and zero

everywhere else. Since 1∗ ∈ (Ω 0
n,+)

#, we get the exactness of the sequence

· · · d#

−→ (Ω 2
n,+)

# d#

−→ (Ω 1
n,+)

# d#

−→ (Ω 0
n,+)

#.

�
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Corollary 4.2. The W (1, n)+-modules Ωk
+ of differential forms are isomor-

phic to the co-induced modules

Ωk
+ = Cnd Ωk

c .

Let us now study the g = W (1, n)+-modules Ωk
−. First, notice that these

modules are free as C[∂0, ∂1, . . . , ∂n]-modules. Let

ξ∗ = ξ1 · · · ξn, and Ω̄k
c = t−1ξ∗Ω

k
c ⊂ Ωk

−. (4.6)

Proposition 4.3. For g = W (1, n)+, we have:

(1) Ω̄k
c is an irreducible g0-submodule in Ωk

− with highest weight

(−1; 0, 0, . . . , 0), for k = 0,

(0; k, 1, . . . , 1), for k > 0,

and g>0 acts trivially on Ω̄k
c .

(2) There is an isomorphism Ωk
− = Indgg0

Ω̄k
c .

(3) The differential d gives us g-module morphisms on Ωk
− and the kernel and

image of d are g-submodules in Ωk
−.

(4) The kernel of d and image of d in Ωk
− for k ≥ 2 coincide, in Ω1

− we have
Ker d = C(t−1dt)+Im d, and in Ω0

−, we have Ker d = 0 (and the image does not
exist).

Proof. (1) First of all, Ω̄k
c is the maximum total degree component in Ωk

−, so

any element from g>0 moves it to zero. Also, as g0-module Ω̄k
c is isomorphic to Ωk

c

multiplied by the 1-dimensional module 〈t−1ξ∗〉. This permits us to see that its
highest vectors are

〈t−1ξ∗〉 for k = 0,

〈t−1ξ∗dt〉 for k = 1,

〈t−1ξ∗dt(dξ1)
k−1〉 for k > 1.

The values of the highest weights are easy to compute.
(2) It is straightforward to see that Ω0

− is a free rank 1 C[∂0, ∂1, . . . , ∂n]-module.

Now, the action of ∂0, ∂1, . . . , ∂n on Ωk
− is coefficient wise and the fact that Ωk

− is a

free C[∂0, ∂1, . . . , ∂n]-module follows. This gives us the isomorphism Ωk
− =Indgg0

Ω̄k
c .

Parts (3) and (4) are left to the reader. �
The above statement shows us that there are non-trivial submodules in Ωk

± and

Θk
+. In fact, these are ”almost all” proper submodules and the respective factors

are irreducible. These results are discussed in Section 4.4. In order to get this result
we need to study singular vectors.

4.3. Singular vectors of Wn-modules. Having in mind the results of Sec-
tion 2, we introduce the following modules. Given a gl(1|n)-module V , we have the
associated tensor field W (1, n)-module C[t, t−1]⊗Λ(n)⊗V , which is a formal distri-
bution module spanned by a collection of fields E = {δ(t− z)fv|f ∈ Λ(n), v ∈ V }.
The associated conformal Wn-module is

Tens(V ) = C[∂]⊗ (Λ(n)⊗ V )) (4.7)
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with the following λ-action:

aλ(g ⊗ v) = a(g)⊗ v + (−1)p(a)
∑n

i,j=1(∂ifj)g ⊗ (Eij − δij)(v)− (4.8)

−λ(−1)p(g)
∑n

j=1 fjg ⊗ E0j(v),

fλ(g ⊗ v) = (−∂)(fg ⊗ v) + (−1)p(fg)
∑n

i=1(∂if)g ⊗ Ei0(v) + (4.9)

+λ(fg ⊗ E00(v)).

where a =
∑n

i=1 fi∂i ∈ W (n), f, g ∈ Λ(n), v ∈ V , and Eij ∈ gl(1|n) are matrix
units (they correspond to the level 0 elements ξi∂j with the notation ξ0 = t and
∂0 = ∂t).

In this case, the modules M(F ) = Indgg0
F defined in Section 2, correspond to

the Wn-module Tens(F ), with F a finite-dimensional (irreducible) gl(1|n)-module.
When we discuss the highest weight of vectors and singular vectors, we always mean
with respect to the upper Borel subalgebra in g = W (1, n)+ generated by g>0 and
the elements of g0:

t∂i, ξi∂j i < j. (4.10)

Therefore, in the module M(V ), viewed as a module over the annihilation
algebra W (1, n)+ (see Proposition 2.3), a vector m ∈ M(V ) is a singular vector if
and only if the following conditions are satisfied (g = ξi1 · · · ξis ∈ Λ(n), and ∂0 = ∂t)

(s1) tng∂i ·m = 0 for n > 1,

(s2) t1g∂i ·m = 0 except for g = 1 and i = 0,

(s3) t0g∂j ·m = 0 for s > 1 or g = ξi with i < j.

(4.11)

We shall frequently use the notation

ξI = ξi1 · · · ξis ∈ Λ(n), with I = {i1, . . . , is}. (4.12)

Therefore, these conditions on a singular vector m ∈Tens(V ) translate in terms of
the λ-action to (cf. (2.2)):

(S1) d2

dλ2 (fλm) = 0 for all f ∈ Λ(n),

(S2) d
dλ (aλm) = 0 for all a ∈ W (n),

(S3) d
dλ (fλm)|λ=0 = 0 for all f ∈ Λ(n) with f �= 1,

(S4) (aλm)|λ=0 = 0 for all a = ξI∂j ∈ W (n) with |I| > 1 or a = ξi∂j with
i < j,

(S5) (fλm)|λ=0 = 0 for all f = ξI ∈ Λ(n) with |I| > 1.

In order to classify the finite irreducible Wn-modules we should solve these
equations (S1-5) to obtain the singular vectors. This is done by technical and
lengthly reduction lemmas that we shall omit. For details see [2].

Recall that we are considering the basis (∂0 = ∂t)

t∂0; t∂0 + ξ1∂1, . . . , t∂0 + ξn∂n
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for the Cartan subalgebra H in W (1, n)+, and we write the weight of an eigenvector
for the Cartan subalgebra H as a tuple

μ̄ = (μ;λ1, . . . , λn) (4.13)

for the corresponding eigenvalues of the basis. We can prove the following

Proposition 4.4. [2] Let n ≥ 2 and m be a non-trivial singular vector in
Tens V with weight μ̄m, then we have one of the following:

(a) m = ξn ⊗ vn, μ̄m = (0; 0, . . . , 0,−k) with k ≥ 0, vn is a highest weight
vector in V with weight (0; 0, . . . , 0,−k − 1), and m is uniquely defined by vn.

(b) m =
∑n

l=1 ξ
l ⊗ vl, μ̄m = (0; k, 1, . . . , 1) with k ≥ 2, v1 is a highest weight

vector in V with weight (0; k − 1, 1, . . . , 1), and m is uniquely defined by v1.

(c) m = ∂(ξ∗ ⊗ w) +
∑n

l=1 ξ
l ⊗ vl, μ̄m = (−1; 0, . . . , 0), w is a highest weight

vector in V with weight (0; 1, . . . , 1), and m is uniquely defined by w.

4.4. Irreducible induced W (1, n)+-modules. In this subsection we con-
sider g = W (1, n)+, with n ≥ 2. Now, we have the following:

Theorem 4.5. Let n ≥ 2 and F be an irreducible g0-module with highest weight
μ̄∗. Then the g-modules Indgg0F are irreducible finite continuous modules except for
the following cases:

(a) μ̄∗ = (0; 0, . . . , 0,−m),m ≥ 0, where Indgg0F = Θm
+ and the image d#Θm+1

+

is the only non-trivial proper submodule.

(b) μ̄∗ = (0; k, 1, . . . , 1), k ≥ 1, where Indgg0
F = Ωk

−. For k ≥ 2 the image

dΩk−1
− is the only non-trivial proper submodule. For k = 1, both Im(d) and Ker(d)

are proper submodules. Ker(d) is a maximal submodule.

Remark 4.6. Let F be an irreducible g0-module with highest weight μ̄∗ =
(−1; 0, . . . , 0). Then Indgg0F = Ω0

− is an irreducible g-module. Note that the
image of d : Ω0

− → Ω1
− is the submodule in Ω1

− generated by the singular vector
correponding to the case (c) in Proposition 4.4, but it is not a maximal submodule
(see Proposition 4.3 (4)).

Proof. We know from Theorem 2.4 that in order for Indgg0
F to be reducible

it has to have non-trivial singular vectors and the possible highest weights of F in
this situation are listed in Proposition 4.4 above.

The fact that the induced modules are actually reducible in those cases is known
because we have got nice realizations for these induced modules in Propositions 4.1
and 4.3 together with morphisms defined by d, d#, so kernels and images of these
morphisms become submodules.

The subtle thing is to prove that a submodule is really a maximal one. We
notice that in each case the factor is isomorphic to a submodule in another induced
module so it is enough to show that the submodule is irreducible. This can be proved
as follows, a submodule in the induced module is irreducible if it is generated by
any highest singular vector that it contains. We see from our list of non-trivial
singular vectors that there is at most one such a vector for each case and the
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images and kernels in question are exactly generated by those vectors, hence they
are irreducible. �

Corollary 4.7. The theorem gives us a description of finite continuous ir-
reducible W (1, n)+-modules for n ≥ 2. Such a module is either Indgg0

F for an
irreducible finite-dimensional g0-module F where the highest weight of F does not
belong to the types listed in (a), (b) of the theorem or the factor of an induced
module from (a), (b) by its submodule Ker(d).

4.5. Finite irreducible Wn-modules. In order to give an explicit construc-
tion and classification, we need the following notation. Recall that W (1, n) acts by
derivations on the algebra of differential forms Ω = Ω(1, n), and note that this is a
conformal module by taking the family of formal distributions

E = {δ(z − t)ω and δ(z − t)ω dt | ω ∈ Ω(n)}
Translating this and all other attributes of differential forms, like de Rham differen-
tial, etc. into the conformal algebra language, we arrive to the following definitions.

Recall that given an algebra A, the associated current formal distribution alge-
bra is A[t, t−1] with the local family F = {a(z) =

∑
n∈Z

(atn)z−n−1 = aδ(z−t)}a∈A.
The associated conformal algebra is CurA = C[∂] ⊗ A with multiplication defined
by aλb = ab for a, b ∈ A and extended using sesquilinearity. This is called the
current conformal algebra.

The conformal algebra of differential forms Ωn is the current algebra over the
commutative associative superalgebra Ω(n) + Ω(n) dt with the obvious multiplica-
tion and parity, subject to the relation (dt)2 = 0:

Ωn = Cur(Ω(n) + Ω(n) dt).

The de Rham differential d̃ of Ωn (we use the tilde in order to distinguish it from
the de Rham differential d on Ω(n)) is a derivation of the conformal algebra Ωn

such that:
d̃(ω1 + ω2dt) = dω1 + dω2dt− (−1)p(ω1)∂(ω1dt). (4.14)

here and further ωi ∈ Ω(n).
The standard Z+-gradation Ω(n) = ⊕j∈Z+

Ω(n)j of the superalgebra of differ-
ential forms by their degree induces a Z+-gradation

Ωn = ⊕j∈Z+
Ωj

n, where Ωj
n = C[∂]⊗ (Ω(n)j +Ω(n)j−1 dt),

so that d̃ : Ωj
n → Ωj+1

n .
The contraction ιD for D = a + f ∈ Wn is a conformal derivation of Ωn such

that:

(L̃a)λ(ω1 + ω2dt) = Laω1 + (Laω2)dt,

(L̃f )λω = −(∂ + λ)(fω), (4.15)

(L̃f )λ(ωdt) = (−1)p(f)+p(ω)(df)ω − ∂(fωdt).

The properties of Ω(1, n) imply the corresponding properties of Ωn given by
the following proposition.

Proposition 4.8. (1) d̃2 = 0.

(2) The complex (Ωn, d̃) = {0 → Ω0
n → · · · → Ωj

n → · · · } is exact at all terms

Ωj
n, except for j = 1. One has: Ker d̃|Ω1

n
= d̃Ω0

n ⊕ Cdt.

(3) ιD1
ιD2

+ p(D1, D2)ιD2
ιD1

= 0.
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(4) L̃Dd̃ = (−1)p(D)d̃L̃D.

(5) L̃D = d̃ιD + (−1)p(D)ιDd̃.

(6) The map D �→ L̃D defines a Wn-module structures on Ωn, preserving the

Z+-gradation and commuting with d̃.

Proof. Only the proof of (b) requires a comment. Following Proposition 3.2.2
of [8], we construct C[∂]-linear maps K : Ωn → Ωn (a homotopy operator) and
ε : Ωn → Ωn by the formulas (ω ∈ Ω(n) + Ω(n)dt):

K(dξnω) = ξnω, K(ω) = 0 if ω does not involve dξn,

ε(dξnω) = ε(ξnω) = 0, ε(ω) = ω if ω does not involve both dξn and ξn.

One checks directly that

Kd̃+ d̃K = 1− ε.

Therefore, if ω ∈ Ωn is a closed form, we get ω = d̃(Kω) + ε(ω). It follows by

induction on n that ω = d̃ω1 + P (∂)dt for some ω1 ∈ Ωn and a polynomial P (∂).
But it is clear from (4.14) that P (∂)dt is always closed, and it is exact iff P (∂) is
divisible by ∂. �

Since the extended annihilation algebra W (1, n)+ is a direct sum of W (1, n)+
and a 1-dimensional Lie algebra Ca, any irreducible W (1, n)+-module is obtained
from a W (1, n)+-module M by extending to W (1, n)+, letting a �→ −α, where
α ∈ C. Translating into the conformal language, we see that all Wn-modules are
obtained from conformal W (1, n)+-modules by taking for the action of ∂ the action
of −∂t + αI, α ∈ C. We denote by TensαV and Ωk,α, α ∈ C, the Wn-modules
obtained from TensV and Ωk by replacing in (4.8) and (4.9) respectively ∂ by
∂ + α.

Now, Theorem 4.5 and Corollary 4.7, along with Theorem 2.4 and Proposi-
tions 2.3, 2.9 and 2.7 give us a complete description of finite irreducibleWn-modules.

Theorem 4.9. The following is a complete list of non-trivial finite irreducible
Wn-modules (n ≥ 2, α ∈ C):

(1) TensαV , where V is a finite-dimensional irreducible gl(1|n)-module dif-
ferent from Λk(C1|n)∗, k = 1, 2, . . . and Ω̄k

c (see (4.6)), k = 1, 2, ...,

(2) Ω∗
k,α/Ker d̃∗, k = 1, 2, . . . , and the same modules with reversed parity,

(3) Wn-modules dual to (2), with k > 1.

Remark 4.10. (a) Using Proposition 4.3, we have that the kernel of d̃ and the

image of d̃ coincide in Ωk for k ≥ 2. Now, since Ωk+2 is a free C[∂]-module of finite

rank and Ωk+1/Imd̃ = Ωk+1/Kerd̃ 
 Imd̃ ⊂ Ωk+2, we obtain that Ωk+1/Im d̃ is a
finitely generated free C[∂]-module. Therefore, we can apply Proposition 2.7, and
we have that

Ω∗
k+1,α/Ker d̃∗ 


(
Ωk,α/Ker d̃

)∗
(4.16)

for k ≥ 1.
(b) Observe that we can not apply the previous argument for k = 0 since, by

Proposition 4.3, the image of d̃ has codimension one (over C) in Ker d̃. In fact,
(4.16) is not true for k = 0. For example, this can be easily seen for W0 = V ir
using the differential map which is explicitly written in Remark 2.6.
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(c) Observe that Ω0,α is an irreducible tensor module (Ker d̃ = 0, cf. Proposi-
tion 4.3), that is why this module is included in case (1) of Theorem 4.9.

(d) Since for a finite rank module M over a Lie conformal superalgebra we have
M∗∗ = M (see Proposition 2.8), the Wn-modules in case (3) of Theorem 4.9 are

isomorphic to Ωk,α/ker d̃, k = 2, 3, ....
(e) Observe that (TensV)∗ is not isomorphic to TensV∗. See Remark 4.13 below

for the case of W1.

Now we will present the case n = 1 in detail and we shall see that our result
agrees with the classification given in [5] for K2 
 W1. For the general definition
of the family Kn, see Section 7. Let us fix some notations. We have

W1 = C[∂]⊗ (Λ(1)⊕W (1)) = C[∂]{1, ξ, ∂1, ξ∂1}.
In [5], the conformal Lie superalgebra K2 is presented as the freely generated mod-
ule over C[∂] by {L, J,G±}. An isomorphism between K2 and W1 is explicitly given
by

L �→ −1 +
1

2
∂ξ∂1, J �→ ξ∂1, G+ �→ 2ξ, G− �→ −∂1. (4.17)

The irreducible modules of W1 are parameterized by finite-dimensional irre-
ducible representations of gl(1, 1) (and the additional twist by alpha that, for sim-
plicity, shall be omitted in the formulas below). The irreducible representations of
gl(1, 1), denoted by Va,b, are parameterized by a and b, the corresponding eigen-
values of e11 and e22 on the highest weight vector, where eij denotes the matrix in
gl(1, 1) with 1 in the ij-place and 0 elsewhere.

If both parameters are equal to zero, the representation is trivial 1-dimensional.
Otherwise, either a + b = 0, the dimension of the gl(1, 1)-representation is 1, and
the corresponding representation of W1 is one of the tensor modules of rank 2. Or
else a + b is non-zero, the dimension of the gl(1, 1)-representation is 2, and the
corresponding tensor module has rank 4.

Explicitly, consider the set of C[∂]-generators of W1 {1, ξ, ∂1, ξ∂1}. Let a and
b such that a + b �= 0. Let Va,b = C-span{v0, v1}, where v0 is a highest weight
vector. Let M(a, b) = M(Va,b) = C[∂]{v0, v1, w1 = ∂1v0, w0 = ∂1v1} be the tensor
W1-module and denote by L(a, b) the irreducible quotient. The action of W1 in
M(a, b) is given explicitly by the following formulas:

1λv0 = (aλ− ∂)v0, 1λv1 = ((a− 1)λ− ∂)v1,
1λw1 = (aλ− ∂)w1, 1λw0 = ((a− 1)λ− ∂)w0,

ξλv0 = v1, ξλv1 = 0,
ξλw1 = (aλ− ∂)v0 − w0, ξλw0 = ((a− 1)λ− ∂)v1,

∂1λv0 = w1, ∂1λv1 = (a+ b)λv0 + w0,
∂1λw1 = 0, ∂1λw0 = −(a+ b)λw1

ξ∂1λv0 = b v0, ξ∂1λv1 = (b+ 1) v1,
ξ∂1λw1 = (b− 1)w1, ξ∂1λw0 = −(a+ b)λ v0 + bw0. (4.18)

If a + b �= 0 and a �= 0, then M(a, b) is irreducible of rank 4, and the explicit
action is given by (4.17). Let v = p(∂)v0 + q(∂)w0 + r(∂)v1 + s(∂)w1 belong to a
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submodule of M(a, b). Denote by w the coefficient of the highest power in λ of ξλv
and by y the coefficient of the highest power in λ of ξλw.

If a �= 1 then y = v1 (up to a constant factor), therefore v1 lies in the submodule.
If a = 1, then by taking the coefficient of the highest power in λ of ξ∂1λy and using
that in this case b �= −1, we also obtain that v1 lies in the submodule.

Therefore, in any case we have that v1 lies in any submodule, and by the
formulas for the actions on v1 it is immediate that the other generators also belong
to any submodule, proving that M(a, b) is irreducible in this case.

If a+b �= 0 but a = 0, it is easy to show as above that N = C[∂]w1⊕C[∂](∂v0+
w0) is a submodule of M(0, b). Let L(0, b) = M(0, b)/N = C[∂]v0 ⊕ C[∂]v1, the
irreducible quotient of M(0, b), and the action is explicitly given by

1λv0 = (−∂)v0, 1λv1 = (−λ− ∂)v1,
ξλv0 = v1, ξλv1 = 0,
∂1λv0 = 0, ∂1λv1 = (bλ− ∂)v0,

ξ∂1λv0 = b v0, ξ∂1λv1 = (b+ 1) v1. (4.19)

If a+b = 0, but a �= 0, it is easy to show as above thatM(a,−a) = C[∂]{v0, w1}
is irreducible of rank 2 and the action of W1 here is given by:

1λv0 = (aλ− ∂)v0, 1λw1 = (aλ− ∂)w1,
ξλv0 = 0, ξλw1 = (aλ− ∂)v0,

∂1λv0 = w1, ∂1λw1 = 0,
ξ∂1λv0 = −a v0, ξ∂1λw1 = (−a− 1)w1. (4.20)

Thus we obtain

Corollary 4.11. The W1-module L(a, b) as a C[∂]-module has the following
rank: 4 if a+ b �= 0 and a �= 0, 2 if a+ b �= 0 and a = 0, 2 if a+ b = 0 and a �= 0,
0 if a = b = 0. These are all non-trivial finite irreducible W1-modules.

Remark 4.12. In [5], the irreducible representations of K2 are classified in
terms of parameters Λ and Δ. Using the isomorphism between K2 and W1 in
(4.17), these parameters are related to ours as follows,

a = −Δ− Λ

2
, b = Λ.

Then it can be easily checked that the above corollary corresponds to Theorem 4.1
in [5], and explicit formulas for the λ- action given at the end of section 4 in [5],
corresponds to ours in each case.

Remark 4.13. It is easy to see that for the case a+ b �= 0, (TensVa,b)
∗ =Tens

V−a,−b, but (Va,b)
∗ = V1−a,−b−1. Therefore, in this case we see that Tens V ∗ is not

isomorphic to (Tens V )∗.

5. Lie conformal superalgebra Sn and its finite irreducible modules

Recall that the divergence of a differential operator D =
∑n

i=0 ai∂i ∈ W (1, n),
with ai ∈ Λ(1, n) and ∂0 = ∂t is defined by the formula

div D = ∂0a0 +

n∑

i=1

(−1)p(ai)∂iai.
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The basic property of the divergence is (D1, D2 ∈ W (1, n))

div [D1, D2] = D1(div D2)− (−1)p(D1)p(D2)D2(div D1).

It follows that
S(1, n) = {D ∈ W (1, n) : div D = 0}

is a subalgebra of the Lie superalgebra W (1, n). Similarly,

S(1, n)+ = {D ∈ W (1, n)+ : div D = 0}
is a subalgebra of W (1, n)+. We have

S(1, n) (resp. S(1, n)+ ) = S(1, n)′ (resp. S(1, n)′+ ) ⊕ Cξ1 · · · ξn∂0, (5.1)

where S(1, n)′ (resp. S(1, n)′+ ) denotes the derived subalgebra. It is easy to see
that S(1, n)′ is a formal distribution Lie superalgebra, see [7], Example 3.5.

In order to describe the associated Lie conformal superalgebra, we need to
translate the notion of divergence to the ”conformal” language as follows. It is a
C[∂]-module map div : Wn →Cur Λ(n), given by

div a =
∑

i=1

(−1)p(fi)∂ifi, div f = −∂ ⊗ f,

where a =
∑n

i=1 fi∂i ∈ W (n) and f ∈ Λ(n). The following identity holds in
C[∂]⊗ Λ(n), where D1, D2 ∈ Wn:

div [D1λD2] = (D1)λ(div D2)− (−1)p(D1)p(D2)(D2)−λ−∂(div D1). (5.2)

Therefore,
Sn = {D ∈ Wn : div D = 0}

is a subalgebra of the Lie conformal superalgebra Wn. It is known that Sn is simple
for n ≥ 2, and finite of rank n2n. Furthermore, it is the Lie conformal superalgebra
associated to the formal distribution Lie superalgebra S(1, n)′. The annihilation
algebra and the extended annihilation algebra is given by

A(Sn) = S(1, n)′+ and A(Sn)
e = C ad(∂0)� S(1, n)′+.

Now, we have to study representations of S(1, n)+ and of its derived algebra
S(1, n)′+ which has codimension 1. Observe that S(1, n)+ inherits the Z-gradation
in W (1, n)+, and denoting by g = S(1, n)+ (for the rest of this section), we have
that g−1 =< ∂0, . . . , ∂n > as in W (1, n)+ but the other graded components are
strictly smaller than these of W (1, n)+. Observe that g0 = sl(1|n).

In order to consider weights of vectors in S(1, n)+-modules, we take the basis

t∂0 + ξ1∂1, . . . , t∂0 + ξn∂n.

for the Cartan subalgebra. And the weights are written as λ̄ = (λ1, . . . , λn) for the
corresponding eigenvalues.

Propositions 4.1 and 4.3, and Corollary 4.2 holds for g = S(1, n)+ with the
following minor modification: all highest weights are the same as in the W case,
except for the first coordinate that should be removed.

Similarly, if V is an sl(1|n)-module, then formulas (4.8) and (4.9) define an Sn-
module structure in Tens(V ). Indeed, elements (−1)p(f)∂(f∂i)+∂if , with f ∈ Λ(n)
generate Sn as a C[∂]-module. It is easy to see that the action of these elements
(defined by (4.8) and (4.9)), only involves Eij(v) for i �= j and (E00 + Eii)(v) for
i > 0.
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As in the W -case, the classification is reduced to the study of singular vectors
in Tens(V ), where V is an sl(1|n)-module. Observe that the reduction Lemmas
for the singular vector in [2] hold in this case, and the proof is basically the same.
Therefore, analogous computations give as the following

Proposition 5.1. Let n ≥ 2 and V an irreducible finite-dimensional sl(1|n)-
module. If m is a non-trivial singular vector in the S(1, n)+-module Tens V with
weight λ̄m, then we have one of the following:

(a) m = ξn ⊗ vn, λ̄m = (0, . . . , 0,−k) with k ≥ 0, vn is a highest weight vector
in V with weight (0, . . . , 0,−k − 1), and m is uniquely defined by vn.

(b) m =
∑n

l=1 ξ
l ⊗ vl, λ̄m = (k, 1, . . . , 1) with k ≥ 2, v1 is a highest weight

vector in V with weight (k − 1, 1, . . . , 1), and m is uniquely defined by v1.

(c) m = ∂(ξ∗⊗w)+
∑n

l=1 ξ
l ⊗ vl, λ̄m = (0, . . . , 0), w is a highest weight vector

in V with weight (1, . . . , 1), and m is uniquely defined by w.

(d) m = ∂(ξn ⊗w) +
∑n−1

l=1 ξ[l,n]−{l,n} ⊗ vl + ξn ⊗ vn, λ̄m = (0, . . . , 0,−1), w is
a highest weight vector in V with weight (1, . . . , 1), and m is uniquely defined by w.

Using the above proposition, we have

Theorem 5.2. Let g = S(1, n)+ (n ≥ 2) and F be an irreducible g0-module
with highest weight λ̄∗. Then the g-modules Indgg0

F are irreducible finite continuous
modules except for the following cases:

(a) λ̄∗ = (0, . . . , 0,−p), p ≥ 0, where Indgg0F = Θp
+ and the image d#Θp+1

+ is
the only non-trivial proper submodule.

(b) λ̄∗ = (q, 1, . . . , 1), q ≥ 1, where Indgg0
F = Ωq

−. For q ≥ 2 the image dΩq−1
− is

the only non-trivial proper submodule. For q = 1, the proper submodules are Im(d),
Ker(d) and Im(α), where α is the composition

α : Θ1
+

d#

−→ Θ0
+ 
 Ω0

−
d−→ Ω1

−,

and Ker(d) is the maximal proper submodule.

Proof. Similarly to the case of W (1, n)+, the modules Indgg0
F are irreducible

except when they have a singular vector and the highest weights of such F , when it
could happen, are listed in (a), (b), (c) and (d) of the above Proposition 5.1. The
weight (1, . . . , 1) is special here because it is relevant to (b), (c) and (d). There
are three types of singular vectors possible in this case. The corresponding module
Ind(F ) = Ω1

− has three different submodules and all three vectors are present. The
same argument as for W (1, n)+-modules allows us easily to conclude that the listed
submodules are the only ones and the factors are irreducible. �

Corollary 5.3. The theorem gives us a description of finite continuous ir-
reducible S(1, n)+-modules when n ≥ 2. Such a module is either Indgg0

F for an
irreducible finite-dimensional L0-module F where the highest weight of T does not
belong to the types listed in (a), (b) of the theorem or the factor of an induced
module from (a), (b) by the submodule Ker(d).
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Corollary 5.4. The Lie superalgebras S(1, n)+ and S(1, n)′+ have the same
finite continuous irreducible modules, and they are described by the previous corol-
lary.

Proof. In order to see that Theorem 5.2 also holds for S(1, n)′+, it is basically
enough to see that Proposition 5.1 holds in this case. But, if we track the details
of the proof, the singular vectors are the same for both Lie superalgebras S(1, n)′+
and S(1, n)+, finishing the proof. �

Now, as in the Wn case, Theorem 5.2 and Corollary 5.4, along with Section 2
give us a complete description of finite irreducible Sn-modules (n ≥ 2): it is given
by Theorem 4.9 in which Wn is replaced by Sn and gl(1|n) is replaced by sl(1|n).

Remark 5.5. Under the standard isomorphism between S2 and small N=4
conformal superalgebra it is easy to see that our result agrees with the classification
given in [5]. Indeed, in [5] (Theorem 6.1) the classification of irreducible modules
was given in terms of parameters Λ and Δ, and these parameters are related to
ours as follows,

λ1 = −Δ+
Λ

2
, (5.3)

λ2 = −Δ− Λ

2
. (5.4)

Therefore, the case 2Δ − Λ = 0 (Λ ∈ Z+) corresponds to the family Ω∗
Λ,α/Ker d̃∗

of rank 4Λ, and the case 2Δ + Λ + 2 = 0 (Λ ∈ Z+) corresponds to ΩΛ+1,α/Ker d̃
of rank 4Λ + 8. Therefore, we have one module of rank 4 that corresponds to
Ω∗

1/Ker d̃∗, and by Remark 4.10, the dual of this module is Ω0 (Ker is trivial in
this case) and (using Proposition 4.3) Ω0 is the tensor module Tens(V ) where V
is the trivial representation, therefore it is reducible with a maximal submodule of
codimension 1 (over C).

6. Lie conformal superalgebras Sn,b and S̃n, and their finite irreducible
modules

All the results of this section were obtained in [2].

- Case Sn,b:

For any b ∈ C, b �= 0, we take

S(1, n, b) = {D ∈ W (1, n)|div(ebxD) = 0}.
This is a formal distribution subalgebra of W (1, n). The associated Lie conformal
superalgebra is constructed explicitly as follows. Let D =

∑n
i=1 Pi(∂, ξ)∂i+ f(∂, ξ)

be an element of Wn. We define the deformed divergence as

divbD = divD + bf.

It still satisfies equation 5.2, therefore

Sn,b = {D ∈ Wn|divbD = 0}
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is a subalgebra of Wn, which is simple for n ≥ 2 and has rank n2n. Since Sn,0 = Sn

has been discussed in the previous section, we can (and will) assume that b �= 0.
If b �= 0, the extended annihilation algebra is given by

(Alg(Sn,b))
+ = Cad(∂0 − b

n∑

i=1

ξi∂i)� S(1, n)+ 
 CS(1, n)′+

where CS(1, n)′+ is obtained from S(1, n)′+ by enlarging sl(1, n) to gl(1, n) in the
0th-component.

Therefore, the construction of all finite irreducible modules over Sn,b is the
same as that for Wn, but without twisting by α. Hence, using Theorem 4.9, we
have

Theorem 6.1. The following is a complete list of finite irreducible Sn,b-modules
(n ≥ 2, b ∈ C, b �= 0):

(1) TensV , where V is a finite-dimensional irreducible gl(1|n)-module differ-
ent from Λk(C1|n)∗, k = 1, 2, . . . and Λk(C1|n), k = 0, 1, 2, ...,

(2) Ω∗
k/Ker d̃∗, k = 1, 2, . . ., and the same modules with reversed parity,

(3) Sn,b-modules dual to (b), with k > 1.

- Case S̃n:

Let n ∈ Z+ be an even integer. We take

S̃(1, n) = {D ∈ W (1, n)|div((1 + ξ1 . . . ξn)D) = 0}.
This is a formal distribution subalgebra of W (1, n). The associated Lie conformal

superalgebra S̃n is constructed explicitly as follows:

S̃n = {D ∈ Wn|div((1 + ξ1 . . . ξn)D) = 0} = (1− ξ1 . . . ξn)Sn.

The Lie conformal superalgebra S̃n is simple for n ≥ 2 and has rank n2n.
The extended annihilation algebra is given by

(Alg(S̃n))
+ = Cad(∂0 − ξ1 . . . ξn∂0)� S(1, n)′+ 
 S(1, n)+.

Therefore, the construction of all finite irreducible modules over S̃n is the same
as that for Sn, but without the twist by α.

7. Lie conformal superalgebra Kn and its finite irreducible modules

The results of this section where obtained in [1].

7.1. Lie conformal superalgebra Kn and annihilation Lie algebra K(1, n)+.

The contact superalgebra K(1, n) is the subalgebra of W (1, n) defined by

K(1, n) := {D ∈ W (1, n) | Dω = fDω, for some fD ∈ Λ(1, n)}, (7.1)

where ω = dt−
∑n

i=1 ξidξi is the standard contact form, and the action of D on ω
is the usual action of vector fields on differential forms.
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The space Λ(1, n) can be identified with the Lie superalgebra K(1, n) via the
map

f �→ 2f∂t + (−1)p(f)
n∑

i=1

(
ξi∂tf + ∂if

)(
ξi∂t + ∂i

)
,

the corresponding Lie bracket for elements f, g ∈ Λ(1, n) being

[f, g] =

(
2f −

n∑

i=1

ξi∂if

)
(∂tg)− (∂tf)

(
2g −

n∑

i=1

ξi∂ig

)
+ (−1)p(f)

n∑

i=1

(∂if)(∂ig).

The Lie superalgebra K(1, n) is a formal distribution Lie superalgebra with the
following family of mutually local formal distributions

a(z) =
∑

j∈Z

(atj)z−j−1, for a = ξi1 . . . ξir ∈ Λ(n).

The associated Lie conformal superalgebra Kn is identified with

Kn = C[∂]⊗ Λ(n), (7.2)

the λ-bracket for f = ξi1 . . . ξir , g = ξj1 . . . ξjs being as follows [7]:

[fλg] =

(
(r − 2)∂(fg) + (−1)r

n∑

i=1

(∂if)(∂ig)

)
+ λ(r + s− 4)fg. (7.3)

The Lie conformal superalgebra Kn has rank 2n over C[∂]. It is simple for n ≥
0, n �= 4, and the derived algebra K ′

4 is simple and has codimension 1 in K4.
The annihilation superalgebra is

A(Kn) = K(1, n)+ = Λ(1, n)+ := C[t]⊗ Λ(n), (7.4)

and the extended annihilation superalgebra is

A(Kn)
e = K(1, n)+ = Cad∂t �K(1, n)+.

Note that A(Kn)
e is isomorphic to the diract sum of A(Kn) and the trivial 1-

dimensional Lie algebra.
The Lie superalgebra K(1, n) is Z-graded by putting

deg(tmξi1 . . . ξik) = 2m+ k − 2,

and it induces a gradation on K(1, n)+ making it a Z-graded Lie superalgebra of
depth 2: K(1, n)+ = ⊕j≥−2(K(1, n)+)j . It is easy to check that K(1, n)+ satisfies
conditions (L1)-(L3).

Observe that K(1, n)+ is the subalgebra of

W (1, n)+ = {a∂t +
n∑

i=1

ai∂i|a, ai ∈ Λ(1, n)+}, (7.5)

defined by (cf.(7.1))

K(1, n)+ := {D ∈ W (1, n)+ | Dω = fDω, for some fD ∈ Λ(1, n)+}. (7.6)
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7.2. Induced modules. Using Theorem 2.4, the classification of finite irre-
ducible Kn-modules can be reduced to the study of induced modules for K(1, n)+.
Observe that

(K(1, n)+)−2 =< {1} >,

(K(1, n)+)−1 =< {ξi : 1 ≤ i ≤ n} > (7.7)

(K(1, n)+)0 =< {t} ∪ {ξiξj : 1 ≤ i < j ≤ n} >

We shall use the following notation for the basis elements of (K(1, n)+)0:

E00 = t, Fij = −ξiξj . (7.8)

Observe that (K(1, n)+)0 
 CE00 ⊕ so(n) 
 cso(n). Take

∂ := −1

2
1 (7.9)

as the element that satisfies (L3) in Section 2.
For the rest of this work, g will be K(1, n)+. Let F be a finite-dimensional

irreducible g0-module, which we extend to a g≥0-module by letting gj with j > 0
acting trivially. Then we shall identify, as above

Ind(F ) 
 Λ(1, n)⊗ F 
 C[∂]⊗ Λ(n)⊗ F (7.10)

as C-vector spaces. In order to describe the action of g in Ind(F ) we introduce the
following notation:

ξI := ξi1 . . . ξik , if I = {i1, . . . , ik},
∂L ξI := ∂l1 . . . ∂ls ξI if L = {l1, . . . , ls}, (7.11)

∂f ξI := ∂L ξI if f = ξL,

|f | := k if f = ξi1 . . . ξik .

In the following theorem, we describe the g-action on Ind(F ) using the λ-action
notation in (2.2), i.e.

fλ(g ⊗ v) =
∑

j≥0

λj

j!
(tjf) · (g ⊗ v)

for f, g ∈ Λ(n) and v ∈ F .

Theorem 7.1. For any monomials f, g ∈ Λ(n) and v ∈ F , where F is a g0-
module, we have the following formula for the λ-action of g = K(1, n)+ on Ind(F ):

fλ(g ⊗ v) =

= (−1)p(f)(|f | − 2)∂(∂fg)⊗ v +
n∑

i=1

∂(∂if)(ξig)⊗ v + (−1)p(f)
∑

r<s

∂(∂r∂sf)g ⊗ Frsv

+ λ

[
(−1)p(f)(∂fg)⊗ E00v + (−1)p(f)+p(g)

n∑

i=1

(
∂f (∂ig)

)
ξi ⊗ v +

∑

i �=j

∂(∂if)(∂jg)⊗ Fijv

]

+ λ2(−1)p(f)
∑

i<j

∂f (∂i∂jg)⊗ Fijv.
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The proof of this theorem is ommited (see Appendix A, [1]).
We obtained an easier formula for the λ-action in the induced module by taking

the Hodge dual of the basis (cf. [5], pp. 922). More precisely, for a monomial
ξI ∈ Λ(n), we let ξI be its Hodge dual, i.e. the unique monomial in Λ(n) such that
ξIξI = ξ1 . . . ξn.

The following theorem translates Theorem 7.1 in terms of the Hodge dual basis
and gives us the formula that is used to compute the singular vectors.

Theorem 7.2. Let F be a g0 = cso(n)-module. Then the λ-action of K(1, n)+
in Ind(F ) = C[∂]⊗ Λ(n)⊗ F , given by Theorem 7.1, is equivalent to the following
one:

fλ(g ⊗ v) = (−1)
|f|(|f|+1)

2 +|f ||g| ×

×
{
(|f | − 2)∂(fg)⊗ v − (−1)p(f)

n∑

i=1

(∂if)(∂ig)⊗ v −
∑

r<s

(∂r∂sf)g ⊗ Frsv

+ λ

[
fg ⊗ E00v − (−1)p(f)

n∑

i=1

∂i
(
fξig

)
⊗ v + (−1)p(f)

∑

i �=j

(∂if)ξjg ⊗ Fijv

]

− λ2
∑

i<j

fξiξjg ⊗ Fijv

}
.

7.3. Singular vectors. By Theorem 2.4, the classification of irreducible finite
modules over the Lie conformal superalgebra Kn reduces to the study of singular
vectors in the induced modules Ind(F ), where F is an irreducible finite-dimensional
cso(n)-module. This section will be devoted to the classification of singular vectors.

When we discuss the highest weight of vectors and singular vectors, we al-
ways mean with respect to the upper Borel subalgebra in K(1, n)+ generated by
(K(1, n)+)>0 and the elements of the Borel subalgebra of so(n) in (K(1, n)+)0.
More precisely, recall (7.8), where we defined Fij = −ξiξj ∈ (K(1, n)+)0 
 CE00 ⊕
so(n). Observe that Fij corresponds to Eij − Eji ∈ so(n), where Eij are the ele-
ments of the standard basis of matrices. Consider the following (standard) notation
(cf. [11], p.83). Let

Hj = i F2j−1,2j , 1 ≤ j ≤ m, (7.12)

a basis of a Cartan subalgebra of g = so(n,C), with m = [n2 ].

In order to write explicitly weights for vectors in K(1, n)+-modules, we will
consider the basis for the Cartan subalgebra h in (K(1, n)+)0 
 CE00 ⊕ so(n),
introduced above:

E00;H1, . . . , Hm, with m =

[
n

2

]
,

and we shall write the weight of an eigenvector for the Cartan subalgebra h as an
m+ 1-tuple of the corresponding eigenvalues of this basis:

λ = (μ;λ1, . . . , λm). (7.13)

Observe that a vector �m in the K(1, n)+-module Ind(F ) is a singular highest
weight vector if and only if the following conditions are satisfied

114



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ON IRREDUCIBLE REPRESENTATION OVER LIE CONFORMAL SUPERALGEBRAS 31

(S1) d2

dλ2 (f λ �m) = 0 for all f ∈ Λ(n),

(S2) d
dλ (f λ �m)|λ=0 = 0 for all f = ξI with |I| ≥ 1,

(S3) (f λ �m)|λ=0 = 0 for all f = ξI with |I| ≥ 3 or f ∈ Bso(n).

In order to classify the finite irreducible Kn-modules we should solve the equa-
tions (S1-3) to obtain the singular vectors. The next theorem gives us the complete
classification of singular vectors:

Theorem 7.3. Let F be an irreducible finite-dimensional cso(n)-module with
highest weight λ.

If n ≥ 4, then �m ∈ Ind(F ) is a non-trivial singular highest weight vector if and
only if �m is one of the following vectors (in the Hodge dual basis):

(a) �m =
(
ξ{2}c − i ξ{1}c

)
⊗ vλ, where vλ is a highest weight vector of the

cso(n)-module F and λ = (−k; k, 0, . . . , 0), with k ∈ Z>0,

(b) �m =

m∑

l=1

[(
ξ{2l}c + i ξ{2l−1}c

)
⊗ wl +

(
ξ{2l}c − i ξ{2l−1}c

)
⊗ wl

]
−

− δn,odd i ξ{2m+1}c ⊗ wm+1,

where w1 = vλ is a highest weight vector of the cso(n)-module F with
highest weight

λ = (n+ k − 2; k, 0, . . . , 0), for k ∈ Z≥0,

and all wl, wl are non-zero and uniquely determined by vλ.

If n = 3, then �m ∈ Ind(F ) is a non-trivial singular highest weight vector if and
only if �m is one of the following vectors:

(a) �m =
(
ξ{2}c − i ξ{1}c

)
⊗ vλ, where vλ is a highest weight vector of the

cso(3)-module V and λ = (−k; k), with k ∈ 1
2Z>0,

(b) �m =
(
ξ{2}c + i ξ{1}c

)
⊗ vλ +

(
ξ{2}c − i ξ{1}c

)
⊗ w1 − i ξ{3}c ⊗ w2,

where vλ is a highest weight vector of the cso(3)-module F with highest
weight

λ = (k + 1; k), for k ∈ 1

2
Z≥0 and k �= 1

2
,

and all wl, w2 are non-zero and uniquely determined by vλ.

(c) �m = ∂
(
ξ∗ ⊗ vλ

)
+ i ξ{1,2}c ⊗ vλ − 2ξ{2,3}c ⊗F2,3vλ + 2 ξ{1,3}c ⊗F1,3vλ,

where vλ is a highest weight vector of the cso(3)-module F with highest
weight λ = ( 32 ;

1
2 ).

The proof of this theorem was done through several lemmas in appendix B, [1].
Since this is quite technical, we will omit it.
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Remark 7.4. (a) The explicit expression of all non-zero vectors wl, w̄l in terms
of vλ that appear in the second family of singular vectors for all n ≥ 3, are given
in [1].

(b) If n=4, the first family of singular vectors �m =
(
ξ{2}c − i ξ{1}c

)
⊗ vλ, where vλ

is a highest weight vector of the cso(4)-module F and λ = (−k; k, 0), with k ∈ Z>0,
corresponds to the family of singular vectors b2 in Proposition 7.2(i) in [5]. Finally,
the second family of singular vectors in Theorem 7.3(b), correspond to the family
of singular vectors b5 in Proposition 7.2(ii) in [5].

(c) If n=3, the singular vectors in the cases (a), (b) and (c) described in the pre-
vious theorem, correspond to the vectors a2, a4 and a6 in Proposition 5.1 in [5],
respectively. Observe that the families (a) and (b) described for n ≥ 4 correspond
to the families (a) and (b) for n = 3, but in the latter case the parameter k is one
half a positive integer. Observe that the missing case (k + 1; k) with k = 1

2 in the
family (b) is completed by the case (c).

7.4. Modules of differential forms, the contact complex and irre-
ducible induced K(1, n)+-modules. We will use the standard notation intro-
duced in 4.2. Recall that K(1, n)+ is a subalgebra of W (1, n)+, defined by (7.6).
Hence Ω+ and Ωk

+ are K(1, n)+-modules as well.
Observe that the differential of the standard contact form ω = dt−

∑n
i=1 ξidξi

is dω = −
∑n

i=1(dξi)
2, and following Rumin’s construction in [13], consider for

k ≥ 2

Ik = dω ∧ Ωk−2 + ω ∧ Ωk−1 ⊂ Ωk, (7.14)

Ik+ = dω ∧ Ωk−2
+ + ω ∧ Ωk−1

+ ⊂ Ωk
+, (7.15)

and I1 = ω ∧ Ω0, I1+ = ω ∧ Ω0
+, I

0 = 0 = I0+. It is clear that d(Ik) ⊆ Ik+1 and

d(Ik+) ⊆ Ik+1
+ , and using (7.6) it is easy to prove that Ik and Ik+ are K(1, n)+-

submodules of Ωk and Ωk
+, respectively. Therefore we have the following contact

complex of K(1, n)+-modules (we also denote by d the induced maps in the quo-
tients):

0 −→ C
d−→ Ω0

+
d−→ Ω1

+/I
1
+

d−→ Ω2
+/I

2
+

d−→ · · · (7.16)

Let C[dξi]
l ⊆ Ωl

+ be the subspace of homogeneous polynomials in dξ1, . . . , dξn
of degree l. Using that the action of cso(n) = C E00 ⊕ so(n) = (K(1, n)+)0 in Ωl

+

is given by

E00 �−→ 2 t ∂t +
n∑

i=1

ξi ∂i, Fij �−→ ξi∂j − ξj∂i, (7.17)

it follows that C[dξi]
l is a cso(n)-invariant subspace. Now, consider Γl = π(C[dξi]

l),
where π : Ωl

+ −→ Ωl
+/I

l
+, and take Θl = (Γl)#. Here and further, we denote by #

the restricted dual, that is the sum of the dual of all the graded components of the
initial module, as in 4.2.1. Then, we have
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Proposition 7.5. (1) The cso(n)-module Θl, l ≥ 0, is irreducible with highest
weight (−l; l, 0, . . . , 0).

(2) The K(1, n)+-module (Ωl
+/I

l
+)

#, l ≥ 0, contains Θl and this inclusion induces
the isomorphism

(Ωl
+/I

l
+)

# = Ind(Θl).

(3) The dual maps d# : (Ωl+1
+ /I l+1

+ )# → (Ωl
+/I

l
+)

# are morphisms of K(1, n)+-
modules. The kernel of one of them is equal to the image of the next one and it is
a non-trivial proper submodule in (Ωl

+/I
l
+)

#.

Corollary 7.6. The following K(1, n)+-modules are isomorphic

Ωk
+/I

k
+ = (Ind(Γk))∗.

Let us now study the K(1, n)+-modules Ωk
−. Recall that we identified (via

isomorphism) Ωk
− with Ωk/Ωk

+. Let π̃ : Ωk → Ωk/Ωk
+ = Ωk

−. Observe that Ik− =

π̃(Ik) is a K(1, n)+-submodule of Ωk
−, and d(Ik−) ⊆ Ik+1

− . Let

ξ∗ = ξ1 · · · ξn, and Γk
− = t−1ξ∗Ω

k
c ⊂ Ωk

−.

Proposition 7.7. For g = K(1, n)+, we have:

(1) The cso(n)-module Γk
− is an irreducible submodule of Ωk

− with highest weight

(n+ k − 2; k, 0, . . . , 0), for k ≥ 0,

and g>0 acts trivially on Γk
−.

(2) There is a g-module isomorphism Ωk
−/I

k
− = Ind(Γk

−).

(3) The differential d gives us g-module morphisms on Ωk
−/I

k
−, and the kernel and

image of d are g-submodules in Ωk
−/I

k
−.

(4) The kernel of d and image of d in Ωk
−/I

k
− for k ≥ 2 coincide, in Ω1

−/I
1
− we have

Ker d = C(t−1dt)+Im d, and in Ω0
−, we have Ker d = 0.

Proof. (1) First, a simple computation shows that g>0 maps Γk
− to zero.

Also, as a g0-module, Γk
− is isomorphic to the space of harmonic polinomials in

dξ1, . . . , dξn of degree k multiplied by the 1-dimensional module 〈t−1ξ∗〉. This
permits us to see that its highest weight vectors are

〈t−1ξ∗〉 for k = 0,

〈t−1ξ∗(dξ1 − idξ2)
k〉 for k ≥ 1.

The values of the highest weights are easy to compute using (7.17).
(2) It is straightforward to see that Ω0

− is a free rank 1 C[∂0, ∂1, . . . , ∂n]-module.

Now, the action of ∂0, ∂1, . . . , ∂n on Ωk
−/I

k
− is coefficientwise, hence the fact that

Ωk
−/I

k
− is a free C[∂0, ∂1, . . . , ∂n]-module follows. This gives us the isomorphism

Ωk
−/I

k
− = Ind(Γk

−).
(3) It follows immediately from the fact that d commutes with the action of

vector fields.
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(4) Let α ∈ Ωk
− be such that dα ∈ Ik+1

− . Then dα = ω∧β+dω∧γ, with β ∈ Ωk
−

and γ ∈ Ωk−1
− . Observe that d(α− ω ∧ γ) = ω ∧ (β − dγ), hence, by replacing α by

another representative, we may assume that γ = 0. Since 0 = d2α = d(ω ∧ β) =
dω ∧ β − ω ∧ dβ, then dω ∧ dα = dω ∧ (ω ∧ β) = ω ∧ ω ∧ dβ = 0. Therefore,
dα ∈ Ker(dω ∧ · ) = 0. But the differential complex (Ω•

−, d) is exact except for
k = 1 (see Proposition 4.3 ), proving the statement. �

In the last part of this subsection, we classify the irreducible induced K(1, n)+-
modules. Let g = K(1, n)+. Now, we have the following:

Theorem 7.8. Let Fλ be an irreducible g0-module with highest weight λ.
If n ≥ 4, then the g-module Ind(Fλ) is an irreducible (finite conformal) module

except for the following cases:

(a) λ = (−l; l, 0, . . . , 0), l ≥ 0, Ind(Fλ) = (Ωl
+/I

l
+)

#, and d#(Ωl+1
+ /I l+1

+ )# is
the only non-trivial proper submodule.

(b) λ = (n + k − 2; k, 0, . . . , 0), k ≥ 1, and Ind(Fλ) = Ωk
−/I

k
−. For k ≥ 2 the

image dΩk−1
− /Ik−1

− is the only non-trivial proper submodule. For k = 1, both Im(d)
and Ker(d) are proper submodules, and Ker(d) is a maximal submodule.

Proof. We know from Theorem 2.4 that in order for the g-module Ind(F )
to be reducible it has to have non-trivial singular vectors and the possible highest
weights of F in this situation are listed in Theorem 7.3 above.

The fact that the induced modules are actually reducible in those cases is known
because we have got nice realizations for these induced modules in Propositions 7.5
and 7.7 together with morphisms defined by d, d#, so kernels and images of these
morphisms become submodules.

The subtle thing is to prove that a submodule is really a maximal one. We
notice that in each case the factor is isomorphic to a submodule in another induced
module so it is enough to show that the submodule is irreducible. This can be proved
as follows, a submodule in the induced module is irreducible if it is generated by
any highest singular vector that it contains. We see from our list of non-trivial
singular vectors that there is at most one such a vector for each case and the
images and kernels in question are exactly generated by those vectors, hence they
are irreducible. �

Corollary 7.9. The theorem gives us a description of finite conformal ir-
reducible K(1, n)+-modules for n ≥ 4. Such a module is either Ind(F ) for an
irreducible finite-dimensional g0-module F , where the highest weight of F does not
belong to the types listed in (a), (b) of the theorem, or the factor of an induced
module from (a), (b) by its submodule Ker(d).

7.5. Finite irreducible Kn-modules. Recall (see Section 4.5) that the con-
formal algebra of differential forms Ωn is the current algebra over the commutative
associative superalgebra Ω(n)+Ω(n) dt with the obvious multiplication and parity,
subject to the relation (dt)2 = 0:

Ωn = Cur(Ω(n) + Ω(n) dt).
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The de Rham differential d̃ of Ωn (we use the tilde in order to distinguish it from
the de Rham differential d on Ω(n)) is a derivation of the conformal algebra Ωn

such that:

d̃(ω1 + ω2dt) = dω1 + dω2dt− (−1)p(ω1)∂(ω1dt). (7.18)

here and further ωi ∈ Ω(n).
The standard Z+-gradation Ω(n) = ⊕j∈Z+

Ω(n)j of the superalgebra of differ-
ential forms by their degree induces a Z+-gradation

Ωn = ⊕j∈Z+
Ωj

n, where Ωj
n = C[∂]⊗ (Ω(n)j +Ω(n)j−1 dt),

so that d̃ : Ωj
n → Ωj+1

n .

Let ω = dt −
∑n

i=1 ξidξi ∈ Ω1
n. Observe that d̃ω = −

∑n
i=1(dξi)

2. Now, we
define, for j ≥ 2,

Ijn = C[∂]⊗
(
ω ∧ Ω(n)j−1 + dω ∧ Ω(n)j−2 dt

)
⊂ Ωj

n, (7.19)

I1n = C[∂]⊗ (ω ∧ Ω(n)0), I0 = 0.

It is clear that d̃(Ijn) ⊆ Ij+1
n , and it is easy to prove that Ijn is Kn-submodules

of Ωj
n. Therefore, we get a Rumin conformal complex (Ωj

n/I
j
n , d̃), where we also

denote by d̃ the differential in the quotient.
Let V be a finite dimensional irreducible cso(n)-module, using the results of

Section 2 and recalling that the annihilation algebra of Kn is K(1, n)+, we have
that the K(1, n)+-modules Ind (V ) studied in the previous section are Kn-modules
with the λ-action given by Theorem 7.2. We denote by Tens (V ) the corresponding
Kn-module.

Since the extended annihilation algebra K(1, n)+ is a direct sum of K(1, n)+
and a 1-dimensional Lie algebra Ca, any irreducible K(1, n)+-module is obtained
from a K(1, n)+-module M by extending to K(1, n)+, letting a �→ −α, where
α ∈ C. Translating into the conformal language (see Proposition 2.3), we see that
all Kn-modules are obtained from conformal K(1, n)+-modules by taking for the
action of ∂ the action of −∂t + αI, α ∈ C. We denote by TensαV and Ωk,α, α ∈ C,
the Kn-modules obtained from TensV and Ωk by replacing ∂ by ∂ + α in the
corresponding actions.

As in [2], we see that Theorem 7.8 and Corollary 7.9, along with Theorem 2.4
and Propositions 2.3, 2.7 and 2.8, give us a complete description of finite irreducible
Kn-modules, namely we obtain the following theorem.

Theorem 7.10. The following is a complete list of non-trivial finite irreducible
Kn-modules (n ≥ 4, α ∈ C):

(1) TensαV , where V is a finite-dimensional irreducible cso(n)-module with
highest weight different from (−k; k, 0, . . . , 0) and (n + k − 2; k, 0, . . . , 0)
for k = 1, 2, . . .,

(2)
(
Ωk

n/I
k
n

)∗

α

/
Ker d̃∗, k = 1, 2, . . . , and the same modules with reversed

parity,
(3) Kn-modules dual to (2), with k > 1.

Remark 7.11. (a) Using Proposition 7.7, we have that the kernel of d̃ and the

image of d̃ coincide in Ωk
n/I

k
n for k ≥ 2. Now, since Ωk+2

n /Ik+2
n is a free C[∂]-module

of finite rank and (Ωk+1
n /Ik+1

n )/Im d̃ = (Ωk+1
n /Ik+1

n )/Ker d̃ 
 Im d̃ ⊂ Ωk+2
n /Ik+2

n ,
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we obtain that (Ωk+1
n /Ik+1

n )/Im d̃ is a finitely generated free C[∂]-module. There-
fore, we can apply Proposition 2.6 in [2], and we have that

(
Ωk+1

n /Ik+1
n

)∗
/Ker d̃∗ 


(
(Ωk

n/I
k
n)/Ker d̃

)∗
(7.20)

for k ≥ 1.
(b) Since for a free finite rank module M over a Lie conformal superalgebra

we have M∗∗ = M , using (7.20), the Kn-modules in case (3) of Theorem 7.10 are

isomorphic to (Ωk
n/I

k
n)α/Ker d̃, k = 1, 2, ....

(c) Let V be a finite-dimensional (one dimesional in fact) irreducible cso(n)-
module with highest weight (0; 0, . . . , 0). Observe that the module Tens V has a
maximal submodule of codimension 1 over C. Hence, the irreducible quotient is
the one dimensional (over C) trivial Kn -module. Therefore, we excluded the case
k = 0 in Theorem 7.10(2).

(d) Let V be a finite-dimensional irreducible cso(n)-module with highest weight
(n − 2; 0, 0, . . . , 0). Observe that in case (3) in Theorem 7.10, we excluded k =
1, because in this case the dual corresponds to the module Tensα V , which is
isomorphic to Ω0,α and it is an irreducible tensor module, therefore this module is
included in case (1) of Theorem 7.10.

(e) The case K2 
 W1 was studied in full detail at the end of Section 4.5.

8. Work in progress

In order to complete the classification of finite simple modules of all conformal
superalgebras, the remaining cases are:

• K3, in this case the classification is known, but it still remains to give a
nice realization of the irreducible finite modules.

• K ′
4, the Lie conformal superalgebra which is the derived subalgebra of

K4 = K ′
4 ⊕ Cξ1...ξ4.

• CK6. This is a simple rank 32 subalgebra of K6, whose even part is
W0�Cur so6 and whose odd part is spanned by six primary fields of
conformal weight 3/2 and ten primary fields of conformal weight 1/2. For
the explicit form of the commutation relations, as well as for more detailed
information on CK6, see [3].

These cases are part of a work in progress and will be worked out in subsequent
publications. At this moment we have some reduction lemmas that produce the
classification of singular vectors of CK6.
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